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Abstract

Motivation

microRNAs (miRNAs) play crucial roles in post-transcriptional gene regulation of both

plants and mammals, and dysfunctions of miRNAs are often associated with tumorigenesis

and development through the effects on their target messenger RNAs (mRNAs). Identifying

miRNA functions is critical for understanding cancer mechanisms and determining the effi-

cacy of drugs. Computational methods analyzing high-throughput data offer great assis-

tance in understanding the diverse and complex relationships between miRNAs and

mRNAs. However, most of the existing methods do not fully utilise the available knowledge

in biology to reduce the uncertainty in the modeling process. Therefore it is desirable to

develop a method that can seamlessly integrate existing biological knowledge and high-

throughput data into the process of discovering miRNA regulation mechanisms.

Results

In this article we present an integrative framework, CIDER (Causal miRNA target Discovery

with Expression profile and Regulatory knowledge), to predict miRNA targets. CIDER is

able to utilise a variety of gene regulation knowledge, including transcriptional and post-

transcriptional knowledge, and to exploit gene expression data for the discovery of miRNA-

mRNA regulatory relationships. The benefits of our framework is demonstrated by both sim-

ulation study and the analysis of the epithelial-to-mesenchymal transition (EMT) and the

breast cancer (BRCA) datasets. Our results reveal that even a limited amount of either

Transcription Factor (TF)-miRNA or miRNA-mRNA regulatory knowledge improves the per-

formance of miRNA target prediction, and the combination of the two types of knowledge

enhances the improvement further. Another useful property of the framework is that its per-

formance increases monotonically with the increase of regulatory knowledge.
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Introduction
miRNAs are short non-protein coding RNAs that regulate gene expression by either marking
their target mRNAs for degradation or repressing translation. miRNAs mainly identify their
target mRNAs by binding to the 3’-untranslated region (3’UTR) or 5’ UTR. Studies have
shown that miRNAs play important roles in a broad range of biological processes, such as dif-
ferentiation [1], development [2], apoptosis [3] and cellular signaling [4]. Because of their
biological importance, miRNAs are related to a variety of diseases, such as cancer and cardio-
vascular diseases [5]. Therefore, precise identification of miRNA targets is critical to the under-
standing of the functions of miRNAs in both healthy and diseased tissues [6, 7].

Computational approaches are a necessary and promising way to help unveil the complete
picture of miRNA regulatory relationships. Significant progress has been made in elucidating
the relationships between miRNAs and their targets using wet-lab biological experiments [8–
11]. However, it is unrealistic to hope for a complete picture of miRNA regulation mechanisms
by relying solely on wet-lab experiments due to the huge number of possible relationships and
high expenses of the experiments [12]. Therefore, dry-lab approaches have been considered as
a cost-effective and promising alternative and have shown great promise in identifying putative
miRNA targets [13–16].

Because of the large number of miRNAs and mRNAs involved in gene regulation, provid-
ing reliable predictions has always been a significant challenge for computational biology
approaches. This problem is further exacerbated by the small number of available samples.
Therefore researchers have to rely on the integration of biological knowledge and data driven
discovery process to obtain a complete understanding of miRNA regulation mechanisms.

Bayesian network (BN) [17–22] provides an excellent platform for seamless integration of
prior knowledge and data in the process of causal structure learning. Furthermore, the causal
semantics of a BN makes it a preferred model for representing gene regulatory networks since
the interactions among genes are causal relationships rather than statistical associations.

Valuable wet-lab validated knowledge cannot be effectively utilised with the existing
methods [23–26]. These algorithms use prior knowledge to restrict their search space in the
way that the knowledge is used to initialise the structure of a BN and the learning process is
aimed at removing false positives from the initial structure [27–31]. Therefore the final struc-
ture is a sub-graph of the initial one and a miRNA-mRNA interaction will not be predicted
if it is not included in the prior knowledge. Consequently such methods usually require users
to have a large amount of knowledge which covers the complete or nearly complete knowl-
edge of the network structure, and are not able to utilise the sparse and limited validated
knowledge.

In this paper, we propose the CIDER framework to effectively utilise sparse wet-lab vali-
dated knowledge, including transcriptional miRNA-mRNA and post-transcriptional TF-
miRNA regulatory knowledge [32]. Our method differentiates from the existing work in two
aspects: first instead of using the regulatory knowledge to initiate the network structure and
then remove false positive edges, we enforce the learning process to maintain the experimen-
tally confirmed relationships without restricting the search space. Secondly the regulatory
knowledge is used for the purpose of obtaining more accurate estimation of the causal effect of
miRNAs on mRNAs, whereas existing methods use prior knowledge to learn the causal regula-
tory structure.

