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Abstract

Compared with normal cells, tumor cells have undergone an array of genetic and epigenetic 

alterations. Often, these changes underlie cancer development, progression, and drug resistance, so 

the utility of model systems rests on their ability to recapitulate the genomic aberrations observed 

in primary tumors. Tumor-derived cell lines have long been used to study the underlying biologic 

processes in cancer, as well as screening platforms for discovering and evaluating the efficacy of 

anticancer therapeutics. Multiple -omic measurements across more than a thousand cancer cell 

lines have been produced following advances in high-throughput technologies and multigroup 

collaborative projects. These data complement the large, international cancer genomic sequencing 

efforts to characterize patient tumors, such as The Cancer Genome Atlas (TCGA) and 

International Cancer Genome Consortium (ICGC). Given the scope and scale of data that have 

been generated, researchers are now in a position to evaluate the similarities and differences that 

exist in genomic features between cell lines and patient samples. As pharmacogenomics models, 

cell lines offer the advantages of being easily grown, relatively inexpensive, and amenable to high-

throughput testing of therapeutic agents. Data generated from cell lines can then be used to link 

cellular drug response to genomic features, where the ultimate goal is to build predictive 

signatures of patient outcome. This review highlights the recent work that has compared -omic 

profiles of cell lines with primary tumors, and discusses the advantages and disadvantages of 

cancer cell lines as pharmacogenomic models of anticancer therapies.

Introduction

Cell lines have a long history as models to study molecular mechanisms of disease. In some 

fields, such as cardiology and neuroscience, in vitro studies often use primary cultures with 
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genetic perturbations or cells treated with an array of agents to induce a disease state. In 

cancer research, collections of tumor-derived cell lines are often used as models because 

they carry hundreds to thousands of aberrations that arose in the tumor from which they 

were derived. Cancer cell lines are used to study many biologic processes and have been 

widely used in pharmacogenomics studies. A recent review by Sharma and colleagues 

discussed the advantages and disadvantages of cell lines as a drug screening platform (1). 

Since this work, genomic measurements were made available for hundreds of cancer cell 

lines, and these data present new opportunities to link genomic profiles to therapeutic 

response.

The development and clinical implementation of Precision Medicine has become a national 

priority1. This will require the analysis of large-scale genomics data (2) from individuals and 

populations to identify features that predict individual cancer behavior, including probability 

of disease progression and response to treatment. Measurements relevant to Precision 

Medicine include, but are not limited to, gene expression, genome-wide RNAi screens, 

sequencing-based profiling, and measures of therapeutic response and patient outcome. 

These data are used to identify dysregulated genes and pathways with the goal of 

understanding the factors that drive tumor progression and underlie patient response to 

treatment. Given the ubiquity of these datasets in cancer, we are now in a position to study 

single cancer subtypes and to identify common and recurrent aberrations across cancers. 

This notion of “pan-cancer” analysis has sparked new interest in developing and 

repositioning anticancer drugs to target specific genetic aberrations or molecular subtypes, 

as opposed to the tumor tissue of origin (2).

Cell lines serve as models to study cancer biology, and connecting genomic alterations to 

drug response can aid in understanding cancer patient response to therapy. Accordingly, 

several large datasets have been generated to link genomic and pharmacologic profiles of 

cell lines. The first of these datasets was the NCI-60, a pharmacologic screen across 60 

cancer cell lines (3). Later, genomic features of these cell lines were characterized and all 

NCI-60 related data were compiled in CellMiner (4). Targeted study of a panel of breast 

cancer cell lines have led to insights into the pathways and process directly affected by 

anticancer compounds (5, 6). Additional pharmacogenomics datasets such as the 

Connectivity Map (7), Genomics of Drug Sensitivity in Cancer (GDSC; ref. 8), the Cancer 

Cell Line Encyclopedia (CCLE; ref. 9), the Cancer Therapeutics Response Portal (CTRP; 

ref. 10), and the Cancer Target Discovery and Development Project2 have expanded the 

numbers of cell lines, drugs, and cancer types (Table 1). These studies have led to advances 

in our understanding of cellular response to drugs and have provided the necessary data to 

develop prediction algorithms that aim to match the response with genomic features.

Despite the ubiquitous use of cancer cell line models, we are still left with the same question 

that has been around since cell lines were first isolated in the 1950s: how well do in vitro 
cell line models recapitulate the biologic processes of in vivo disease and drug response? 

More specific to this review, are tumor-derived cell lines representative genomic models of 

1http://www.nih.gov/precisionmedicine
2https://ocg.cancer.gov/programs/ctd2
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in vivo disease and therapeutic response? Here, we summarize the work to date that has been 

aimed at addressing these questions.

Comparing -omic profiles of tumors and cell lines

The rich data resources mentioned above allow for a relatively complete assessment of how 

well, if at all, cell lines recapitulate the genomic aberrations observed in primary tumors. 

Several studies have shed light on how the genomic profiles, molecular subtypes, and 

heterogeneity of tumors compare with cell lines, and the result of this work can be used to 

identify the cell lines that best model the genomic features of particular diseases.

