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Summary

Graph-constrained estimation methods encourage similarities among neighboring covariates 

presented as nodes of a graph, and can result in more accurate estimates, especially in high-

dimensional settings. Variable selection approaches can then be utilized to select a subset of 

variables that are associated with the response. However, existing procedures do not provide 

measures of uncertainty of the estimates. Further, the vast majority of existing approaches assume 

that available graph accurately captures the association among covariates; violations to this 

assumption could severely hurt the reliability of the resulting estimates. In this paper, we present a 

new inference framework, called the Grace test, which produces coefficient estimates and 

corresponding p-values by incorporating the external graph information. We show, both 

theoretically and via numerical studies, that the proposed method asymptotically controls the type-

I error rate regardless of the choice of the graph. We also show that when the underlying graph is 

informative, the Grace test is asymptotically more powerful than similar tests that ignore the 

external information. We study the power properties of the proposed test when the graph is not 

fully informative and develop a more powerful Grace-ridge test for such settings. Our numerical 

studies show that as long as the graph is reasonably informative, the proposed inference 

procedures deliver improved statistical power over existing methods that ignore external 

information.

Keywords

Biological networks; Graph-constrained estimation; High-dimensional data; Significance test; 
Variable selection

1. Introduction

Interactions among genes, proteins and metabolites shed light into underlying biological 

mechanisms, and clarify their roles in carrying out cellular functions (Zhu et al., 2007; 

Michailidis, 2012). This has motivated the development of many statistical methods to 
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incorporate existing knowledge of biological networks into data analysis (see e.g. Kong et 

al., 2006; Wei and Pan, 2008; Shojaie and Michailidis, 2009, 2010b). Such methods can lead 

to identification of novel biological mechanisms associated with the onset and progression 

of complex diseases (see e.g. Khatri et al., 2012).

External network information may be summarized using an undirected weighted graph G = 

(V, E, W), whose node set V = {1, …, p} corresponds to p covariates. The edge set E of the 

graph encodes similarities among covariates, in the sense that two vertices u, v ∈ V are 

connected with an edge e = (u ~ v) ∈ E if covariates u and v are “similar” to each other. The 

similarity between neighboring nodes (u ~ v) is captured by weights w(u, v). Such 

similarities can for instance correspond to interactions between genes or phylogenetic 

proximities of species.

A popular approach for incorporating network information is to encourage smoothness in 

coefficient estimates corresponding to neighboring nodes in the network using a network 
smoothing penalty (Li and Li, 2008; Slawski et al., 2010; Pan et al., 2010; Li and Li, 2010; 

Huang et al., 2011; Shen et al., 2012). This approach can also be generalized to induce 

smoothness among similar covariates defined based on a distance matrix or “kernel” 

(Randolph et al., 2012) which, for instance, capture similarities among microbial 

communities according to lineages of a phylogenetic tree (Fukuyama et al., 2012).

The smoothness induced by the network smoothing penalty can result in more accurate 

parameter estimations, particularly when the sample size n is small compared to the number 

of covariates p. Sparsity-inducing penalties, like the ℓ1 penalty (Li and Li, 2008, 2010) or the 

minimum convex penalty (MCP) (Huang et al., 2011), can then be used to select a subset of 

covariates X associated with the response y for improved interpretability and reduced 

variability. It has been shown that, under appropriate assumptions, the combination of 

network smoothing and sparsity-inducing penalties can consistently select the subset of 

covariates associated with the response (Huang et al., 2011). However, such procedures do 

not account for the uncertainty of the estimator, and in particular, do not provide p-values.

A number of new approaches have recently been proposed for formal hypothesis testing in 

penalized regression, including resampling and subsampling approaches (Meinshausen and 

Bühlmann, 2010), ridge test with deterministic design matrices (Bühlmann, 2013), and the 

low-dimensional projection estimator (LDPE) for ℓ1-penalized regression (Zhang and 

Zhang, 2014; van de Geer et al., 2014). However, there are currently no inference procedures 

available for methods that incorporate external information using smoothing penalties. 

Inference procedures for kernel machine learning methods (Liu et al., 2007), on the other 

hand, test the global association of covariates and are hence not appropriate for testing the 

association of individual covariates.