Our results on both real-world and simulated datasets demonstrate that a very small
amount of validated regulatory knowledge improves the accuracy of predicted miRNA targets
significantly, and the performance of CIDER increases monotonically with the increase of reg-
ulatory knowledge.
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We show that when wet-lab validated knowledge is analysed together with expression pro-
files, CIDER discovers significantly more validated miRNA targets than using expression pro-
files alone. It is also shown that either TF-miRNA or miRNA-mRNA regulatory knowledge
improves the performance, and the combination of the two types of knowledge enhances the
performance further.

An important property of the framework is that the performance of miRNA target predic-
tion improves monotonically with the amount of regulatory knowledge used. In other words
CIDER makes more reliable discoveries from the data when the knowledge integrated into the
framework increases. In Fig 1, we illustrate a promising knowledge discovery process based on
this property. With the incorporation of regulatory knowledge in CIDER, the process becomes
a feedback loop for the discovery of new biological hypotheses and it naturally combines dry-
lab predictions with web-lab experiments.

Materials

Matched expression profiles
NCI-60 data for Epithelial to Mesenchymal Transition (EMT). The EMT [33] dataset

includes the miRNA expression profiles for the NCI-60 panel cell lines from [34], and the data-
set is available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26375. The mRNA
expression profiles for NCI-60 were downloaded from ArrayExpress available at http://www.
ebi.ac.uk/arrayexpress, accession number E-GEOD-5720. We use the cell lines categorized as
epithelial (11 samples) and mesenchymal (36 samples) in this study.

Data of the 51 human breast cancer cell lines (BRCA). The BRCA dataset includes
miRNA expression profiles from the breast cancer cell lines data provided by [35]. The mRNA
expression profiles for these cell lines can be downloaded from http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE41313. 27 samples in the luminal group and 23 samples in the basal
group are used.

Gene regulation databases
TF-miRNA interaction database. For transcriptional regulatory knowledge, we use

TransmiR [36], a TF-miRNA regulatory relationships database including approximately 700
entries manually collected from relevant literatures. This database is available online at http://
www.cuilab.cn/transmir.

Experimentally validated miRNA-mRNA interaction databases. The post-transcrip-
tional regulatory knowledge is obtained from miRNA target databases Tarbase v6.0 [37],
miRTarbase v4.5 [13] and miRWalk [38]. Tarbase and miRTarbase contain experimentally

Fig 1. An iterative process of integrating and discovering miRNA regulatory relationships.Our proposed framework is one iteration of the above
knowledge and data integrated discovery process. In the long run, wet-lab and dry-lab discoveries become an integrated feedback process for uncovering
new biological insights. Bayesian network based causal reasoning provides an excellent platform for a seamless integration.

doi:10.1371/journal.pone.0152860.g001
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confirmed miRNA target information manually collected from related literatures. miRWalk
contains both predicted and validated miRNA targets, but we only utilise the experimentally
validated targets in our experiments. The detailed information of experimentally validated
miRNA-mRNA interactions retrieved from all these databases can be found in S3 File.

Predicted miRNA-mRNA interaction database. We also utilise TargetScan v6.2 [39], a
commonly used miRNA target prediction database. TargetScan predicts miRNA targets by
searching for binding sites that match the seed region of each miRNA. This database is avail-
able online at http://www.targetscan.org.

Methods

Notation
Let G ¼ ðV;EÞ denote a graph where V = {X1, . . ., Xl} is a set of vertices and E� V × V is a set
of edges. In our framework, the vertex set V represents a set of random variables corresponding
to the expression levels of miRNAs and mRNAs (including TF coding mRNAs), and the edges
represent the causal relationships between the variables.

We use Xi! Xj or Xi Xj to represent a directed edge between Xi and Xj. Xi − Xj is used to
represent an undirected edge between Xi and Xj. The set of all parent nodes of Xj is denoted as
paj. A directed graph is a graph in which all edges are directed. An undirected graph is a graph
in which all edges are undirected. We say that a graph G is acyclic if and only if all its directed
edges do not form any cycle in G. In this article, we always assume the graph is acyclic.