Cell lines model genomic features of tumors—One of the first efforts to 

systematically compare tumors with cell lines revealed global similarities in gene expression 

patterns between breast cancer cell lines and tumors (11, 12). Following this work, a 

comparison of copy number alterations (CNA) and transcriptional profiles demonstrated that 

breast cancer cell lines harbor the majority of functionally important alterations observed in 

breast cancer tumors. Of the genes that were significantly altered in both gene expression 

and CNA, there was 72% agreement between cell lines and tumors. However, while the 

global CNA profiles are remarkably similar between cell lines and breast tumors, in general, 

there are a greater number of CNAs in cell lines (13). These results underscore a common 

theme across tissue types: while cell lines mirror many genomic aspects of tumors, there are 

aberrations specific to cell lines that may play important roles in translational biology.

Panels of cell lines modeling ovarian cancer (14), head and neck cancer (15), and colorectal 

cancer (16) have also been comprehensively characterized in the context of solid tumors. 

Domcke and colleagues found that high-grade serous ovarian cancer (HGSOC) cell lines and 

tumors had similar recurrent mutations and alterations, but overall, the cell lines had a higher 

number of mutations and a wider distribution of CNAs (14). Similarly, in other tissue types, 

mutations are more abundant in cell lines as compared with primary tumors, including head 

and neck (15) and colorectal cancer (16) cell lines. Assessment in colorectal (16), melanoma 

(17), and non–small cell lung cancer (18) cell lines compared with their respective tumors 

revealed that CNAs were similar. However, vast differences between the CNAs found in 

head and neck cancer cell lines and tumors were observed (15).

The CCLE, representing approximately 1,000 cell lines across 36 cancer types, has 

characterized cell lines for gene expression, CNAs, and mutations in select genes using 

hybrid capture sequencing (9). A strong correlation was observed for each genomic 

measurement between cell lines and tumors, suggesting that the cell lines comprising this 

dataset contained most of the common genomic aberrations found in tumors. However, not 

all genomic measurements have equal similarity as there are notably fewer differences in 

transcriptional profiles (11–13) and CNAs (16, 18) when compared with the larger 

differences observed in mutational profiling (14, 15), although the differences in mutational 

profiling may be due to current technical difficulties in mutation calling from sequencing 

data. The effect of these genomic differences between cell lines and tumors in translating 

information from in vitro to in vivo is not fully understood. Comprehensive profiling of 

more cancer types, along with the associated analysis, is required for complete 
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characterization of the impact of genomic aberrations that are different between cell lines 

and tumors.

Cell line DNA methylation show both similarities and differences to tumors—
Epigenomic studies capture genome-wide, nongenetic modifications. While many forms of 

epigenetic alterations exist, DNA methylation is readily studied with high-throughput 

assays. An early study by Paz and colleagues showed that hypermethylation of the promoter 

region of 15 tumor suppressor genes across 12 cancer types and 70 cell lines was similar 

(19). More recently, a comparison of the complete methylomes of breast cancer cell lines 

and tumors revealed global concordance (20). While there are strong epigenetic similarities 

between cell lines and primary tumors, differences have been characterized and attributed to 

the process of cell culture itself. For example, Varley and colleagues identified DNA 

methylation differences between primary cultures and tissue, suggesting that the cell 

culturing process induces DNA methylome changes (21). Changes in DNA methylation will 

affect gene expression, thereby influencing cellular processes and potentially even response 

to therapy. The overall impact of differences in DNA methylation in cell lines is not clear, 

although the microenvironment along with external stimuli likely contributes and should be 

considered when interpreting cell line data.

Molecular subtypes of tumors are represented in cell lines—Cancer subtypes 

have traditionally been classified on histologic markers. Perou and colleagues (22), followed 

shortly by Golub and colleagues (23), presented a new way to molecularly subtype cancer 

through the clustering of gene expression patterns measured using microarrays. This 

approach advanced the field because molecular subtyping could be done in an unbiased 

manner based on gene expression patterns. Many studies have shown that therapeutic 

response to specific agents can be predicted on the basis of molecular subtype both in vitro 
(5, 6) and clinically (24–28). Because of the clinical impact, modeling and studying 

subtypes represented in cell culture has been the subject of many studies, and it is only 

recently that additional -omic profiles have been the basis for molecular subtyping of 

tumors.

As mentioned earlier, Domcke and colleagues focused their efforts on HGSOC, using gene 

expression, mutations, and CNAs to compare HGSOC cell lines and primary tumors (14). 

By designing a ranking system leveraging publicly available tumor (29) and cell line (9) 

data, the authors were able to identify the cell lines with the most similar genomic profiles of 

HGSOC. They found that the two most often used cell lines, accounting for 60% of HGSOC 

publications, showed poor genomic similarity to HGSOC tumor profiles, whereas the cell 

lines most similar to HGSOC account for less than 1% of publications studying this subtype. 

It is possible that translating in vitro results in HGSOC has been hindered because the cell 

lines most frequently studied are not genomically representative of the disease. Now that we 

have the ability to measure genome-wide molecular features, researchers can prioritize cell 

lines according to the target -omic profile for use in experimental studies.