Another limitation of existing approaches that incorporate external network information, 

including those using network smoothing penalties, is their implicit assumption that the 

network is accurate and informative. However, existing networks may be incomplete or 

inaccurate (Hart et al., 2006). As shown in Shojaie and Michailidis (2010a), such 

inaccuracies can severely impact the performance of network-based methods. Moreover, 
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even if the network is accurate and complete, it is often unclear whether network 

connectivities correspond to similarities among corresponding coefficients, which is 

necessary for methods based on network smoothing penalties.

To address the above shortcomings, we propose a testing framework, the Grace test, which 

incorporates external network information into high-dimensional regression and 

corresponding inferences. The proposed framework builds upon the graph-constrained 

estimation (Grace) procedure of Li and Li (2008), Slawski et al. (2010) and Li and Li 

(2010), and utilizes recent theoretical developments for the ridge test by Bühlmann (2013). 

As part of our theoretical development, we generalize the ridge test with fixed design to the 

setting with random design matrices X. This generalization was suggested in the discussion 

of Bühlmann (2013) as a possible extension of the ridge test, and results in improved power 

compared to the original proposal.

Our theoretical analysis shows that the proposed testing framework controls the type-I error 

rate, regardless of the informativeness or accuracy of the incorporated network. We also 

show, both theoretically and using simulation experiments, that if the network is accurate 

and informative, the Grace test offers improved power over existing approaches that ignore 

such information. Finally, We propose an extension of the Grace test, called the Grace-ridge 

or GraceR test, for settings where the network may be inaccurate or uninformative.

The rest of the paper is organized as follows. In Section 2, we introduce the Grace 

estimation procedure and the Grace test. We also formally define the “informativeness” of 

the network. Section 3 investigates the power of the Grace test, in comparison to its 

competitors. In Section 4, we propose the Grace-ridge (GraceR) test for robust estimation 

and inference with potentially uninformative networks. We apply our methods to simulated 

data in Section 5 and to data from The Cancer Genome Atlas (TCGA) in Section 6. We end 

with a discussion in Section 7. Due to space limitations, proofs of theoretical results and 

additional details of simulated and real-data analyses are gathered in the online 

Supplementary Material.

Throughout this paper, we use normal lowercase letters to denote scalars, bold lowercase 

letters to denote vectors and bold uppercase letters to denote matrices. We denote columns 

of an n×p matrix X by xj, j = 1, …, p and its rows by xi, i = 1, …, n. For any two symmetric 

matrices A and B, we denote A ⪯ B if B − A is positive semi-definite, or λ0(B − A) ≥ 0, 

where λ0 denotes the smallest eigenvalue of a symmetric matrix. For an index set J, we 

denote by A(J,J) the |J| × |J| sub-matrix corresponding to the rows and columns indexed by J. 

Finally, for a p-vector β, we let  for k ∈ ℤ+ and ||β||∞ ≜ maxiβi.

2. The Grace Estimation Procedure and the Grace Test

2.1 The Grace Estimation Procedure

Let L be the matrix encoding the external information in an undirected weighted graph G = 

(V, E, W). In general, L can be any positive semi-definite matrix, or kernel, capturing the 

“similarity” between covariates. In this paper, however, we focus on the case where L is the 

graph Laplacian matrix,
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with du = Σv~u w(u, v) denoting the degree of node u. We also assume that weights w(u, v) 

are nonnegative. However, the definition of Laplacian and the analysis in this paper can be 

generalized to also accommodate negative weights (Chung, 1997).

Let X = (x1, …, xp) ∈ ℝn×p be the n×p design matrix and y ∈ ℝn be the response vector in 

the linear model

(1)

Multivariate normality of covariates is commonly assumed in analysis of biological 

networks, particularly, when estimating interactions among genes or proteins using Gaussian 

graphical models (see e.g. de la Fuente et al., 2004). Interestingly, the underlying assumption 

of network smoothing penalties – that connected covariates after scaling have similar 

associations with the response – is also related to the assumption of multivariate normality 

(Shojaie and Michailidis, 2010b). In this paper, we assume y is centered and columns of X 

are centered and scaled, i.e.  and  for j = 1, …, p. We 

denote the scaled Gram matrix by .

For a non-negative tuning parameter h, Grace solves the following optimization problem:

(2)

When L is the Laplacian matrix, β⊤Lβ = Σu~v(βu − βv)2w(u, v) (Huang et al., 2011). Hence, 

the Grace penalty β⊤Lβ encourages smoothness in coefficients of connected covariates, 

according to weights of edges. Henceforth, we call L the penalty weight matrix.