The proposed CIDER framework
As illustrated in Fig 2, the CIDER framework consists of three steps. In the first step we per-
form differential gene expression analysis and query the databases for gene regulation knowl-
edge. To identify the targets of a miRNA, we use do-calculus [18] to estimate the causal effects
the miRNA have on all the mRNAs. In other words, do-calculus estimates how the expression
values of the mRNAs change when the expression of the miRNA is intervened [41]. In order to
apply do-calculus, we need to know the causal relationships between the variables. Therefore in
Step 2 we construct the causal structure with the incorporation of regulatory knowledge, then
we identify the miRNA targets using do-calculus in Step 3.

Step 1 (Data preparation). The differential expression analysis is performed as described
in [42]. As a result for the EMT dataset, 35 miRNA probes and 1154 probes of mRNAs are
identified as significantly differentially expressed. For the BRCA dataset, 92 miRNA probes
and 1500 mRNA probes are identified. The detailed result can be found in S1 File.

After differential expression analysis, we extract the regulatory knowledge (i.e. TF-miRNA
and miRNA-mRNA interactions) relevant to the differentially expressed expression profiles
from the regulatory knowledge databases described previously.

Step 2 (Casual structure construction). Using both the gene regulation knowledge and
gene expression data, we learn a causal Bayesian network (CBN) which models the structure of
the gene regulatory network. A CBN consists of a pair< G; P >, where G is a directed acyclic
graph with the differentially expressed miRNAs and mRNAs as its vertices, and P is the joint
probability function of the vertices. An edge in G indicates a causal relationship between
the two vertices. For example, an edge directing from a miRNA to a mRNA means that the
miRNA regulates the mRNA; and an edge directing from a TF coding mRNA to a miRNA indi-
cates the TF regulates the miRNA.

A common way to learn the causal structure is to start from a completed graph, then update
the graph according to the gene expression data. In order to integrate the regulatory knowl-
edge, in CIDER we label all the edges given in the regulatory knowledge as constant edges,
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which are never to be removed or altered (in terms of their directions) during the entire struc-
ture construction step.

Step 3 (Causal effect estimation). We estimate the causal effect that each miRNA has on
all the mRNAs according to the causal structure and expression profiles. The causal effects
measures when the expression level of a certain miRNA changes, how the expression level of
other mRNA will change. For each miRNA, we choose the mRNAs with the largest causal
effects as the predicted targets.

In the rest of this section, we discuss the details and intuitions of Step 2 and Step 3.

Causal structure construction
There are two steps involved in constructing a causal structure: determining the existence of
edges between the nodes, and orienting the direction of the edges.

A common way [43, 44] to determine whether an edge exists between two nodes is condi-
tional independence (CI) tests. More specifically, starting from a fully connected graph, we use
CI tests to determine the dependency between all connected nodes pairs. If two nodes become
independent when conditioned on any subsets of their neighbours, the edge between them is
removed from the graph. Otherwise, the edge will remain in the causal structure.

During this procedure, edges may be incorrectly removed or maintained. Because the num-
ber of available samples is limited when comparing to the large number of variables in expres-
sion profiles, CI tests may declare two nodes are independent even if a dependency exists, thus
the edge between them will be removed correctly. Furthermore, the incorrectly removed edges
will not appear in the conditioning sets of later CI tests, which may lead to false positives (i.e.

Fig 2. The proposed CIDER framework. First the differentially expressedmiRNAs andmRNAs are selected in the expression profiles [40], then we
query the regulatory databases for gene regulation knowledge. After that we build the causal structure according to the expression profiles and the
knowledge, followed by the causal inference to identify miRNA-mRNA interaction pairs.

doi:10.1371/journal.pone.0152860.g002
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two nodes would have been tested to be independent and their edge would have been removed
if the incorrectly removed edges were kept and were in the conditioning set of the CI test).

In order to determine the orientation of edges we need to identify the v-structures in the
causal structure defined as follows:

Definition 1 ([18]) A triple (Xi, Xj, Xk) forms a v-structure in graph G if and only if it suffices
both of the following conditions:

1. Xi and Xj as well as Xj and Xk are adjacent, Xi and Xk are not adjacent,

2. Xi and Xk are not independent when conditioned on Xj.

When a v-structure (Xi, Xj, Xk) is identified, the edges can then be oriented as Xi! Xj Xk

[18]. After all the v-structures have been identified and oriented, we can orient the remaining
edges according to the principle of avoiding the creation of cycles and new v-structures [44].

Unfortunately, under most circumstances the above strategy can only orient some of the
edges, leaving many undirected. Undirected edges introduce uncertainty in the next step, since
the estimation has to be done on all possible orientations of the undirected edges and take the
lower bounds as the inferred causal effects [31].

