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Abstract

In clinical trials with survival endpoint, it is common to observe an overlap between two Kaplan-

Meier curves of treatment and control groups during the early stage of the trials, indicating a 

potential delayed treatment effect. Zhang and Quan [1] derived formulas for the asymptotic power 

of the log-rank test in the presence of delayed treatment effect and its accompanying sample size 

calculation. In this paper, we first reformulate the alternative hypothesis with the delayed treatment 

effect in a rescaled time domain, which can yield a simplified sample size formula for the log-rank 

test in this context. We further propose an intersection-union test to examine the efficacy of 

treatment with delayed effect, and show it to be more powerful than the log-rank test. Simulation 

studies are conducted to demonstrate the proposed methods.
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1. Introduction

Clinical trials with time-to-event endpoints are often designed under the assumption that the 

hazards ratio between treatment and control groups remains constant. If the treatment has a 

delayed start of effect, the proportional hazards assumption is violated and one often 

observes an overlap between two Kaplan-Meier (KM) curves. The analytic issues with the 

delayed treatment effect have been studied by many researchers (see [2, 3, 4, 5]).

When designing trials with potential delayed treatment effect in mind, one often calculates 

the sample size assuming a constant hazard ratio and then inflates the final number to 

maintain statistical power, which can be wasteful. Zhang and Quan [1] studied the 

asymptotic distribution of the two-sample log-rank test statistic under a lagged treatment 

effect model specified as
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(1)

where λ1(t) and λ0(t) denote the underlying hazard functions in the treatment and control 

groups, respectively; t0 is the assumed change point until which the new treatment does not 

show effect relative to the control; and γ denotes the treatment effect of interest. Under the 

assumption that survival times from both groups are exponentially distributed, a new 

approximation to the non-centrality parameter of the asymptotic distribution was proposed:

(2)

where D denotes the expected total number of events from the two groups combined; D̃0 and 

D ̃1 respectively are the expected numbers of events after t0 from the treated group and the 

control groups; and π is the probability of assignment to the treatment group. Zhang and 

Quan [1] showed that the new non-centrality parameter (2) gives more accurate power than 

Shoenfeld’s formula [6] that is commonly used in practice.

The assumption that the survival time in its original time scale follows the exponential 

distribution with a constant hazard rate may be too strong, but can be alleviated by rescaling 

the survival time using the cumulative hazard function so that a simple exponential 

distribution is rendered after transformation [7]. In this paper, we reformulate the alternative 

hypothesis that defines the delayed treatment effect after rescaling and derive a simplified 

formula for sample size calculation in Section 2. In Section 3, we further propose an 

intersection-union test to improve the overall power when a delayed treatment effect is 

hypothesized. Section 4 presents simulation studies and Section 5 concludes with 

discussions.

2. An Alternative Formulation

We consider a randomized controlled trial that randomly allocates subjects to a treatment 

group with probability π and to a placebo control group with probability of 1 − π. The 

primary endpoint of interest is time to a pre-defined event denoted by Tj, j = 0, 1, where the 

subscript j = 1 for the treatment group and 0 for the control group throughout the paper. The 

hazard function, cumulative hazard function, and survival function are denoted by λj(t), Λj(t) 
and Sj(t), respectively. By observing that

(3)

we formulate the hypothesis on this rescaled time domain as follows:

(4)
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Note that we specify the change point in terms of survival proportion, which is invariant to 

any time scale change.

To derive the formula for power analysis, we assume that the entry time Z follows a uniform 

distribution within the period of [0, A], the total study duration is L, and no drop out occurs 

before the end of study. The results can be easily extended to accommodate more 

complicated recruitment plan and/or drop out distribution. Let N denote the total sample 

size,  be the expected number of events before the change-point in group j, and D̃j be the 

expected number of events after the change-point. Following the derivations in Zhang and 

Quan [1], we have

(5)

where

Detailed derivations of  and D̃j, j = 0, 1 are given the appendix. Then it follows that the 

expected number of total events

(6)

which clearly illustrates the relationship between the expected number of events and the total 

sample size. By plugging D̃1, D̃0 and D into (2), we have the non-centrality parameter as

(7)

where . Therefore, for given type I error α and type II error β, the 

required total number of events is

Note that the rescaled hypothesis (4) formulation leads to this simplified sample size 

formula with easy interpretation and implementation.
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3. Intersection-Union Test for the Lagged Treatment Effect

When a delayed treatment effect is expected, investigators often use the weighted log-rank 

test with weights based on prior knowledge. Examples of different weights include Gehan’s 

weight, Tarone-Ware’s weight, Fleming and Harrington’s weight, and Peto-Prentice weight 

[8]. Shoenfeld [6] and Gill [9] show that the optimal weighting depends on the underlying 

true hazard ratio function. In addition to difficulties of choosing appropriate weights for 

weighted log-rank tests, the key problem is that the tests conducted do not reflect the essence 

of the lag-treatment effect set up: the hazard ratio is not constant throughout the trial.

The early overlap of the KM curves between two groups suggests that the treatment does not 

exhibit its full effect early on but also creates no harm to the patients. A natural hypothesis 

of a desirable treatment would consist of two components, namely (i) the treatment is non-

inferior to the control during the whole study period and (ii) the treatment is superior to the 

control group after a pre-defined change point. We thus protect patients from being harmed 

by the treatment and also provide researchers a proper conclusion in the sense that the 

alternative hypothesis truly reflects a change point in the hazards ratio. Such formulation 

readily fits the framework of intersection union tests proposed by Berger [10] that originally 

developed for product quality control. Specifically, we formulate the overall null hypothesis 

H0 = H10 ∪ H20, where

By De Morgan’s law, the overall alternative hypothesis H1 = (H10 ∪ H20)c = H11 ∩ H21, 

where

A non-inferiority log-rank test can be used for H10 over the entire study duration [0, τ] and a 

superiority log-rank test for H20 after the pre-specified change point [t0, τ]. We conduct the 

tests using the non-inferiority/superiority log-rank test formulation in Chow et al. [11]. 