Not all cancer subtypes are well represented by cell line models. The first study to 

demonstrate this was a gene expression clustering study of over 40 lung cancer cell lines and 

tumors that found only some of the cell lines clustered to the expected groups of tumors 
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(30). Specifically, 50% of squamous cell carcinoma and over 80% of small-cell lung 

carcinoma cell lines clustered with their respective primary tumor types. However, none of 

the 11 adenocarcinoma cell lines clustered with primary adenocarcinomas. Therefore, either 

the adenocarcinoma subtype is lost in vitro as the authors suggest, or the adenocarcinoma 

lines were misclassified (30). In breast (31) and pancreatic ductal adenocarcinoma (32) 

cancer cell line panels, most of the subtypes common in these cancer were present, with the 

exception of one absent tumor subtype from each panel. The luminal A breast cancer 

subtype was not found in the breast cancer panel (31) and the exocrine-like subtype was not 

found in the panel of pancreatic ductal adenocarcinoma cell lines (32). While the reason for 

this is uncertain, it is clear that existing cell lines do not fully represent all tumor subtypes; 

thus, in vitro studies should be focused on the subtypes that are in common between cell 

lines and tumors.

Patterns of intertumor molecular subtypes in cell lines—Large, international 

cancer projects, such as The Cancer Genome Atlas (TCGA)3 and the International Cancer 

Genome Consortium (ICGC)4, have produced the data necessary to perform systematic 

analysis across many tumor types. This pan-cancer analysis has found both tissue-specific 

and recurrent patterns across many cancers. Data from the CCLE (9), GDSC (8), CTRP (10), 

and NCI-60 (3) provide the necessary material to mirror TCGA and ICGC pan-cancer 

analyses in cell lines. As displayed in Table 1, tumor types are well represented across these 

datasets.

As a demonstration of intertumor molecular subtypes, two independent studies found a 

striking similarity in the gene expression profiles of basal and luminal lineages in breast 

tumors when compared with bladder tumors (25, 33). Similar to the PAM50 signature in 

breast cancer (34), Damrauer and colleagues developed the BASE47 signature to stratify 

basal and luminal subtypes in bladder cancer (33). The authors showed that the BASE47 

correctly stratified breast cancer molecular subtypes, suggesting that similar transcriptional 

programs are operational across cancers of the breast and bladder. As an independent 

analysis, and shown in Fig. 1, we tested the ability of patient-derived BASE47 and PAM50 

gene expression signatures to stratify bladder (35) and breast cancer (6) cell lines according 

to basal and luminal subtype gene expression patterns. When hierarchically clustered, the 

BASE47 and PAM50 signatures separate breast cancer cell lines into the same basal and 

luminal subtypes (Fig. 1B and D). Interestingly, when the gene signatures were applied to 

the bladder cancer cell lines, two main clusters were revealed, but the basal and luminal 

labels were not consistent. Putative basal lineage markers, KRT5, KRT14, and CDH3, are 

upregulated in both breast (36) and bladder (37) primary tissues; these markers are present in 

the PAM50 but not in the BASE47 signature. In Fig. 1A, we used the BASE47 signature to 

assign basal/ luminal subtypes to the bladder cancer cell lines. When we applied the PAM50 

signature to the bladder cancer cell lines (Fig. 1C), KRT5, KRT14, and CDH3 were 

upregulated in the lines identified as luminal by the BASE47 signature, contrary to what was 

observed in both primary tissues as well as the breast cancer cell lines. In summary, we 

observed inconsistencies in the subtypes predicted by the PAM50 and BASE47 signatures in 

3http://cancergenome.nih.gov/
4https://icgc.org/
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vitro, highlighting the need for a deeper study of the biologic basis of these signatures both 

across these tissue types as well as between cell lines and primary tumors.

While molecular subtyping from genomic data has shown promise, contamination from 

surrounding stromal cells can influence the transcriptional profile of a sample. For example, 

Isella and colleagues showed that the stem/serrated/mesenchymal transcriptome subtype of 

colorectal cancer was predominantly produced by surrounding stromal cells rather than the 

colorectal cancer cells (38), highlighting the potential of stroma-contaminated samples 

contributing to the molecular characterization of tumors.

Patterns of intratumor heterogeneity are found in cell lines—Intratumor 

heterogeneity, the molecular differences between cells within an individual tumor, has 

clinical implications (39, 40). One model of drug resistance is that subpopulations in a 

heterogeneous tumor are selected during drug treatment (41). Heterogeneous cell line 

models may serve as an important tool for understanding and quantifying the biologic 

underpinnings and therapeutic implications of tumor heterogeneity.

Roschke and colleagues used spectral karyotyping to observe genomic variations within cell 

lines of the NCI-60 (3, 42), and identified heterogeneity in ploidy, rearrangements, and total 

number of chromosomes within particular cell lines (42). In a later targeted study, 12 of 30 

lung cancer cell lines were found to have different EGFR mutations within the same cultures 

(43). These studies indicate that the biologic mechanisms underlying heterogeneity within 

primary tumors may be operational in cell line models, and that cell lines can be used to 

study heterogeneous responses to therapy.

