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Abstract

Purpose of review—It is the current opinion that pathogens, such as viruses, are contributing to 

the development of type 1 diabetes (T1D) in susceptible individuals. This opinion is based on 

epidemiological associations, direct isolation of pathogens from the islets of Langerhans, as well 

as a large amount of data from various experimental animal models. Human enteroviruses have 

dominated the literature associated with the etiology of T1D. However, virus infections have also 

been reported to protect from autoimmune disorders.

Recent findings—Here we review the evidence for virus infections to be involved in the 

pathogenesis of T1D and discuss potential mechanisms of how such infections could accelerate 

the destruction of insulin-producing β-cells. In addition, we will review evidence from 

epidemiologic and experimental animal studies showing that virus infections could also have 

protective properties.

Summary—Virus infections play an important role in the pathogenesis of T1D by inducing or 

accelerating the autodestructive process, but also by protecting from autoimmunity. Thus, multiple 

sequential infections might shape the autoreactive immune repertoire and the pathogenesis of T1D 

in a complex fashion.
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Introduction

Recently, a large meta-analysis confirmed that there is a significant association between 

human enteroviruses (HEV) infection and the development of type 1 diabetes (T1D) [1■■]. 

The study thereby confirms the hypothesis that besides a genetic predisposition, which is 

dominated by human leukocyte antigen (HLA) class I and II genes, environmental factors 

are involved in the cause of T1D [2,3]. Viruses are prime candidates, as they activate the 

innate and adaptive immune system and thereby cause acute and sometimes more chronic 

inflammation. In addition, a structural similarity between virus and host might result in 
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cross-reactive activity of antiviral immune responses with host structures and epitopes. This 

concept has been termed ‘molecular mimicry’ [4–6].

Epidemiological Evidence

Infections with viruses, such as HEV [7], rotavirus [8], mumps virus [9], rubella virus [10] 

and cytomegalovirus [11], have all been associated with the development of T1D. The 

strongest evidence for an involvement exists from HEVs [7], which have also been found 

frequently in pancreata of T1D patients [12–14]. At least some of the pancreatic HEV 

isolates can also induce T1D in mice [15] and are able to infect and destroy human islet cells 

in vitro [16]. Further, RNA of the HEV coxsackievirus B (CVB) has been detected in the 

blood of recent onset T1D patients [17–19] and the presence of HEV RNA in the serum 

constitutes indeed a risk factor for β-cell autoimmunity and T1D [20]. In other studies, HEV 

proteins have been detected by immunohistochemistry in the pancreas and even within the 

islets of Langerhans of recent onset T1D patients [21–23]. Recently, it has been shown in the 

context of the ‘Diabetes and Autoimmunity Study in the Young’ (DAISY) study that the 

progression to T1D was increased significantly in children in the time interval following 

HEV serum conversion [24■]. These findings indicate that in genetically predisposed 

children carrying antibodies to islet antigens enterovirus infection might push the preexisting 

autoimmune condition to overt disease. In contrast, the ‘Babydiet’ study [25■], that 

examines the influence of first gluten exposure on the development of islet-autoimmunity, 

revealed no significant correlation between the presence of HEVs in stool samples in the 

first year of life and the development of islet autoantibodies. Similarly, the frequency of 

HEV RNA in stool samples of Norwegian children with a high genetic risk for T1D was not 

significantly different before and after serum conversion [26]. Interestingly, the effect of 

HEV infection on the development of T1D-associated autoimmunity seems to be modified 

by the exposure to cow's milk based formula [27■]. Namely, an association between HEV-

infection and islet-autoantibodies formation has been found in children who have been 

exposed to cow's milk before the first three months of age but not in children exposed to 

cow's milk at a later time [27■]. Obviously, the epidemiologic data obtained by many 

different groups working on a variety of cohorts with variable parameters, such as ethnicity, 

age and gender distribution, diet, and genetic background are somewhat controversial, which 

was one of the major reasons for Yeung et al. [1■■] to perform a large meta-analysis. They 

performed a systematic review of 33 T1D prevalence studies from 1990 to 2010 involving a 

total of 1931 T1D patients and 2517 control individuals. They found odds ratios of 3.7 

between HEV infection and T1D related autoimmunity and 9.8 between HEV infection and 

clinical T1D [1■■]. Overall the study [1■■] confirmed a significant association between 

HEV infection and the development of T1D.