For any tuning parameter h > 0, Equation (2) will have a unique solution if  is 

invertible. However, if p > n and rank(L) < p this condition may not hold. With a Gaussian 

design xi ~iid Np(0, Σ), it follows from Bai (1999) that if lim infn→∞ λ0(Σ) > 0, and if there 

exists a sequence of index sets Cn ⊂ {1, …, p}, limn→∞ |Cn|/n < 1, such that lim infn→∞ 

λ0(L(V\Cn,V\Cn)) > 0, then  is almost surely invertible. In this section we hence 

assume that  is invertible. This condition is relaxed in Section 4, when we propose 

the more general Grace-ridge (GraceR) test.
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As mentioned in the Introduction, several methods have been proposed to select the subset 

of relevant covariates for Grace. For example, Li and Li (2008, 2010) added an ℓ1 penalty to 

the Grace objective function,

(3)

Huang et al. (2011) instead added the MCP and proposed the sparse Laplacian shrinkage 

(SLS) estimator. While these methods perform automatic variable selection, they do not 

provide measures of uncertainty, i.e. confidence intervals or p-values. In this paper, we 

instead propose an inference procedure that provides p-values for estimated coefficients 

from Equation (2). The resulting p-values can then be used to assess the significance of 

individual covariates, and select a subset of relevant variables.

2.2 The Grace Test

Before introducing the Grace test, we present a lemma that characterizes the bias of the 

Grace estimation procedure.

Lemma 1—For any h > 0, assume  is invertible. Then, given X, β̂(h) as 
formulated in (2) is an unbiased estimator of β* if and only if Lβ* = 0. Moreover,

(4)

Because the bias of the Grace estimator depends directly on the magnitude of Lβ*, we 

consider L to be informative if Lβ* is small. According to Lemma 1, the Grace estimator 

will be unbiased only if β* lies in the space spanned by the eigenvectors of L with 0 

eigenvalues. In reality, however, this condition cannot be checked from data. Thus, to control 

the type-I error rate, we must adjust for this potential estimation bias.

Our testing procedure is motivated by the ridge test proposed in Bühlmann (2013), which we 

briey discuss next. First, note that ridge is also a biased estimator of β*, and its estimation 
bias is negligible only if the ridge tuning parameter is close to zero. In addition to the 

estimation bias, Bühlmann (2013) also accounted for the projection bias of ridge regression 

for a fixed design matrix X. This is because for fixed design matrices with p > n, β* is not 

uniquely identifiable, as there are infinitely many β’s such that E(y) = Xβ. Using ridge 

regression, β* is only estimable if it lies in the row space of X, ℛ(X), which is a proper 

subspace of ℝp when p > n. If β* does not lie in this subspace, the ridge estimated regression 

coefficient is indeed the projection of β* onto ℛ(X), which is not identical to β*. This gives 

rise to the projection bias.

To account for these two types of biases, Bühlmann (2013) proposed to shrink the ridge 

estimation bias to zero by shrinking the ridge tuning parameter to zero, while controlling the 
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projection bias using a stochastic bias bound derived from a lasso initial estimator. A side 

effect of shrinking the ridge tuning parameter to zero is that the variance of covariates with 

high multi-collinearity could become large; this would hurt the statistical power of the ridge 

test. In addition, the stochastic bound for the projection bias is rather loose. This double-

correction of bias further compromises the power of the ridge test.

In this paper, we develop a test for random design matrices, which was suggested in the 

discussion of Bühlmann (2013) as a potential extension. With random design matrices, we 

do not incur any projection bias. This is because the regression coefficients in this case are 

uniquely identifiable as Σ−1Cov(X, y) under the joint distribution of (X, y). Here, Σ denotes 

the population covariance matrix of covariates and Cov(X, y) is the population covariance 

between the covariates and the response; see Shao and Deng (2012) for a more elaborate 

discussion of identifiability for fixed and random design matrices.

To control the type-I error rate of the Grace test, we adjust for the potential estimation bias 

using a stochastic bound derived from an initial estimator. By adjusting for the estimation 

bias using a stochastic upper bound, the Grace tuning parameter needs not be very small. 

Thus, the variance of Grace estimator is less likely to be unreasonably large; this results in 

improved power for the Grace test. Power properties of the Grace test are more formally 

investigated in Section 3. Next, we formally introduce our testing procedure.