Other studies have identified cancer stem cells as a specific form of heterogeneity in cell 

lines. Cancer stem cells are undifferentiated, can self-renew, and have the ability to initiate 

tumors. Subpopulations of cancer stem cells have also been identified in many cancer cell 

lines, including breast (44), glioma (45), and head and neck cancer (46). Evidence of cancer 

stem cells as a subpopulation in cell lines provides more support to the heterogeneity within 

cell lines. However, one study noted the loss of cancer stem cells during propagation of 

glioblastoma cell lines regardless of their presence in matching primary glioblastomas (47). 

This implies that the presence of cancer stem cells can be lost in vitro, and may also be cell 

line dependent.

Cell line genomics in translational medicine

Recent studies have begun to systematically incorporate larger amounts of genomics-level 

data into the interpretation of drug sensitivity data (3–5, 7–10). In this section, we highlight 

some of the studies that have relied heavily on in vitro pharmacogenomics as well as 

highlight some areas of need.

Large in vitro pharmacogenomics datasets—Translating cell line 

pharmacogenomics into in vivo therapeutics requires a range of tumor-derived cancer cell 

lines, genomics-level data, and therapeutic responses (Fig. 2). Accordingly, there are many 

large, public datasets that have characterized genomic profiles of cell lines and their 

susceptibility to compounds (3, 4, 8–10). It should be noted that the controlled and 
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systematic study of cellular response after drug treatment is only scalable using cell line 

models. Table 1 outlines the available databases that link cell line genomics with 

pharmacologic data. The first of these databases was the NCI-60, which comprises 60 cell 

lines consisting of 9 cancer types (3, 4). Responses in this panel of cell lines were assessed 

for tens of thousands of compounds and drugs. One early algorithm developed for these data 

was COMPARE, which summarized multiple parameters of pharmacologic response into a 

single graph (48). They found that agents with similar mechanisms of action produced 

similar responses. COMPARE helped spur further algorithm advancement, which shifted the 

NCI-60 from a purely drug screening tool to one identifying molecular features predictive of 

drug response. Scherf and colleagues was the first study to link gene expression of the 

NCI-60 with pharmacologic profiles (49). This study inspired many of the studies discussed 

throughout this review.

Other types of in vitro pharmacogenomics databases are unique in that they measure 

changes after cells are perturbed with various agents. The Connectivity Map (CMAP) is an 

effort to determine gene expression changes in response to over 6,000 drug candidates and 

genetic perturbations (7). The NIH Library of Integrated Network-based Cellular Signatures 

(LINCS) Program5 is actively pursuing similar efforts, and will assess molecular and 

cellular changes induced by small-molecule and genetic perturbations. Collectively, 

pharmacogenomics cell line datasets have been used in thousands of studies, and have led to 

novel drug predictions. For example, CMAP was used to predict that two HDAC inhibitors 

would be useful in treatment of childhood B-lymphoblastic leukemia, and this prediction 

was validated using primary patient samples (50).

Computational models for drug sensitivity prediction—The goal of Precision 

Medicine in cancer is to identify molecular features unique to a patient’s tumor that help to 

determine the best treatment option. Several examples of rational drug design have been 

based on specific genetic aberrations found within a cohort of patients, including the 

targeted therapies such as trastuzumab for HER2-overexpressing breast cancer (51, 52) and 

imatinib to inhibit BCR-ABL–activated leukemia (53). Large-scale genomics studies 

provide the data necessary to further develop Precision Medicine approaches.

Many research groups use genomic measurements to identify molecular signatures of tumors 

that classify patients based on their response to various treatments. Molecular features 

associated with tumor response can be discovered by comparing clinical responses to the -

omic features of the responding tumors, or by comparing responses of cell lines treated with 

drugs to their -omic features (Fig. 2). Studies with patient tumors have been used to identify 

molecular subtypes associated with therapeutic response in colorectal (27), bladder (25), and 

breast cancers (26, 28). These studies demonstrate the promise of Precision Medicine and 

suggest possibilities for tailoring treatment to a patient’s tumor. However, associating 

clinical response to patient genomic features is limited by statistical power, availability of 

appropriate tissue samples, the time required to establish clinical outcomes, and the 

feasibility of testing the hundreds experimental compounds currently under development. 

5http://lincsproject.org/
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Cell lines complement patient studies by serving as models to establish the causal role of 

identified genomic features on cellular response.

Preclinical studies of the responses of panels of well-characterized cancer cell lines have 

been used to build predictive computational models of drug response that can be tested 

clinically. This approach mitigates some of the logistical issues in clinical studies because 

cell lines can be readily manipulated, and also allow for identification of molecular events 

that are causally related to response. One of the first developments in this area was the 

coexpression extrapolation (COXEN) model that used gene expression from cell lines in the 

NCI-60 to build and test a chemosensitivity predictor for bladder cancer (35). COXEN was 

also retrospectively validated in vivo as it was able to predict response of breast cancer 

patients to common chemotherapeutics. More recently, Barretina and colleagues used 

information about gene expression, genome copy number, DNA sequence, and 

pharmacologic information to predict drug sensitivity in the CCLE (9). As an example, they 

demonstrated a link between SLFN11 expression and topoisomerase inhibitor sensitivity.