Evidence from experimental models

The mechanisms by which HEVs or other pathogens might be involved in the etiology of 

T1D include a release of sequestered antigens, the generation of a ‘fertile’ inflammatory 

field, and a cross-reactive immune response due to molecular ‘mimicry’ between pathogen 

and host structures. Such cross-reactivity indeed exists [28] and has been detected between 

pathogens and autoantigens recognized by antibodies or T cells of patients with a broad 
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variety of autoimmune diseases [6,29]. One of the best-characterized cases of molecular 

mimicry is involved in the Guillain Barré syndrome (GBS), in which, an association with 

Campylobacter jejuni infection sharing a structural homology with the lipooligosaccharide 

of the peripheral nerve GM1 ganglioside, could also be reproduced convincingly in an 

animal model of the disease [30]. However, proof that cross-reactivities between pathogen 

and self-determinants would actually cause or accelerate human diseases has been hard to 

establish. One of the best examples of postinfectious autoimmunity due to molecular 

mimicry has been established for Streptococcus pyogenes-induced acute rheumatic fever 

(ARF), in which the lysoganglioside of the host shares a structural similarity to N-acetyl-β-

D-glucosamine, the dominant epitope of the group A streptococcal carbohydrate [31].

In T1D, molecular mimicry has been reported for the P2-C protein of CVB that shares 

sequence homology with the islet autoantigen glutamic acid decarboylase (GAD)65 [32]. 

However, although a similar sequence homology has been found in the nonobese diabetic 

(NOD) mouse, infection of mice with CVB did not influence the GAD65-specific T cell 

response and the development of T1D [33]. More recently, Honeyman et al. [34] reported 

that molecular mimicry between human T cell epitopes of the rotavirus protein VP7 and 

GAD65 as well as tyrosine phosphatase-like insulinoma Ag 2 (IA2) might be involved in 

T1D. Interestingly, cross-reactive epitopes present on RV-VP7, GAD65 and IA2 also bound 

strongly to the T1D susceptibility HLA allele DRB1*04 and furthermore, RV-VP7-specific 

T cell clones cross-reacted to IA2 [34].

The rat insulin promoter-lymphocytic choriomeningitis virus (RIP-LCMV) model offers a 

unique opportunity to study the influence of single of multiple virus infections on the 

pathogenesis of T1D. RIP-LCMV mice express the glycoprotein or nucleoprotein of the 

lymphocytic choriomeningitis virus under control of the rat insulin promoter specifically in 

the β-cells of the islets of Langerhans [6,35]. In contrast to NOD mice, RIP-LCMV mice do 

not develop T1D spontaneously. Only upon infection with LCMV an antiviral immune 

response is initiated that also targets the β-cells that express identical viral proteins 

(glycoprotein or nucleoprotein) transgenically [35,36]. Thus, the RIP-LCMV model is based 

on an initiation mechanism of molecular identity rather than molecular mimicry [6]. 

Induction of autoimmunity is most efficient, if the host (viral protein) structure is not 

expressed in the thymus. Thus, RIP-LCMV-glycoprotein mice lacking thymic expression of 

the target protein (LCMV-glycoprotein) develop rapid T1D independent of CD4 T cell help, 

whereas RIP-LCMV-nucleoprotein mice that express nucleoprotein in the thymus require 

CD4 T cell help and develop T1D much more slowly [36].