In our framework, we utilise regulatory knowledge to alleviate both the false edges and the
undirected edges problems. We introduce the concept of constant edge. A constant edge is an
edge between two nodes where their relationship are already validated via biological experi-
ments, so the edge will never be removed no matter what result the CI tests are, and the direc-
tion of the edge can be correctly determined according to the knowledge. Now let us have a
look at benefits of introducing constant edges with the following example.

With the introduction of constant edges, we are able to recover incorrectly removed edges
and also remove some falsely discovered edges. Fig 3A shows a causal structure learned with CI
tests only, which includes one falsely identified regulatory relationship (miR-200a to miR-
200b) and two missed regulatory relationships (miR-200a to ZEB1 and miR-200b to ZEB1).
Since it is has been experimentally confirmed that ZEB1 is a target of miR-200a, we mark the
edge from miR-200a to ZEB1 as a constant edge and do not remove it when using CI tests (see
Fig 3B). Because of the introduction of the edge from miR-200a to ZEB1, the falsely discovered
edge from miR-200a to miR-200b is removed (see Fig 3C) as the result of the conditional inde-
pendence test with ZEB1 being added to the conditioning set.

Constant edges can also help to orient more undirected edges. For example, in Fig 3C,
although we have removed the false edge between miR-200a and miR-200b, the directions of
the two edges (miR-200b/QKI and miR-429/ZEB1) still cannot be determined. However, when
we have another constant edge that miR-200b regulates ZEB1 from the regulatory knowledge,
we can orient the two edges as in Fig 3D otherwise a new v-structure (at ZEB1) or a cycle
(miR-200b! ZEB1!miR429!QKI!miR-200b) will be introduced, either of which is
not allowed acyclic assumption [43].

Fig 3. An illustration of how the prior knowledge helping the causal structure construction. Solid/dashed black lines indicate the edges correctly/
incorrectly detected during the causal structure construction without the prior knowledge; Dotted brown lines indicate the edges added based on prior
knowledge.

doi:10.1371/journal.pone.0152860.g003
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As shown above, even when only one or two constant edge is introduced, the uncertainness
in the causal structure can be significantly reduced. We briefly summarise the procedure of
constructing the causal structure in Algorithm 1 (The details of the algorithm can be found in
S6 File).

Algorithm 1 Construct the causal structure G
Input: Gene expression profile, regulatory knowledge matrix.
Output: Constructed causal structure G

Initiate G as a fully connected graph
//Mark constant edges
Mark all constant edges in G according to the regulatory knowledge matrix.
//Removes edges from G using CI tests
Test conditional dependence among non-constant edges, remove an edge
between two vertices if they are found independent.
//Orient constant edges
Orient constant edges according to regulatroy knowledge
//Orient remaining edges
Identify and orient all v-structures
Orient remaining edges without creating new v-structure and cycle

return G

Causal Effect Estimation
With the expression data and the causal structure among its variables, we need to infer the
causal effects that a miRNA has on a mRNA. By assuming all variables in the expression pro-
files follow the multivariate Gaussian distribution, we can calculate the causal effects as follows:

Theorem 1 ([45]) Let X1, . . ., Xp, Xp + 1, . . ., Xp + q be jointly normal distributed. The causal
effect of Xi(i = 1, . . ., p) on Xj(j = p + 1, . . ., p + q), ce(Xi, Xj) can be calculated as:

ceðXi;XjÞ ¼ bijjpaj ¼
0 Xj 2 pai

bij in Xj � bijXi þ paj; Xj =2 pai
ð1Þ

8<
:

where Xj * βij Xi + paj is the shorthand for the linear regression of Xj on Xi and paj, and βij is the
coefficient for Xi in the regression.

Given the above theorem, we are able to estimate the regulatory effect of each miRNA on all
mRNAs in a dataset, and use the mRNAs with top ranked causal effects as the targets of the
corresponding miRNA. Note that because the available regulatory knowledge is very sparse,
some edges in the causal structure may still remain undirected. Therefore we use the minimum
absolute value as the estimation of the lower bound of the causal effect. We briefly summarise
this procedure in Algorithm 2. For more details, please refer to the S6 File.