Consider the null hypothesis H0 :  for some j ∈ {1, …, p}. Let β̃ be an initial estimator 

with asymptotic ℓ1 estimation accuracy, i.e. ||β̃ − β*||1 = ℴp(1). The Grace test statistic is 

defined as

(5)

where  is the Grace estimator from (2) with tuning parameter h. Plugging in (2) and 

adding and subtracting , we can write

(6)

where

Next, we derive an asymptotic stochastic bound for  such that under the null hypothesis
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(7)

Then, under the null hypothesis, , which allows us to asymptotically 

control the type-I error rate.

To complete our testing framework, we use the fact under suitable conditions and with 

proper tuning parameter hLasso, described in Theorem 1, the ℓ1 estimation error of the lasso,

(8)

is asymptotically controlled (Bühlmann and van de Geer, 2011). We thus use the lasso 

estimator as the initial estimator for the Grace test, i.e. β̃ ≜ β̃(hLasso). Theorem 1 then 

constructs a  that satisfies Condition (7). First, we present required conditions.

• A0:  is invertible.

• A1: y = Xβ* + ε where xi ~iid Np(0, Σ) for i = 1, …, n and ε ~ Nn(0, σεI).

• A2: Let  be the active set of β* with cardinality s0 ≜ |S0|. We have 

s0 = ℴ([n/log p]ξ) for some 0 < ξ < 1/2.

• A3: The Σ-compatibility condition (Bühlmann and van de Geer, 2011) in Definition 

1 is met for the set S0 with compatibility constant , where d is 

a constant.

• A4: h and L are such that

Definition 1 (Σ-Compatibility Condition)—For an index set S ⊂ {1, …, p} with 

cardinality s, define βS and βSc
 such that . We say that the Σ-

compatibility condition is met for the set S with compatibility constant ϕΣ > 0 if for all β ∈ 

ℝp in the cone ||βSc
||1 ≤ 3||βS||1, we have

(9)

As discussed in Section 2.1, A0 is required for uniqueness of the Grace estimator, and is 

shown to hold with probability tending to one under the Gaussian design (Bai, 1999). A2 is a 
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standard assumption, and requires the number of relevant covariates to not grow too fast, so 

that the signal is not substantially diluted among those relevant covariates. Note that with p = 

𝓞(exp(nν)) for some ν < 1, s0 can grow to infinity as n → ∞. The Σ-compatibility condition 

in A3 is closely related to the restricted eigenvalue assumption introduced in Bickel et al. 

(2009). Assumption A4 is made for improved control of type-I error, and can be relaxed at a 

cost of potential loss of power with finite samples; see Remark 1. On the other hand, given X 

and L, when h/n → ∞, the eigenvectors and eigenvalues of  converge to the 

eigenvectors and eigenvalues of L. This indicates that  converges to a 

diagonal matrix with diagonal entries equal to 0 or 1, and A4 is satisfied.

Theorem 1—Suppose Assumptions A0 – A4 are satisfied, and let β̃ ≜ β̃(hLasso) with the 

tuning parameter . Let

(10)

where  is the maximum in absolute 

value of entries in row j without the diagonal entry. Then  satisfies condition (7).

Under the null hypothesis H0 : βj = 0, for any α > 0 we have

(11)

Remark 1—If we instead consider

we can relax Assumption A4 and still control the asymptotic type-I error rate. Theorem 1 

can then be similarly proved without A4. However, as  converges 

to a diagonal matrix, in which case 

. This looser stochastic bound may 

result in lower power in finite samples.

Theorem 1 shows that regardless of the choice of L, the type-I error rate of the Grace test is 

asymptotically controlled. The stochastic bound  relies on the unknown sparsity 

parameter ξ. Following Bühlmann (2013) we suggest a small value of ξ, and use ξ = 0.05 in 

the simulation experiments in Section 5 and real data example in Section 6.

Zhao and Shojaie Page 8

Biometrics. Author manuscript; available in PMC 2016 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Using (11), we can test H0 using the asymptotically valid two-sided p-value

(12)

where Φ is the standard normal c.d.f., and a+ = max(a, 0). Calculating p-values requires 

estimating  and choosing a suitable tuning parameter h. We can estimate  using any 

consistent estimator, such as the scaled lasso (Sun and Zhang, 2012). In the simulation 

experiments and real data example, we choose h using 10-fold cross-validation (CV).

Note that, when simultaneously testing multiple hypotheses: H0 :  for any j ∈ J ⊆ {1, 

…, p} versus Ha :  for some j ∈ J, we may wish to control the false discovery rate 

(FDR). Because covariates in the data could be correlated, test statistics on multiple 

covariates may show arbitrary dependency structure. We thus suggest controlling the FDR 

using the procedure of Benjamini and Yekutieli (2001). Alternatively, we can control the 

family-wise error rate (FWER) using, e.g. the method of Holm.