The first demonstration that molecular mimicry between self and viral antigens can 

accelerate (albeit not precipitate) autoimmune diabetes development was obtained in the 

RIP-LCMV model. Infection of naïve RIP-LCMV-nucleoprotein mice with Pichinde virus, 

which shares a subdominant cross-reactive epitope of its nucleoprotein (Pichinde virus-

nucle-oprotein) with LCMV-nucleoprotein, elicits only a marginal anti-NP CD8 T cell 

response and does not cause T1D [37]. In contrast, when RIP-LCMVnucleoprotein mice are 

infected with LCMV followed by Pichinde virus, T1D is accelerated significantly [37]. The 

mechanism for this acceleration was the expansion of autoreactive CD8 T cells with 

reactivity to the subdominant Pichinde virus/LCMV-nucleoprotein epitope that confers 
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molecular mimicry. The findings suggest that an experienced, ‘memory’ immune repertoire 

is activated more easily by cross-reactive viruses than a naïve repertoire.

A similar effect of mimicry on disease progression has been observed in the CYP2D6 mouse 

model for autoimmune hepatitis (AIH) [38]. Infection of CYP2D6 transgenic mice 

expressing the human autoantigen cytochrome P450 2D6 (CYP2D6), with an adenovirus 

expressing the indentical human CYP2D6 was less effective in triggering AIH than infection 

of wildtype mice that exclusively express the similar mouse Cyp homologues (Ehser & 

Christen, unpublished observations). Interestingly, the CYP2D6-specific T cell response 

targeted CYP2D6-epitopes located within a cross-reactive ‘hot spot’ region exhibiting 

intermediate homology between trigger and target molecule (Ehser & Christen, unpublished 

observations). In contrast to infection of RIP-LCMV mice with Pichinde virus that resulted 

only in the acceleration of an ongoing autoimmune process but failed to initiate autoimmune 

disease, molecular mimicry in the CYP2D6 model targets an immunodominant autoantigen 

and elicits a sufficient number of autoaggressive, CYP2D6-specific T cells to actually induce 

disease. As an additional example, molecular mimicry has been suggested to be involved in 

the etiology of primary biliary cirrhosis (PBC). Antimitochondrial antibodies directed 

against the E2 subunit of pyruvate dehydrogenase complex (PDC-E2) are the hallmarks of 

PBC [39]. Interestingly, several potential environmental inducers for PBC, including 

bacteria, such as Novosphingobium aromaticivorans, and chemical xenobiotics show cross-

reactivity to the immunodominant structure in PDC-E2 containing the prosthetic group 

lipoic acid [40,41]. Among the chemical xenobiotics the cosmetic and food additive 2-

octoynoic acid (2-OA) shows a high structural similarity to lipoic acid and injection of 2-OA 

coupled to bovine serum albumin (BSA) resulted in the generation of PBC like disease in 

wildtype C57BL/6 mice [42]. Mice treated with 2-OA-BSA manifested autoimmune 

cholangitis, antimitochondrial antibodies and infiltration of the liver by activated CD8 T 

cells [42].

Collectively, molecular mimicry has been demonstrated in a variety of experimental models 

to be involved in the initiation and/or acceleration of autoimmune processes that might 

subsequently result in autoimmune disease.

Virus infection as protector from type 1 diabetes

Besides the role of viruses as inducers or accelerators of T1D, it is important to acknowledge 

the evidence that viruses can also reduce the incidence of T1D in animal models 

[43,44,45■], thus supporting the so-called ‘hygiene hypothesis’ [46–48]. LCMV has been 

demonstrated to block the development of T1D in the NOD mouse already in the late 1980s 

[49]. Similarly, secondary infection of RIP-LCMV mice with a LCMV strain that 

predominantly replicates outside of the pancreas abrogated the destructive process [43]. 