Algorithm 2 Causal effects estimation
Input: Gene expression data Xs × n, causal structure G.
Output: Causal effects matrix C where C(i, j) is the causal effect of miRNAi

on mRNAj.
Initialize C as a zero matrix
for All pairs of miRNAi and mRNAj do
for All possible orientations of G do

Calculate the causal effect with Theorem 1
end for
Let C(i, j) be the causal effect with lowest absolute value

end for
return C

Predicting miRNA Targets with Knowledge and Expression Profile

PLOS ONE | DOI:10.1371/journal.pone.0152860 April 11, 2016 7 / 19



Evaluation methods
Evaluating miRNA target prediction methods is not an easy task. This is mainly because the
current understanding of miRNA regulation mechanisms is still limited and experimentally
validated target databases only contain information about frequently studied miRNAs. There-
fore to evaluate the effectiveness of the CIDER framework, we use a number of different evalua-
tion approaches described in the following:

1. We compare the predicted results to wet-lab validated miRNA target databases. Since
CIDER needs access to regulatory knowledge, we reserve a part of the known regulatory
relationships as the ground truth for evaluation. Specifically, when studying the perfor-
mance of CIDER using TF-miRNA regulatory knowledge, we utilise the TF-miRNA interac-
tions retrieved from TransmiR as the prior knowledge in constructing the causal structure
and reserve the miRNA-mRNA interactions obtained from the miRNA target databases as
the ground truth; when studying the effect of miRNA-mRNA regulatory knowledge, we uti-
lise miRNA-mRNA interactions retrieved from TargetScan for causal structure construction
and reserve the miRNA-mRNA interactions obtained from the experimentally validated
miRNA target databases as the ground truth. In addition, if an interaction appears in the
prior knowledge and the ground truth, we remove this entry from the knowledge and only
use it for evaluation.

2. We compare the predicted targets to the results of miRNA transfection experiments.
miRNA transfection is a technique that actively transfects a particular miRNA into cells,
and by comparing the transfected expression profile to the controlled sample (same cell but
without miRNA transfection), difference in mRNA expression level can be measured and
mRNAs with top ranked logarithm fold change values can be considered as groundtruth
miRNA targets [46].

3. We use gene pathway enrichment tools to analyse the functionality of predicted miRNA tar-
gets. It is often hypothesized that the predicted miRNA targets based on the expression pro-
file should be closely related to the biological condition of the expression profiles. For
example, the mRNAs targeted by miRNAs in the EMT dataset should be closely related to
the epithelial to mesenchymal transition process. Therefore pathway functional analysis can
be used to demonstrate the effectiveness of miRNA target prediction methods.

The above evaluations are used to demonstrate the effectiveness of CIDER for finding bio-
logically relevant miRNA targets. To further demonstrate the performance CIDER when used
with different amount of regulatory knowledge, we use the following simulation.

We simulate a gene regulatory networks and the corresponding gene expression profiles
based on the linear structural equation model [47]. First we construct a directed graph where
each node represents a miRNA or mRNA (including TF coding mRNA) in the regulatory net-
work and the direction of an edge indicates that the parent node regulates the child node. Then
we assign to each edge a weight wi (wi � Uð½�1;�0:1� [ ½0:1; 1�Þ) which measures the amount
of regulatory effect that the parent node has on the child node. Starting from the nodes without
parents, we generate the expression value for each node following Gaussian distribution, with a
non-Gaussian error terms added. Specifically the expression value of each gene is defined as
follows:

xi ¼ bi þ
X

j2paðxiÞ
wj � xj þ �i; ð2Þ

where pa(xi) denotes the parent nodes of xi, wj � xj is the regulatory effect of the j-th node has
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on the i-th one, �i represents the non-Gaussian error term of the i-th node, and bi represents
the interception term. To alleviate the effect of randomness in the simulated data, in total 50
networks (each of the network has approximately 1000 nodes) are generated and the average
results from these 50 networks are reported. For each network we generate two sets of expres-
sion profiles, containing 250 and 500 samples, respectively.

To evaluate the performance on simulated datasets, we use F-Score (the harmonic mean of
precision and recall) to measure the performance of all methods, which is formulated as fol-
lows:

F ¼ 2 � precision � recall
precisionþ recall

:

We use F-Score to compare CIDER with a variety of popular miRNA target prediction
methods, including Pearson correlation [42], Lasso [48], Z-Score [49]. Pearson correlation cal-
culates the correlation coefficients between pairs of miRNAs and mRNAs, and use the strength
of the correlations to measure the regulatory effect. Lasso is a popular regression method
which also measures linear correlation, but uses the L1-norm to overcome the sparseness of the
high dimensional expression profiles. Z-Score is a specifically designed method to infer gene
regulatory network using data from gene knock-out experiments. Since only observational data
is used in our study, we use the lowest expression value of each gene among all sample as the
value of knocked-out gene expression.