Under this construction, only when both hypotheses are rejected we can conclude that the 

overall null hypothesis is rejected. Controlling each test as a α-level test can maintain the 

overall type I error at α-level [10].

The proposed intersection-union test, as we show in the next section, is more powerful than 

the usual log-rank test. This observation is expected because the proposed procedure utilizes 

the prior knowledge of change-point of t0 and takes into account the fact that the hazard 

ratios between the two groups of patients is not constant throughout. The reject of H0 by this 

method also allows researchers to claim that new treatment does not adversely affect patients 

overall and shows beneficial effect after the assumed change-point.
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Selection of the non-inferiority and superiority margins (Δ10, Δ20) is necessary before 

implementing the proposed intersection union test. We need to determine how close the new 

treatment must be compared to the control treatment on the efficacy so to declare significant 

improvement. As discussed in [12], the ICH documents offer two guidelines for determining 

the corresponding margins (see [13]): (1) the non-inferiority margins are chosen based on 

both statistical support and clinical judgement in a suitably conservative manner; (2) the 

margin cannot exceed the minimum effect size that the active drug would be reasonably 

expected to produce compared with placebo, based on, if exist, past placebo-controlled trials 

under similar conditions. According to the guidelines, we may either adopt the putative 

placebo approach (see [12]), where the margin is set so that the new treatment retains at least 

a certain amount of the superiority of the active control over the placebo, i.e. avoiding 

biocreep and/or 95–95 approach based on the meta-analytic methods with data from 

previous studies as discussed in [14].

4. Simulation Studies

We performed numerical studies to evaluate the type I errors and power of the proposed 

intersection union test and the log-rank test. We considered the total sample sizes of 40, 50, 

80 and 100 with 1:1 allocation to the treatment and control groups. Survival times were 

generated from the Weibull distribution. Under the null hypothesis, both the shape and scale 

parameter were set to be 3. Under the alternative hypothesis, we considered a change point 

(t0) at 2, and modified the scale parameter for the the treatment group to be 4.8 after the 

change point, which yielded a hazard ratio 1.6. The non-inferior margins Δ10 was set at 

various levels of {1.05, 1.10, 1.15, 1.20, 1.30, 1.40}, and the superiority test margin Δ20 was 

chosen to be 0.90. We also conducted sensitivity analyses when wrong change points {1.5, 

1.75, 1.875, 2.125, 2.25} were assumed. For each setting, 1,000 simulations were carried 

out, and results were summarized in Tables 1 and 2.

Table 1 shows that the intersection union test can well control the type I error at the nominal 

level of 0.05. Table 2 shows that the proposed test is more powerful compared with the log-

rank test across in all settings. It can be seen that the larger the value of Δ10 is, the higher the 

power the intersection union test can be, because Δ10 can be deemed as tolerance level for 

the treatment group’s non-inferiority against the control group. Furthermore, in all 

simulation studies, the intersection union approach is robust and performs better than the 

log-rank test with various choices of t0.

5. Discussion

In this short note, we have proposed alternative methods for study design and hypothesis 

testing in clinical trials that expect a lagged treatment effect. Note that, in many cases, the 

hazard rate function for the subjects in the control group (as well as the treatment group) is 

not exponential with a constant rate. The rescaling of time via  allows us to transform 

the point process into a time-homogeneous Poisson process with a constant rate. Thus, we 

approach the change-point problem from the “number-of-events” perspective, and provide 

an alternative formulation that allows trial designers to estimate the number of events needed 
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so as to reach a certain level of power, given a preliminary estimates of the change point. 

This adds versatility to our formulation which is applicable to a broad range of settings.

In addition, we also propose a new intersection union testing procedure that can tackle the 

lagged treatment effect phenomenon. The proposed inclusion-exclusion test first guarantees 

that the new treatment creates no extra harm to the existing treatment (control) and then tests 

for superiority of the new treatment after some predetermined change point t0. Such a 

construction provides a correct conclusion for the test and avoids blindly increasing the 

number of subjects so as to maintain a certain level of power. In addition, interim analysis 

such as proposed by [15] may experience premature termination of the test due to the 

acceptance of H0 during the interim analysis. The re-estimated sample size will explode 

even if the test can be carried on to the second stage because of the inappropriately small 

value of hazard ratio estimated. In conclusion, the intersection union testing procedure 

improves the power while enabling the user to correctly claim that the new treatment is 

beneficial after a certain time point t0, prior to which the new treatment performs equally 

well with the existing drug or treatment. Moreover, because the intersection union testing 

procedure only rejects the overall null H0 when both individual nulls, H10 and H20, are 

rejected, the sample size required to attain a certain level of power can be easily obtained as

where ni and ns denote respectively the sample size for testing for non-inferiority and that 

for superiority.
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6. Appendix: Derivation of the Expected Numbers of Events (5)

Following to the derivations and arguments presented on pages 869–70 of [1], we can 

rewrite , Di, (i = 0, 1) and thus D̃i(i = 0, 1) as follows:

It follows that
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