3. Power of the Grace Test

In this section, we investigate power properties of the Grace test. Our first result describes 

sufficient conditions for detection of nonzero coefficients.

Theorem 2—Assume Assumptions A0 – A4 are met. If for some h, some 0 < α < 1, 0 < ψ 

< 1, conditional on X, we have

(13)

where Φ(q(1−α/2))= 1− α/2. Then using the same tuning parameter h in the Grace test, we get 

.

Having established the sufficient conditions for detection of non-null hypotheses in Theorem 

2, we next turn to comparing the power of the Grace test with its competitors: the Grace test, 

the ridge test with small tuning parameters h2 = 𝓞(1) and no bias correction, and the GraceI 

test, which is the Grace test with identity penalty weight matrix I. The ridge test may be 

considered as a variant of the test proposed in Bühlmann (2013) without the adjustment of 

the projection bias – because we assume the design matrix is random, we incur no projection 

bias in the estimation procedure.

As indicated in Lemma 1, the estimation bias of the Grace procedure depends on the 

informativeness of the penalty weight matrix L. When L is informative, we are able to 

increase the size of the tuning parameter, which shrinks the estimation variance without 
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inducing a large estimation bias. Thus, with an informative L, we are able to obtain a better 

prediction performance, as shown empirically in Li and Li (2008); Slawski et al. (2010); Li 

and Li (2010). In such setting, the larger value of the tuning parameter, e.g. as chosen by CV, 

also results in improved testing power, as discussed next.

Theorem 3 compares the power of the Grace test to its competitors in a simple setting of p = 

2 predictors, x1 and x2. In particular, this result identifies sufficient conditions under which 

the Grace test has asymptotically superior power. It also gives conditions for the GraceI test 

to have higher power than the ridge test. The setting of p = 2 predictors is considered mainly 

for ease of calculations, as in this case, we can directly derive closed form expressions of the 

corresponding test statistics. Similar results are expected to hold for p > 2 predictors, but 

require additional derivations and notations.

Assume , where , and x1, x2 are scaled. Denote

Theorem 3 considers the power for testing the null hypothesis H0 : , in settings where 

, without any constraints on .

Theorem 3—Suppose Assumptions A0 – A4 are met. Let  and  be 

the Grace, GraceI and ridge p-values, respectively, with tuning parameters  for Grace and 

 for GraceI. Define

(14)

Then, conditional on the design matrix X, under the alternative hypothesis , the 
following statements hold with probability tending to 1, as n → ∞.

a. If , then 

.

b.
If , then .

c.
If , then .

Theorem 3 indicates that, as  and  diverge to infinity, both  and 

 approach infinity. This implies, on one hand, that for  and 

sufficiently large, both the Grace and GraceI tests are asymptotically more powerful than the 
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ridge test. On the other hand, we can only compare the powers of the Grace and GraceI tests 

under some constraints on their tuning parameters. With equal tuning parameters for Grace 

and GraceI, , we can show, after some algebra, that as , we have 

 if . In 

this case, the Grace test is more powerful than the GraceI test if l is between 0 and l*, where 

l* is the unique root in [−1, 1] of the cubic equation l3 − 3l + 2ρ = 0. Figure 1(a) compares 

the powers of the Grace and GraceI tests with equal tuning parameters 

and . It can be seen that, the Grace test asymptotically outperforms the GraceI test 

when l is close to ρ with equally large tuning parameters. However, when l is far from ρ, the 

GraceI test could be more powerful. This observation, and the empirical results in Section 5 

motivate the development of the GraceR test, introduced in Section 4.

A similar comparison for powers of the Grace and the ridge test, with  and , 

is provided in Figure 1(b). These results suggest that, with large Grace tuning parameters, 

Grace substantially outperforms the ridge test in almost all scenarios. The result for the 

Grace and ridge comparison is similar with .

4. The Grace-Ridge (GraceR) Test

As discussed in Section 2, an informative L results in reduced bias of the Grace procedure, 

by choosing a larger tuning parameter h. The result in Theorem 3 goes beyond just the bias 

of the Grace procedure. It shows that for certain choices of L, i.e. when l is close to the true 

correlation parameter ρ, the Grace test can have asymptotically superior power. This 

additional insight is obtained by accounting for, not just the bias of the Grace procedure, but 

also its variance, when investigating the power.