Results and Discussions

Transcriptional knowledge improves miRNA-mRNA target prediction
In this section, we investigate the effect of transcriptional TF-miRNA regulatory knowledge on
miRNA target prediction. We first apply CIDER to analyse only the expression profiles, then
we allow CIDER to access both TF-miRNA regulatory knowledge and the expression data and
compare the performance of these two settings. For each miRNA, we consider the mRNAs
with Top 50 and Top 100 ranked causal effects as its targets and compare them with those in
the combination of three experimentally confirmed miRNA-mRNA interaction databases: Tar-
base, miRWalk and miRTarbase.

Although for both datasets only less than 20 of TF-miRNA interactions are integrated (the
total number of possible edges is around 106), it is evident to see the benefit of TF-miRNA
knowledge for predicting miRNA targets. As shown in Fig 4, with the help of TF-miRNA regu-
lation knowledge, CIDER predicts more validated miRNA targets than using expression pro-
files alone.

Fig 5 illustrates a comparison of the miRNA targets predicted by CIDER with and without
TF-miRNA knowledge from both datasets. For example, without the TF-miRNA knowledge of
BMP2!miR-31, only three predicted targets of miR-31 agrees with the experimentally vali-
dated database. However, when the TF-miRNA regulation between BMP2 is incorporated,
CIDER not only successfully uncovers the up-regulation effect between BMP2 and miR-31, but
also identifies 9 experimentally validated targets.

We conduct pathway enrichment analysis of the predicted target genes with the focus on
KEGG pathways (adjusted p-value<0.05). To determine whether the top predicted miRNA
targets are related to respective biological processes (EMT and BRCA), we select the top 5 pre-
dicted targets for each miRNA. As shown in Table 1, the KEGG pathways are highly associated
with the relevant biological process. For instance, epithelial tight junctions are closely related to
EMT process and focal adhesion is shown to be related to breast cancer in previous research
[50].

Predicting miRNA Targets with Knowledge and Expression Profile
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Post-transcriptional knowledge improves miRNA target prediction
In this section we show that post-transcriptional miRNA-mRNA knowledge improves the per-
formance of CIDER. Similar to the previous section, we first apply CIDER to analyse the
expression profiles alone, then compare it to the results obtained by allowing CIDER to access
both the regulatory knowledge and the expression profiles.

Since we need to keep the experimentally validated target databases to evaluate the perfor-
mance, miRNA-mRNA regulatory relationships predicted by TargetScan are used as the regu-
latory knowledge.

We depict the number of experimentally validated miRNA targets found by CIDER using
expression profiles only and using both post-transcriptional regulatory knowledge and expres-
sion profiles in Fig 4. CIDER is able to successfully utilise the post-transcriptional knowledge
and find significantly more validated targets than using expression profiles alone, despite
that the regulatory knowledge in TargetScan contains false positives. The results not only

Fig 4. Number of experimentally validatedmiRNA targets (total number for all miRNAs) identified by CIDERwhen utilizing expression profiles (EP)
only, EP + transcriptional regulatory knowledge, EP + post-transcriptional knowledge. (Left) Results for Top 100 predicted targets for each miRNA.
(Right) Results for Top 150 predicted targets.

doi:10.1371/journal.pone.0152860.g004

Fig 5. Comparison of miRNA targets identified by CIDERwith and without TF-miRNA regulatory knowledge.Gray dashed lines indicate the TF-
miRNA regulatory knowledge introduced from TransmiR. Black solid lines indicate miRNA-mRNA regulations found without knowledge. Brown dotted lines
represent the additional miRNA-mRNA regulations found when TF-miRNA knowledge is utilised.

doi:10.1371/journal.pone.0152860.g005
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demonstrate that CIDER is able to utilise post-transcriptional regulatory knowledge, but also
indicate that CIDER can benefit from sequence-based prediction knowledge with false positives.

The reason behind the robustness of CIDER lies in the causal inference step. There the
causal structure and expression profiles are analysed together to infer the amount of causal
effects. If the false edges between miRNAs and mRNAs are not supported by the inference
results, the noise introduced from false positive regulatory knowledge will be mitigated by the
causal inference step.

When accessing all the experimentally validated miRNA target databases together with
expression profiles, CIDER discovers more targets than accessing expression profiles alone.
Since we use the databases as knowledge, other means are needed for evaluation. Therefore we
compare the predicted targets for the EMT dataset to the transfection experiment on the
MDA-MB-231 human cell line [41]. In this experiment, the gene expression level in the
MDA-MB-231 samples transfected with hsa-miR-200a-3p/hsa-miR-200b-3p along with the
expression level in those samples without hsa-miR-200a-3p and hsa-miR-200b-3p (control)
were measured. (Please refer to S3 File for the detailed transfection experiment results). The
differentially expressed genes from the controlled and transfected samples are used to validate
the our computational predictions. Specifically, 345 and 533 genes are identified to be regulated
by hsa-miR-200a-3p and hsa-miR-200b-3p, respectively.