The CCLE (9) and GDSC (8) demonstrated the strength of an integrative genomics approach 

using measurements of multiple -omic endpoints to build predictive models. Molecular 

endpoints now being included in predictive model development include measurements of 

gene expression (microarray and sequencing), mutations, copy number alterations, 

epigenetic modifications, metabolomics, and proteomics. Despite the wide use of these 

datasets, important caveats have been reported. First, one should ensure the cell lines being 

studied are of the correct origin. Recent efforts led by Yu and colleagues have aimed to 

standardize a framework for cell line authentication, quality control, and annotation (54). 

This study also quantified similarities between cell lines and identified a total of 69 

synonymous lines in the CCLE and 6 synonymous lines in the GDSC. Discrepancies in the 

pharmacologic profiles of cell lines and therapies tested in the CCLE and GDSC studies 

suggest that the details of the experimental approach for assessing drug sensitivity can have 

a major impact on the results (55, 56). However, in the context of targeted drugs and their 

target genes, both the CCLE and GDSC show strong consistency in drug response. As 

shown in Table 2, we compared the IC50s of cells aberrant for the gene of a targeted drug to 

cells that were wild type for the same gene. For the majority of drugs we analyzed, the 

groups of cell lines harboring an aberration in the target gene were significantly more 

sensitive to the targeted therapy. Even when the aberration did not predict drug response, the 

GDSC and CCLE results were concordant. Additional studies have shown that cell response 

to targeted therapies is associated with the presence of the therapeutic target. In two separate 

studies, sensitivity of non–small cell lung cancer cell lines to erlotinib was shown to 

correlate with EGFR mutations (18, 57); similar results were shown for vandetanib and 

lapatinib (18). PHA665752, a MET inhibitor, was also found to be more sensitive in gastric 

cancer cell lines with MET amplifications (57). These studies confirm that cell lines can 

model the effects of targeted agents and recapitulate the expected associations between 

mutations and drug sensitivity.

Molecular measurements assess different cellular processes, and integrative analyses seek to 

bring these data together for a more complete understanding of cell function and to build 

more robust predictive models (58, 59). PARADIGM is one analysis tool that integrates 
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several types of genomics data to identify deregulated cellular pathways (59). One early 

study clustered glioblastoma patients using PARADIGM to reveal groups of patients with 

differential survival rates. Clustering with either gene expression by microarray or copy 

number alterations alone could not identify groups of patients with differential survival, 

suggesting an integrated, pathway-informed approach is more biologically relevant and 

informative. PARADIGM has also been used on cell line genomics to identify pathway 

differences between breast cancer subtypes (5).

Analytic procedures that accurately predict response to therapeutic inhibitors are critically 

needed for Precision Medicine. However, this field is still in its infancy. The 2012 NCI-

DREAM Challenge supported international efforts to compare predictive analytic 

methodologies: measurements of a training set of responses of breast cancer cell lines to 

therapeutic inhibitors were made available to computational groups to predict responses of 

an undisclosed test dataset of cell lines (58). Forty-four teams from around the world 

submitted their solutions for evaluation. Of the 6 -omic measurements available, gene 

expression measured by microarrays was reported to be the most predictive single type of 

data. However, the top-performing methods integrated multiple -omic measurements to form 

response predictors. In addition, this work quantified the gain in performance when different 

data types were combined. For example, in a pairwise analysis, exome sequencing combined 

with gene expression data showed the biggest gain in performance for the top-performing 

Bayesian multitask multiple kernel learning method. Overall, the best performance was seen 

when all data types were integrated. Several other studies have suggested that integrative 

genomics surpasses the information obtained from any single genomics experiment (5, 6, 8, 

9, 24, 60, 61). Integrative analyses will be required for a complete picture of therapeutic 

cellular responses, and the advent of multi-omic studies now makes this possible.

A new and challenging area of computational modeling is the prediction of drug synergies 

from genomics measurements and single drug profiles. The 2012 NCI-DREAM Challenge 

to predict drug synergies is the most comprehensive analysis to date of drug synergy 

methods (62). While the challenge identified methods that could predict synergism and 

antagonism, performances were not much better than random, indicating an ongoing need 

for improvement. Large, high-throughput combinatorial screening platforms (63) will offer 

the opportunity to systematically learn the genomic patterns that predict synergism, and 

measurements of cell and molecular responses of cell lines panels are ideal for this type of 

analytic development study.

Preclinical models to predict mechanisms of acquired therapeutic resistance
—Unfortunately, even when patients are assigned to an effective therapy, they frequently 

become resistant to it over time, and this acquired resistance must be overcome to effectively 

eradicate or manage the disease. Cell lines are amenable to use as pharmacogenomic models 

of acquired resistance. For example, Engelman and colleagues treated a non–small cell lung 

cancer line with increasing concentrations of the EGFR inhibitor gefitinib to generate 

resistance clones (64). Genomic characterization of the derived resistant lines revealed that 

cells had amplified MET, which offered resistance to EGFR inhibition. Importantly, MET 
amplification was also found to offer acquired resistance to EGFR inhibition (64, 65). This 
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example shows that mechanisms of in vitro resistance can recapitulate mechanisms of 

acquired resistance.