However, in practice, there is no guarantee that existing network information truly 

corresponds to similarities among coefficients, or is complete and accurate. To address this 

issue, we introduce the Grace-ridge (GraceR) test. The estimator used in GraceR 

incorporates two Grace-type penalties induced by L and I:

(15)

Using data-adaptive choices of tuning parameters hG and h2, we expect this test to be as 

powerful as the Grace test if L is informative, and as powerful as the GraceI test, otherwise.

Another advantage of the GraceR over the Grace test is improved bias-variance tradeoff. If L 
is (almost) singular, the variance of the Grace test statistic, which depends on the 

eigenvalues of , could be large even for reasonably large h. Thus, even though our 

discussion in Section 2.1 shows that  is almost surely invertible, with finite 

samples, its smallest eigenvalue could be very small, if not zero. If L is informative, Lβ and 

hence the bias in (4) are small. Thus, the rank-deficiency of  can be alleviated by 
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choosing a large value of h. However, if Lβ is non-negligible, choosing a large value of h 
may result in a large bias, even larger than the ridge estimate. to the extent which may offset 

the benefit from the variance reduction. The finite sample type-I error rate of the Grace test 

may thus be controlled poorly. By incorporating an additional ℓ2 penalty, we can better 

control the eigenvalues and achieve a better bias-variance trade-off.

The GraceR optimization problem leads to the following test statistic:

(16)

Similar to Section 2.2, we can write

(17)

where

Similar to the Grace test in in Section 2.2, we choose β̃ to be an initial lasso estimator, and 

derive an asymptotic stochastic bound for  such that . Equation (12) is 

again used to obtain two-sided p-values for H0. Theorems 4 and 5 parallel the previous 

results for the Grace test, and establish GraceR’s asymptotic control of type-I error rate, and 

conditions for detection of non-null hypotheses. Proofs of these results are similar to 

Theorems 1 and 2, and are hence omitted. We first state an alternative to Assumption A4. 

This assumption can be justified using an argument similar to that for Assumption A4, and 

can also be relaxed with the cost of reduced power for the GraceR test.

• A4′: hG, h2 and L are such that

Theorem 4

Assume Assumptions A1 – A3 and A4′ are met. The following  satisfies the stochastic 
bound for GraceR.
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(18)

Then, under the null hypothesis, for any α > 0,

(19)

Theorem 5

Assume Assumptions A1 – A3 and A4′ are met. If for some hG > 0 and h2 > 0, conditional 
on X, we have

(20)

for some 0 < α < 1 and 0 < ψ < 1. Then using the same hG and h2 in the GraceR test, we get 

.

5. Simulation Experiments

In this section, we compare the Grace and GraceR tests with the ridge test (Bühlmann, 2013) 

with small tuning parameters, low-dimensional projection estimator (LDPE) for inference 

(Zhang and Zhang, 2014; van de Geer et al., 2014) and the GraceI test. To this end, we 

consider a graph similar to Li and Li (2008), with 50 hub covariates (genes), each connected 

to 9 other satellite covariates (genes). The 9 satellite covariates are not connected with each 

other, nor are covariates in different hub-satellite clusters. In total the graph includes p = 500 

covariates and 450 edges; see Figure S1 in the online Supplementary Material for an 

illustration with 5 hub-satellite clusters. We build the underlying true Laplacian matrix L* 

according to the graph with all edge weights equal 1.

To assess the effect of inaccurate or incomplete network information, we also consider 

variants of the Grace and GraceR tests with incorrectly specified graphs, where a number of 

randomly selected edges are added or removed. The number of removed or added 

(perturbed) edges relative to the true graph is NPE ∈ {−165, −70, −10, 0, 15, 135, 350}, 

with negative and positive numbers indicating removals and additions of edges, respectively. 

For example, NPE = −165 indicates 165 of the 450 edges in the true graph represented by L* 

are randomly removed in the perturbed graph with corresponding perturbed Laplacian 

matrix L. This represents the case with incomplete network information. On the other hands, 

NPE = 350 indicates that in addition to the 450 true edges in L*, we also randomly add 350 

wrong edges to L. The NPE values considered correspond to similar normalized spectral 

differences for settings where edges are removed or added, i.e. ||L − L*||2/||L*||2 ≈ (0.75, 
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0.50, 0.25, 0, 0.25, 0.50, 0.75). Thus, the size of perturbation to the graph is roughly the 

same with NPE = −165 and 350. The perturbed penalty weight matrix L is then used in the 

Grace and GraceR tests. Since (X⊤X + hL) may not be invertible, for Grace, we add a value 

of 0.01 to the diagonal entries of L to make it positive definite. No such correction is needed 

for GraceR and GraceI because of the ℓ2 penalty.