The results demonstrate that with the help of post-transcriptional regulatory knowledge,
CIDER identifies significantly more validated miRNA targets comparing to the miRNA targets
predicted based only on expression profiles. Fig 6 shows that when equipped with the post-
transcriptional miRNA-mRNA regulatory knowledge (brown dotted lines), CIDER is able to
discover many novel miRNA-mRNA regulatory relationships that are missed by using expres-
sion data alone.

Table 1. Top 10 enchriment KEGG pathways in the EMT and BRCA datasets. The p-values have been
obtained through Hypergeometric analysis corrected by FDRmethod.

Datasets Top 10 enrichment KEGG pathways Adj-p-value

EMT Epithelial tight junctions 5.95e-06

Leukocyte transendothelial migration 1.82e-05

Cell adhesion molecules 2.38e-04

Arrhythmogenic right ventricular cardiomyopathy 3.23e-04

Cell adhesion molecules 2.06e-03

Melanogenesis 8.40e-03

Regulation of actin cytoskeleton 9.74e-03

Huntington’s disease 3.30e-02

Pathways in cancer 1.07e-02

Amoebiasis 1.07e-02

BRCA Pancreatic secretion 1.20e-03

Leukocyte transendothelial migration 1.83e-03

Focal adhesion 2.32e-03

Amoebiasis 4.94e-03

Purine metabolism 5.19e-03

Regulation of actin cytoskeleton 5.30e-03

Salivary secretion 5.58e-03

Adherens junction 5.58e-03

Pathways in cancer 6.03e-03

Tight junction 6.09e-03

doi:10.1371/journal.pone.0152860.t001
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Fig 6. Comparison of validated regulatory relationships with/without regulatory knowledge on the EMT dataset. Black solid lines indicate validated
interactions found with expression profiles; grey dashed lines indicate interactions provided by the regulatory knowledge; brown dotted lines indicate new
interactions discovered by CIDER utilizing both expression profiles and regulatory knowledge, yellow shaded nodes are known oncogenes and oncomiRs
according to [51].

doi:10.1371/journal.pone.0152860.g006
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More prior knowledge leads to better predictions
It is important to know that how the framework works with different amounts and types of reg-
ulatory knowledge. In this section we study the performance of CIDER when utilizing different
amounts and types of knowledge. Since currently the wet-lab validated knowledge is very
sparse, we generate the simulated networks and expression profiles as described in the Evalua-
tion Methods section for our analysis.

Even without knowledge, CIDER achieves comparable performance of state-of-the-art
miRNA target prediction methods. As shown in Fig 7, when only utilizing the expression data,
the performance of CIDER without prior knowledge is much better than Z-Score. Lasso and
Pearson show similar performance regardless of the sparsity constraint added in Lasso. When
comparing CIDER with Pearson and Lasso, even without using regulatory knowledge, CIDER
shows slightly better performance than both methods because of CIDER utilised causation
instead of correlation.

The performance of CIDER increases monotonically with the amount of knowledge. Com-
bining post-transcriptional and transcriptional knowledge significantly boosts the performance
of CIDER. To demonstrate this, we evaluate CIDER with three types of knowledge: miRNA-
mRNA interactions, TF-miRNA interactions and the combination of these two. For each type
of regulatory knowledge, starting from expression data only, we gradually increase the amount
of knowledge available to CIDER from 0% to 50% (of the total amount of available knowledge
of the type) by a 5% interval. As shown in Fig 8, both transcriptional and post-transcriptional
knowledge separately improves the performance of CIDER significantly, and the combined
knowledge leads to further improvement. For every type of regulatory knowledge, as the
amount of utilised knowledge increases the performance of CIDER improves monotonically.
With 50% of the combined knowledge, CIDER achieves very high accuracy.

In summary, CIDER is not only able to utilise either transcriptional or post-transcriptional
regulatory knowledge to improve the performance of miRNA target prediction, but also able
to utilise the combination of the two types of regulatory knowledge to further increase predic-
tion accuracy. As the amount of regulatory knowledge increases, the performance of CIDER
continuously improves. With this monotonic improvement, the miRNA target predicted by
CIDER will become more accurate and reliable when our understanding of miRNA regulation
improves and more knowledge is available for CIDER.