Such a secondary infection resulted in increased inflammation at lymphoid sites and thus the 

redirection of autoreactive CD8 T cells from the islets of Langerhans leading to their 

apoptosis [43]. Thus, viral inflammation could function as an ‘immune-tuning’ event by 

leading to the bystander demise of aggressive T cells [50]. Another mechanism of how 

viruses might block an ongoing auto-destructive process is the induction of counteracting 

regulatory mechanisms. Infection of prediabetic NOD mice with either LCMV or CVB3 
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reduced the frequency of T1D and delayed the onset of disease [44] by increasing the 

number of CD4+ CD25+ regulatory T cells producing transforming growth factor (TGF)-β 

and maintaining long-term protection [44]. Recently, it has been also demonstrated that upon 

virus infection invariant natural killer cells (iNKT cells) induce plasmacytoid dendritic cells 

(pDC) to generate TGF-β, which in turn convert naïve anti-islet T cells to FoxP3+ CD4+ 

regulatory T cells [45■]. Thus, besides their disease promoting property some HEV strains 

have also been associated with a reduction of T1D. In particular, infection of young (4–6-

week-old) NOD mice with CVB3 failed to accelerate T1D, but provided long-term 

protection from disease [51]. Interestingly, the replication properties and the dose of CVB3 

strains critically influenced the outcome of T1D in the NOD mouse. Whereas administration 

of a low dose of the poorly virulent and slowly replicating strain CVB3/GA delayed T1D in 

prediabetic NOD mice, a higher dose accelerated T1D [52].

Infection of human islets by CVB3 induces a strong inflammatory response resulting in the 

activation of dendritic cells. Interestingly, upon phagocytosis of infected islets the dendritic 

cells induce the expression of interferon-stimulated genes (ISG), including the RIG-I-like 

helicases RIG-I and melanoma differentiation associated gene-5 (MDA5), and thus induce 

an antiviral state that protects the DCs from further infection [53■]. Interestingly, genome-

wide association studies have identified human polymorphisms in both the Rig-I and Mda5 
genes that are linked to a resistance to develop T1D [54,55]. It was further demonstrated that 

the production of type I interferons (IFNs) (IFNα and IFNβ) through TLR3 and MDA5 by 

plasmacytoid dendritic cells (pDCs) was indeed critical for the prevention of virus-induced 

diabetes [56■■]. McCartney et al. [56■■] used the β-cell-tropic encephalomyocarditis 

virus strain D (EMCV-D) and found that wildtype C57BL/6 mice, in contrast to Tlr-/- and 

Mda5-/- mice, were protected from EMCV-D-induced T1D. Genome-wide association 

studies in the rat link an entire network of IFN response genes, extending beyond MDA5, to 

the development of T1D [57,58]. Thus, viral infection causing IFN-I production might 

protect the islets of Langerhans from a subsequent infection with a pancreas-tropic 

pathogen, such as HEV, that otherwise would induce or accelerate T1D. A similar scenario 

has been recently reported in the Kilham rat virus (KRV) model. Viral precipitation of T1D 

has been previously demonstrated in multiple rat strains infected with KRV [59]. More 

recently, this model has been investigated in more detail and LEW.1WR1 rats have been 

infected with either KRV or rat cytomegalovirus (RCMV) resulting in diabetes in up 40–

60% of mice [60]. Simultaneous infection with KRV and RCMV induced T1D even in up to 

100% of rats [60]. Interestingly, infection of dams with either KRV or RCMV before 

pregnancy prevented the development of T1D in the offspring in a virus dependent manner 

[60]. Thus, parental virus-infection might generate a preexisting immunity protecting the 

offspring from a subsequent diabetes-inducing infection of the offspring with the same virus. 

It has been speculated that such an inherited protection might be also mediated by antiviral 

responses evoked by the production of IFN-I [60].

Conclusion

HEVs seem to play an important role in the pathogenesis of T1D. Evidence from 

epidemiological studies, isolation of virus particles and RNA from the blood, pancreas and 

gut of T1D patients, and from animal studies demonstrate that HEVs can accelerate the 
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pathogenesis of T1D in susceptible individuals. However, viruses and other pathogens have 

also been associated with the protection from autoimmunity. Here, epidemiological studies 

suggest that individuals who live in an environment with a low degree of hygiene associated 

with a higher risk of infection have a lower risk of acquiring autoimmune diseases, such as 

T1D or MS [61,62]. The ‘hygiene theory’ is further supported by experimental evidence 

from animal models. In particular, virus infections can deplete autoaggressive lymphocytes 

and induce a variety of regulatory ‘immune-tuning’ mechanisms. In this context, it is 

important to note that hygiene as well as diet influence gut microbiota, which subsequently 

would influence the nature of immune responses and thus the pathogenesis of autoimmune 

diseases [63].