Several studies of acquired resistance to tamoxifen in breast cancer have identified IGF1R as 

an escape mechanism, an observation that has been made in both model systems as well as 

in primary patient samples. MCF7 breast cancer cell lines that have undergone selection to 

become resistant to tamoxifen may continue to proliferate because of changes in IGF1R 

signaling, in part by upregulating IGF1R (66). Similarly, tamoxifen-resistant MCF7 cell line 

xenograft models showed increased levels of phosphorylated IGF1R as compared with 

tamoxifen-sensitive models (67). However, protein levels of IGF1R were reduced in patient 

cohorts after the development of resistance to tamoxifen (68). This suggests that 

mechanisms of resistance in preclinical models may not directly replicate those found 

clinically. Nonetheless, cell line models provide a platform for gaining insights into this 

critical question in molecular cancer research.

Systematic, genome-scale functional knockdowns—A fundamental goal in cancer 

research is to identify the genetic factors that drive tumorigenesis. Project Achilles aims to 

identify genes required for cell viability in hundreds of cancer cell lines by systematic 

knockdown of genes through shRNAs (69). Identifying this set of genes provides a wealth of 

information to develop novel therapies. While single genes might not be essential on their 

own, the loss-of-function of two nonessential genes can have a synthetic lethal interaction 

resulting in cell death (70). Cancer is often defined by large numbers of genetic aberrations, 

so understanding how genes interact in the cell is critical for identifying effective therapeutic 

strategies in individual patients. Algorithms have been developed that use primary tumor 

data to predict synthetic lethal gene pairs (71), and a critical next step is to experimentally 

validate these predictions. High-throughput screens can be used to test gene-to-drug 

synthetic lethal interactions in cell lines. For instance, the drug nutlin-3, which activates p53 

through inhibition of MDM2, was used along with a genome-wide shRNA library to 

determine genes that governed the cellular response of p53 activation. The authors found 

that ATM and MET were responsible for induction of cell arrest instead of apoptosis. 

Pharmacologic or genetic inhibition of ATM or MET induced apoptosis in tumor spheroids, 

highlighting the use of synthetic lethal screens in identifying therapeutic targets (72).

Results from functional knockdown screens performed in vitro have demonstrated clinical 

value. In contrast to BRAF (V600E) melanoma tumors, colon tumors with BRAF (V600E) 

mutations are resistant to vemurafenib. A synthetic lethal screen of BRAF-mutant colon 

cancer cell lines tested siRNA knockdown of kinome-related genes in the presence of 

vemurafenib, and identified EGFR as a resistance mechanism. The authors suggest that 

combinational therapy blocking BRAF (V600E) and EGFR may be effective in a subset of 

colon cancers with no targeted therapies (73). These observations indicate that functional 

screens in cancer cell lines can be used to identify therapeutic targets and cotreatment 

strategies that may be clinically impactful (72, 73).
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Pharmacogenomics differences between in vitro methods

Monolayer culturing methods are limited in their capacity to accurately model the 

complexity of the in vivo tumor microenvironment (TME; ref. 1). Alternate approaches to 

modeling the TME have been developed, including three-dimensional (3D) cell cultures and 

coculturing systems (74, 75). The previously discussed large pharmacogenomics databases 

used cell lines grown in monolayer cultures on plastic, and ignore microenvironmental 

effects that likely influence how cells respond to therapy. Here, we describe these alterations 

to shed light on the pharmacogenomics differences across in vitro models.

Effect of the tumor microenvironment on pharmacogenomics studies—The 

TME is an important factor in vivo because cross-talk between the tumor and the 

microenvironment affects a number of processes. The TME includes cancer cells, 

fibroblasts, pericytes, immune cells, and stromal cells (76). Gene expression signatures of 

the TME has been shown to have prognostic value in breast cancer (77), which suggests that 

there may be a missing component in many in vitro studies.

Coculturing cancer cells with stromal cells, such as those that can be found in vivo, can 

affect gene expression. For example, coculturing breast cancer cell lines with primary 

osteoblasts leads to global changes in gene expression (78). In addition, genomic instability 

can be increased by elements of the TME (79). This suggests that observations from 

monolayer cell culture systems may be limited in their ability to translate to primary tumor 

samples. To study the effect of the TME in vitro, McMillin and colleagues cocultured 

stromal cells with tumor cells and showed that the TME can both enhance sensitivity and 

promote resistance depending on the cell, drug, and TME composition (80). These studies 

highlight the TME as a missing component in many in vitro studies, as well as the large-

scale cell line pharmacogenomics studies (3, 4, 8–10). It is worth noting that these large 

databases were designed to study cell-intrinsic mechanisms of therapeutic response, and 

models such as those described above will be needed to consider the influence of cell-

extrinsic factors on therapeutic response.