In return, CIDER can provide more precise guidance for selecting miRNA targets for wet-
lab validation. Iteratively, as shown in Fig 1, CIDER will help to build a more and more com-
plete gene regulation network.

Fig 7. Comparing CIDER with Pearson, Lasso and Z-Score when only accessing expression profiles. Left: 250 samples; Right: 500 samples.

doi:10.1371/journal.pone.0152860.g007
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Methods utilizing sequence bindings information are not suitable for
integrating experimentally validated knowledge
Methods designed to utilise sequence based predictions are not suitable for utilizing validated
regulatory knowledge. In this section we compare CIDER with ProMISe [30], a recently pro-
posed method designed to utilise sequence binding information and expression profiles.

We compare two algorithms on the EMT and BRCA datasets. Both algorithms have access
to the expression profiles, and exactly the same amount of regulatory knowledge, which con-
tains the sequence binding interactions predicted by TargetScan, experimentally validated
post-transcriptional knowledge in miRWalk and miRTarbase. Specifically, ProMISe uses the
knowledge as sequence binding information, while CIDER uses it to initialise constant edges.

As can be seen in Fig 9, regardless of what threshold is selected for the miRNA targets,
CIDER discovers more validated target than ProMISe. This results indicate that the top miRNA
targets predicted by CIDER are consistently better than the ones predicted by ProMISe.

The reason is that instead of considering all possible miRNAs and mRNA pairs, ProMISe
(and other similar algorithms) uses sequencing information to constrain their search space. In
other words, a miRNA-mRNA interaction would not be considered unless the pair is included
in the knowledge. Therefore when utilizing sequencing information, these algorithms will be
misled by the false negatives; when utilizing experimentally validated knowledge, they will only
predict interactions that are already included in the knowledge.

Fig 8. Performance of CIDERwhen utilizing different amounts and types of regulation knowledge. Sample size: 250 (left), 500 (right).

doi:10.1371/journal.pone.0152860.g008

Fig 9. Performance comparison of CIDER and ProMISe when utilizing post-transcriptional regulation knowledge. Left: EMT dataset, right: 500 BRCA
dataset.

doi:10.1371/journal.pone.0152860.g009
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Putative miRNA targets
In this section, we report the high-confidence miRNA targets predicted by CIDER in the EMT
and BRCA datasets for biological researchers to explore. These predictions utilise expression
profiles with both transcriptional and post-transcriptional regulatory knowledge. As we have
shown in the previous section, CIDER performs better when utilizing the combined knowledge
than using either type of regulatory knowledge separately. Therefore, we expect that the
miRNA targets predicted by CIDER utilizing TF-miRNA interactions from TransmiR and
miRNA-mRNA knowledge from Tarbase, miRTarbase, miRWalk, should provide valuable
putative candidates for further biological wet-lab evaluation. To utilise sequence binding infor-
mation to increase the confidence of the predicted targets, we intersect our discovery with
miRNA target prediction from TargetScan.

These high-confidence predicted miRNA targets are presented in Fig 10, and we hope that a
significant number of them will be validated by experiments in the future.

Conclusion
The future of biology is neither based on wet-lab experiments nor computational predictions
alone, but on their combination. The progress of wet-lab experiments would be hampered

Fig 10. High confidence miRNA targets predicted by CIDER utilizing expression profiles, transcriptional and post-transcriptional knowledge.Only
part of the interactions are shown for clarity of illustration, please refer to S5 File for the full results.

doi:10.1371/journal.pone.0152860.g010
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without the help of quality computational predictions, and the power of computational meth-
ods would be limited if accumulated biological knowledge were not integrated with the model-
ing process.

In this article, we present the CIDER framework that seamlessly integrates biological knowl-
edge with high-throughput expression profiles for miRNA target prediction. We use a causal
Bayesian network based method to explicitly exploit experimentally validated gene regulatory
knowledge to improve the prediction of miRNA-mRNA interactions. Our results demonstrate
that when utilizing transcriptional or post-transcriptional knowledge, CIDER discovers signifi-
cantly more validated miRNA targets than using expression profile alone. Furthermore, when
the amount of available regulatory knowledge increases, the performance of CIDER increases
monotonically.

With the capability to improve prediction accuracy with the increment of gene regulatory
knowledge, our causal discovery framework can serve as a promising tool for uncovering new
biological insights using ever increasing regulatory knowledge and new high-throughput data.
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