In each simulation replicate, we generate n = 100 independent samples, where for the 50 hub 

covariates in each sample, , k = 1, …, 50, and for the 9 satellite covariates in 

the k-th hub-satellite cluster, , l = 1, …, 9, k = 1, …, 50. This is 

equivalent to simulating xi ~iid Np(0, Σ) for i = 1, …, 100 with Σ = (L* + 0.11 × I)−1, where 

L* corresponds to the partial covariance structure of the covariates.

We consider a sparse model in which covariates in the first hub-satellite cluster are equally 

associated with the outcome, and those in the other 49 clusters are not. Specifically, we let

We then simulate y = Xβ* + ∊; with , and consider σε ∈ {9.5, 6.3, 4.8} to 

produce expected .

Throughout the simulation iterations, L* and β* are kept fixed, and L, X and ε are randomly 

generated in each repetition. We set the sparsity parameter ξ = 0.05, and 

, where σε̂ is calculated using the scaled lasso (Sun and Zhang, 2012). 

As suggested in Bühlmann (2013), the tuning parameter for the ridge test is set to 1. Tuning 

parameters for LDPE, Grace, GraceR and GraceI are chosen by 10-fold CV. We use two-

sided significance level α = 0.05 and calculate the average and standard error of powers from 

10 non-zero coefficients and the type-I error rates of each test from 490 zero coefficients. 

Figure 2 summarizes the mean powers and type-I error rates of tests across B = 100 

simulated data sets, along with the corresponding 95% confidence intervals. Detail values of 

powers and type-I error rates, as well as an expanded simulation with a larger range of NPE, 

are available in Table S2, S3 and Figure S4 in the online Supplementary Material.

Comparing the power of the tests, it can be seen that the Grace test with correct choices of L 
(NPE = 0) results in highest power. The performance of the Grace test, however, deteriorates 

as L becomes less accurate. The performance of the GraceR test is, on the other hand, more 

stable. It is close to the Grace test when the observed L is close to the truth, and is roughly 

as good as the GraceI test when L is significantly inaccurate. As expected, our testing 

procedures asymptotically control the type-I error rate, in that observed type-I error rates are 

not significantly different from α = 0.05.
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6. Analysis of TCGA Prostate Cancer Data

We examine the Grace and GraceR tests on a prostate adenocarcinoma dataset from The 

Cancer Genome Atlas (TCGA) collected from prostate tumor biopsies. After removing 

samples with missing measurements, we obtain a dataset with n = 321 samples. For each 

sample, the prostate-specific antigen (PSA) level and the RNA sequences of 4739 genes are 

available. Genetic network information for these genes is obtained from the Kyoto 

Encyclopedia of Genes and Genomes (KEGG), resulting in a dataset with p = 3450 genes 

and |E| = 38541 edges.

We center the outcome and center and scale the covariates. For the Grace and GraceR tests, 

we set the sparsity parameter ξ = 0.05 and , where σε̂ is calculated 

using the scaled lasso (Sun and Zhang, 2012). We control the false discovery rate at FDR = 

0.05 level using the method of Benjamini and Yekutieli (2001).

To increase the chance of selecting “hub” genes, we use the normalized Laplacian matrix 

L(norm) = D−1/2LD−1/2, where D is the diagonal degree matrix for the KEGG network with 

edge weights set to 1. The Grace penalty induced by the normalized Laplacian matrix 

encourages smoothness of coefficient estimates based on the degrees of respective nodes, 

 (Li and Li, 2008). We add 0.001 to the 

diagonal entries of L(norm) to induce positive definitiveness in the Grace test.