Pharmacogenomic differences between preclinical models—Several 

experimental model systems are available to study the molecular underpinnings of cancer, 

and each has strengths and weaknesses. Here, we describe observed pharmacogenomic 

differences between several preclinical models, such as xenografts, 3D culturing, and 

conventional monolayer culturing. Early studies showed differences in morphology and 

growth between monolayer culturing and xenograft models of cell lines (81), but the 

pharmacogenomics profiles between preclinical models have been compared only recently.

Alterations in cell lines that are grown in 3D culture (e.g., Matrigel) are similar to those 

found in cells grown in a monolayer. Kenny and colleagues grew matched cell lines in 

monolayer or 3D cultures and analyzed differences in gene expression using micro-arrays. 

Global changes were found to be minimal, as each cell line clustered with itself, regardless 

of culturing method. However, there were consistent changes in genes related to signal 

transduction between the two groups (82). Several other studies have indicated that cells 

grown in 3D versus monolayer culture have differences in global gene expression, notably 
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increased extracellular matrix genes (83, 84). These differences are likely due to altered 

environmental signaling and mechanical composition compared with those in conventional 

monolayer culture.

The cell culture approach itself can also influence sensitivity to therapy. Alijitwi and 

colleagues showed leukemia cells were more resistant to chemotherapeutics when 

cocultured with human bone marrow mesenchymal stem cells in a 3D model versus 

monolayer (85). In addition, Chambers and colleagues showed that prostate cancer cell lines 

grown in 3D culture had different responses to docetaxel than those grown in monolayer 

(86). Other studies have observed pharmacologic differences in 3D culturing (87, 88). 

Altogether, these observations identify important differences between 3D and monolayer 

culture, indicating that response to therapy is driven by both the extracellular environment 

and intrinsic biology.

The genomic differences between xenograft and monolayer models have also been explored. 

Daniel and colleagues used primary xenografts of human small–cell lung cancer to derive 

cell lines and then used those cell lines in secondary xenograft experiments (89). The 

authors were able to identify gene expression differences between primary xenografts and 

monolayer culturing of the cell lines, suggesting genomic alterations between the two model 

systems. These genes remained differentially expressed in the secondary xenograft, 

suggesting stable changes had occurred in monolayer culture.

Ding and colleagues compared mutations between a matched primary breast tumor, a brain 

metastases, and a patient-derived xenograft model (PDX; ref. 90). While mutations were 

similar for each type, some mutations were enriched in the metastases and the PDX 

compared with the primary tumor. This study suggests that many of the genomic aberrations 

of the primary tumor are conserved during metastasis and at least early PDX models; 

however, selection that can have a strong impact on the model under study can occur. 

Pandita and colleagues used tumor glioblastoma multiforme (GBM) biopsies coupled with 

serial xenografts and the establishment of cell lines to find that EGFR amplifications are 

conserved in vivo but lost in vitro (91). Later studies in GBM confirmed that alterations of 

EGFR, PDGFRA, TP53, PTEN, and CDKN2A in patient tumors were conserved in flank 

and intracranial xenografts (92). These studies show that EGFR amplifications in GBM are 

selected against in monolayer culture, but are conserved across xenograft models.

PDX models and xenografts using human cell lines have some similar shortcomings. 

Immunooncology employs various ways to “educate” the immune system to better fight 

cancer. Because human cells cannot be xenografted into immunocompetent mice, 

immunooncology research most often is performed in mouse models lacking human cells, 

outlining one area of research where the use of human cancer cell lines is limited. However, 

the development of humanized mouse models has contributed to the study of 

immunooncology (reviewed by Lodhia and colleagues; ref. 93).

Another issue with these human xenograft models is that important components of the TME 

are lacking, including cells of the immune system. In addition, not all cancer cell lines are 

tumorigenic which limits the number of cell lines that are amenable for in vivo studies6. 
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Xenograft models also display features of species incompatibility. For example, mouse 

growth factors do not activate human MET, which decreases the effectiveness of in vivo 
models in regards to MET-related studies (94). These disadvantages suggest to some that 

syngeneic or genetically engineered mouse models may be superior to human xenograft 

models because of species compatibility and intact immune systems. However, Voskoglou-

Nomikos and colleagues have shown that the clinical translatability of murine allograft 

models were poorer compared to the advantages and disadvantages, and their vulnerabilities 

should be considered before their use (reviewed by Gould and colleagues; ref. 95) to models 

that contain human cells (96). The different in vivo models each offer an array of.

Overall, the studies we described outline the differences that occur in gene expression and 

pharmacologic profiling of mono-layer cultured cells versus other in vitro models. To a large 

degree, these differences are not surprising. The choice of experimental model must be 

dictated by the question being asked. Cell lines are not perfect models, but have strengths 

that include ease of use, low cost, and utility in diverse experimental studies. There is 

evidence in support of xenograft (96) and 3D models (75) more closely resembling tumor 

biology. However, like conventional cell line studies, these models fail to capture the 

diversity of microenvironments that tumor cells encounter in patients. In general, the 

limitations and differences associated with any model system should be considered when 

assessing the likelihood that observations made from it will be predictive of clinical 

behavior.

Discussion

Cell lines have long been used to study the mechanisms underlying biologic processes. 