Other environmental factors such as sunlight exposure that strongly influences vitamin D 

levels might as well be involved in the pathogenesis of T1D [64]. High vitamin D levels 

could protect from autoimmunity by establishing a more regulatory milieu. Indeed, vitamin 

D treatment protects NOD mice from T1D most likely by activation of dendritic cell-

induced apoptosis of autoaggressive T cells [65,66]. A recent study [67■] with a large 

cohort of T1D patients and healthy controls clearly associated vitamin D deficiency and 

polymorphisms in three vitamin D metabolizing enzymes with a higher risk for T1D. This 

link is however still controversial, as some studies failed to demonstrate an association [68] 

and the risk for T1D is much lower than reported for other polymorphism, such as HLA or 

insulin-related genes [2]. Nevertheless, vitamin D supplementation has been tested in several 

studies with the overall finding that the most promising potential for vitamin D 

supplementation may be in prevention rather than treatment [64].

Connecting virus infections with the development of T1D the following scenarios should be 

considered (Fig. 1). First, virus infections can interfere with self-tolerance to islet antigens 

by mechanisms such as molecular mimicry or inflammation, resulting in accelerated β-cell 

destruction and precipitation of T1D. Second, one or more infections might shorten the 

duration of the prediabetic phase even more. Third, and in contrast, a secondary virus 

infection might decelerate T1D by prolonging the prediabetic phase of by the abrogating the 

autodestructive process by inducing apoptosis of autoaggressive lymphocytes or by 

enhancing counter-regulatory processes. Very likely a combination of such scenarios is 

involved in human T1D, as most T1D patients as well as non-diabetic individuals suffer 

from several infections during their lifetime. Therefore, it is of upmost importance that large 

prospective studies, such as the TEDDY study (website: teddy.epi.usf.edu), are conducted 

that target the identification of environmental factors, such as diet, pathogen infection and 

exposure to chemicals.
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Key Points

• Substantial epidemiological evidence indicates a contribution of human 

enteroviruses (HEV) to the pathogenesis of type 1 diabetes (T1D).

• HEVs have been isolated from the pancreas, the gut and the blood of T1D 

patients.

• Animal models revealed potential mechanisms of how pathogens can induce or 

accelerate T1D.

• In addition to viral inflammation, molecular mimicry could be an important 

driving force for the breakdown of self-tolerance to islet auto-antigens.

• Virus infections can also protect from T1D by reducing the number of 

aggressive lymphocytes, improving regulatory mechanisms or inducing a β-cell 

protective environment in the islets of Langerhans.
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Figure 1. 
Induction acceleration or abrogation of type 1 diabetes (T1D) by virus infection(s) – several 

scenarios of how environmental factors, such as viruses, influence T1D pathogenesis can be 

considered. First, virus infections can interfere with self-tolerance to islet antigens and, after 

a variable lag period, insulitis ensues and β-cells are continuously destroyed. Once the β-cell 

mass is decreased beyond a certain threshold clinical diabetes manifests. Second, an 

additional virus infection might cause a shortening of the lag phase by causing an earlier 

islet infiltration and thereby accelerate disease onset more. Third, alternatively a secondary 

virus infection, occurring at a time when insulitis has already started, might enhance the β-

cell destruction process itself and hence accelerate the reduction in the β-cell mass. Fourth, 

the lag period might alternatively be extended by additional virus infections that temporarily 

deviate autoaggressive cells from the pancreas. Fifth, secondary virus infections could 

permanently remove autoaggressive cells from the system and/or induce specific regulatory 

cells that would allow β-cell mass preservation or even regeneration. Last, a primary viral 

infection might induce a protective antiviral state that decreases the degree of further 

infections and thereby prevents virally mediated acceleration of β-cell destruction and 

possibly the development of diabetes.
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