As shown in Figure 3(a), the Grace test with tuning parameter selected by 10-fold CV 

identifies 54 genes that are associated with PSA level. They consist of 42 histone genes, 11 

histone deacetylase (HDAC) genes and the paired box gene 8 (PAX8). Histone and HDAC 

genes are densely connected in the KEGG network. With the network smoothing penalty, the 

Grace regression coefficients of histone and HDAC genes are all positive with a similar 

magnitude. Existing literature indicates that the histone and HDAC genes are associated with 

the occurrence, progression, clinical outcomes or recurrence of prostate cancer. Figure 3(b) 

shows the result for the GraceR test. GraceR identifies 5 histone genes, which are also 

identified by the Grace test. In addition, GraceR identifies 11 genes that are not identified by 

Grace. Prior work has identified 9 of those 11 genes to be associated with PSA level or the 

severity and stage of cancer. Additional details about existing evidence in support of genes 

identified using Grace and GraceR tests, as well as extended results on prediction 

performance and stability of the Grace test are provided in Section S6 in the online 

Supplementary Material.

As a comparison, the GraceI test with 10-fold CV identifies 16 disconnected genes, 11 of 

them are also identified by the GraceR test. Ridge test (Bühlmann, 2013) with tuning 

parameter h2 = 1 identifies 4 disconnected genes, which are also identified by the GraceR 

test. The low-dimensional projection estimator (LDPE) with tuning parameters chosen by 

10-fold CV identifies 10 disconnected genes. Seven of these genes are identified by GraceR 

and two by Grace.
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7. Discussion

In this paper, we proposed the Grace and GraceR tests that incorporate external graphical 

information regarding the similarity between covariates. Such external information is 

presented in the form of a penalty weight matrix L, which is considered to be the 

(normalized) graph Laplacian matrix in this paper. However, any positive semi-definite 

matrix can be used as L. The proposed inference framework thus allows researchers in 

different fields to incorporate relevant external information through L. For example, we can 

use various distance and kernel metrics that measure the (dis)similarity between species in 

phylogenetic studies. We can also use the adaptive graph Laplacian matrix (Li and Li, 2010) 

so that coefficients of negatively correlated covariates are penalized to have the opposite 

signs. Regardless of the choice of L, our proposed procedures asymptotically control the 

type-I error rate; the power of the Grace test, however, depends on the informativeness of L. 

The power of the GraceR test is on the other hand less dependent on the choice of L.

The Grace test introduced in this paper is not scale invariant. That is, the Grace test with the 

same tuning parameter could produce different p-values with data (X, y) and (X, ky), where 

k ≠ 1 is a constant. This is clear as the test statistic ẑj depends on y whereas the stochastic 

bound  does not. To make the Grace and GraceR tests scale invariant, we can simply 

choose the tuning parameter for our lasso initial estimator to be  with a 

constant . Sun and Zhang (2012) show that the lasso is scale invariant in this case. 

We would also need to use scaled invariant stochastic bounds  and 

in our Grace and GraceR tests. Note that multiplying any constant in  and  does not 

change our asymptotic control of the type-I error rate.

In this paper, cross validation (CV) is used to choose tuning parameters of the Grace and 

GraceR tests. However, CV does not directly maximize the power of these tests. Selection of 

tuning parameters for optimal testing performance can be a fruitful direction of future 

research. Another useful extension of the proposed framework is its adaptation to 

generalized linear models (GLM).

The Grace and GraceR tests are implemented in the R package Grace, available on the 

Comprehensive R Archive Network (CRAN).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

(a) The ratio of  over  for different l and ρ with 

, [log p/n]1/2−ξ = 0.25 and . A plus sign indicates the ratio is greater 

than 1.02, whereas a minus sign indicates the ratio is smaller than 0.98; filled circles indicate 

an intermediate value. (b) The log-ratio of  over  for different l and 

ρ with , [log p/n]1/2−ξ = 0.25 and . A plus sign indicates the log-ratio is 

greater than 0.5 (ratio > 1.65), whereas a minus sign indicates the log-ratio is smaller than 

−0.5 (ratio < 0.61); filled circles indicate an intermediate value
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Figure 2. 
Comparison of powers and type-I error rates of different testing methods, along with their 

95% confidence bands. Testing methods include LDPE (Zhang and Zhang, 2014; van de 

Geer et al., 2014), ridge (Bühlmann, 2013), GraceI, Grace and GraceR tests. Filled circles 

(●) corresponds to powers, whereas crosses (×) are type-I error rates. Numbers on x-axis for 

Grace and GraceR tests refer to the number of perturbed edges (NPE) in the network used 

for testing, compared to the true network used to generate the data.
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Figure 3. 
Results of analysis of TCGA prostate cancer data using the (a) Grace and (b) GraceR tests 

after adjusting for FDR at 0.05 level. In each case, genes found to be significantly associated 

with PSA level are shown, along with their interactions based on information from KEGG.
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