Large collections of -omically functionally characterized cell lines are now available as a 

resource to the biomedical community. These data are now being used to develop analytic 

approaches to predict the behavior of complex adaptive systems, and to identify -omic 

features that provide insights into the mechanisms of therapeutic response. Central to these 

studies is the availability of well-characterized genomic measurements. Large, publicly 

available datasets, like the ones listed in Table 1, offer the level of genomic measurement 

needed to compare cell lines and tumors.

The comparisons of cell line and tumor genomics have offered insights into the relevance of 

in vitro models. In many instances, it is appropriate to use cell line genomics as a model for 

in vivo genomics; however, this is only true if due diligence is performed. Domcke and 

colleagues showed that the cell lines most commonly used to study HGSOC did not closely 

model the genomics of the disease, and that less frequently used models show stronger 

genomic similarities to primary disease (14). In addition, not all tumor subtypes are 

represented in current panels of cell lines (30– 32). This realization has spurred the 

generation of new cell lines and 3D culturing techniques that more closely reflect the 

features of the primary tumors from which they were derived.

6http://www.atcc.org
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In all cases, it is important to assess the extent to which cell lines accurately model the 

aspects of tumor biology being studied. With the advancement of high-throughput data 

generation techniques, we now have -omic profiles on over 1,000 human cancer cell lines to 

choose from, and the list is growing (97). These resources offer the data needed to 

systematically select the appropriate cell line genomic model for studying a primary tumor.

Omic studies have identified molecular features that are common to several different cancer 

types. These common features are likely related to the epithelial and mesenchymal origins 

for the tumors and persist in tumor-derived cancer cell lines. This has been demonstrated in 

breast and bladder cancers (25, 33). Molecular subtyping can inform patient treatment 

decisions, but caution must be used when applying molecular subtype signatures to cancer 

cell lines, as we demonstrated in Fig. 1.

Genomic measurements do not capture all aspects of cellular activity and integrative models 

provide greater predictive power than individual datasets. We expect that future 

pharmacogenomics studies will expand in the genomics space by leveraging next-generation 

sequencing to broaden the spectrum of molecules sampled, namely noncoding RNAs, 

alternative spliced transcripts, gene fusions, and allele-specific expression. Beyond 

genomics, we also expect to see an expansion into other -omic data types such as 

metabolomics and proteomics. From the analysis of data individually or from data 

integration approaches will come an increasing number of hypotheses to be tested. Cancer 

cell lines will remain a viable tool in this context and play a central role in cancer biology 

research into the future.
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Figure 1. 
Breast and bladder cancer cell lines cluster into basal and luminal subtypes. Breast (6) or 

bladder (35) cancer gene expression data were log-transformed, median centered, then 

hierarchically clustered using Euclidean distance according to the genes present in the 

patient-derived (A and B) BASE47 bladder cancer signature or the (C and D) PAM50 breast 

cancer signature.
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Figure 2. 
Process of using in vitro genomics for clinical treatment selection. Multiple prediction 

algorithms have been utilized to derive molecular features predictive of pharmacologic 

response of cells in vitro. After a tumor is biopsied and its genomic features are profiled, in 
vitro derived predictive signatures may be used to determine the best therapy for the 

individual’s tumor.
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Table 2

Sensitivity to targeted therapies correlates with the corresponding targeted alteration in vitro

Alteration Tissue Drug GDSC Wilcoxon CCLE Wilcoxon

BCR-ABL Blood Imatinib 0.0008 NA

Blood Nilotinib 0.001 NA

Blood Dasatinib 0.001 NA

KIT CNV All tissues Imatinib 0.051 NA

FLT3 MUTATION All tissues Sorafenib 0.16 0.0007

All tissues Sunitinib 0.01 NA

ERBB2: MUT AMP Breast Lapatinib 0.003 0.01

Ovary Lapatinib NAb 0.3

Lung Lapatinib NAb 0.35

Stomach Lapatinib NAb 0.047

All tissues Lapatinib 0.0002 0.0003

EGFR: MUT AMP Lung Erlotinib 0.13 0.02

CNSa Erlotinib 1 0.25

All tissues Erlotinib 0.04 1.40E-05

MET: MUT AMP All tissues PHA-665752 0.37 0.49

All tissues PF-2341066 0.07 0.15

ALK: MUT AMP All tissues PF-2341066 0.01 0.54

BRAF: MUT AMP All tissues PLX4720 <2.2e–16 <2.2e–16

Skin PLX4720 0.003 0.027

NOTE: Cell lines across two large in vitro pharmacogenomics databases were separated based on being wild type or mutant for several alterations 
for which targeted therapy exists. Amplifications in each dataset (Affymetrix SNP 6.0 arrays) were defined according to the protocols in the GDSC 
(8) and CCLE (9). Data for this analysis were taken directly from the CCLE or GDSC web resources. The significance of mutant cell lines drug 
sensitivity compared with wild-type cell lines was determined using a Wilcoxon rank-sum test.

a
For the GDSC: Glioma, medulloblastoma, neuroblastoma.

b
IC50 not available in each group.
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