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Abstract Many psychologists do not realize that explor-
atory use of the popular multiway analysis of variance
harbors a multiple-comparison problem. In the case of
two factors, three separate null hypotheses are subject to
test (i.e., two main effects and one interaction).
Consequently, the probability of at least one Type I
error (if all null hypotheses are true) is 14 % rather
than 5 %, if the three tests are independent. We explain
the multiple-comparison problem and demonstrate that
researchers almost never correct for it. To mitigate the
problem, we describe four remedies: the omnibus F test,
control of the familywise error rate, control of the false
discovery rate, and preregistration of the hypotheses.
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The factorial or multiway analysis of variance
(ANOVA) is one of the most popular statistical proce-
dures in psychology. Whenever an experiment features
two or more factors, researchers usually apply a
multiway ANOVA to gauge the evidence for the pres-
ence of each of the separate factors, as well as their
interactions. For instance, consider a response time ex-
periment with a 2 × 3 balanced design (i.e., a design
with equal numbers of participants in the conditions of
both factors); factor A is speed–stress (high or low),
and factor B is the age of the participants (14–20 years,
50–60 years, and 75–85 years). The standard multiway
ANOVA tests whether factor A is significant (at the .05
level), whether factor B is significant (at the .05 level),
and whether the interaction term A × B is significant (at
the .05 level). In the same vein, the standard multiway
ANOVA is also frequently used in nonexperimental set-
tings (e.g., to assess the potential influence of gender
and age on major depression).

Despite its popularity, few researchers realize that the
multiway ANOVA brings with it the problem of multi-
ple comparisons, in particular when detailed hypotheses
have not been specified a priori (to be discussed in
more detail later). For the 2 × 3 scenario discussed
above, without a priori hypotheses (i.e., when the re-
searcher’s attitude can be best described by Blet us see
what we can find^; de Groot, 1969), the probability of
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finding at least one significant result, given that the data
in fact originate from the null hypotheses, lies in the
vicinity of 1 − (1 − .05)3 = .14.1 This is called the
Type I error or familywise error rate. The problem of
Type I errors is not trivial: Add a third, balanced factor
to the 2 × 3 scenario (e.g., a 2 × 3 × 3 design), and the
probability of finding at least one significant result
when the null hypothesis is true increases to around
30 % [1 − (1 − .05)7], the precise probability depending
on the extent to which the tests are correlated (see also
note 1). Thus, in the absence of strong a priori expec-
tations about the tests that are relevant, this alpha infla-
tion can be substantial and be a cause for concern.

Here we underscore the problem of multiple comparisons
inherent in the exploratory multiway ANOVA. We conduct a
literature review and demonstrate that the problem is widely
ignored: Recent articles published in six leading psychology
journals contain virtually no procedures to correct for the
multiple-comparison problem. Next, we outline four possible
remedies: the omnibus F test, control of the family wise error
rate using the sequential Bonferroni procedure, control of the
false discovery rate using the Benjamini–Hochberg proce-
dure, and the preregistration of hypotheses.

Background: Type I errors and the one-way ANOVA

A Type I error occurs when a null hypothesis (H0) is falsely
rejected in favor of an alternative hypothesis (H1). With a
single test, such as the one-way ANOVA, the probability of
a Type I error can be controlled by setting the significance
level α. For example, when α = .05, the probability of a
Type I error is 5 %. Since the one-way ANOVA comprises
only one test, there is no multiple-comparison problem. It is
well-known, however, that this problem arises in the one-way
ANOVA whenever the independent variable has more than
two levels and post-hoc tests are employed to determine which
condition means differ significantly from one another. For
example, consider a researcher who uses a one-way
ANOVA and obtains a significant effect of ethnicity on the
total score of a depression questionnaire. Assume that

ethnicity has three levels (e.g., Caucasian, African-
American, and Asian); this researcher will then usually per-
formmultiple post-hoc tests to determine which ethnic groups
differ significantly from one another. Here the three post-hoc
tests are Caucasian versus African-American, Caucasian ver-
sus Asian, and African-American versus Asian. Fortunately,
for the one-way ANOVA the multiple-comparison problem
has been thoroughly studied. Software programs such as
SPSS and SAS explicitly address multiple-comparison prob-
lems by offering a host of correction methods, including
Tukey’s HSD test, Hochberg’s GT2, and the Scheffé method
(Hochberg, 1974; Scheffé, 1953; Tukey, 1994; Westfall,
Tobias, & Wolfinger, 2011).

The exploratory multiway ANOVA: A family
of hypotheses

Now consider a design that is only slightly more complicated.
Suppose a researcher wants to test whether both gender (G;
two levels) and ethnicity (E; three levels) influence the total
score on a depression questionnaire. Furthermore, suppose
that this researcher has no firm a priori hypothesis about
how G and E influence the depression total score; that is, the
researcher is predominantly interested in finding out whether
any kind of relationship exists between G, E, and depression: a
classic example of the guess phase of the empirical cycle, in
which hypotheses are formed rather than tested (de Groot,
1969).

In this case, the multiway ANOVAwith two factors, G and
E, is an exploratory one: Without strictly formulated a priori
hypotheses, the researcher obtains the results for all three hy-
potheses involved (i.e., main effect of G, main effect of E, and
a G × E interaction) bymeans of a single mouse click in SPSS.
As such, in an exploratory setting, all hypotheses implied by
the design are considered and tested jointly, rendering this
collection of hypotheses a family; in line with the idea that
Bthe term ‘family’ refers to the collection of hypotheses ...
that is being considered for joint testing^ (Lehmann &
Romano, 2005). As a result, we argue that a multiple-
comparison problem lurks in these exploratory uses of a
multiway ANOVA.

To see this, consider the results of a fictitious exploratory
multiway ANOVA, reported in Table 1. When interpreting the
ANOVA table, most researchers would conclude that both
main effects as well as the interaction are significant, because
all p values are smaller than α = .05. This conclusion is intu-
itive and directly in line with the numbers reported in Table 1.
Nevertheless, this conclusion is statistically unwarranted; the
researcher does not have firm a priori hypotheses and there-
fore tests all three hypotheses simultaneously, engaging in an
exploratory research effort. In this case, when all null hypoth-
eses are true, the Type I error will be larger than 5 % (around

1 The probability of finding at least one significant result equals exactly
14% if and only if the three tests are completely independent. This is only
true if the total number of participants in the sample approaches infinity:
In that case, the F tests become asymptotically independent. For all other
sample sizes, the test statistics are not independent, because they share a
common value—namely the mean square error in the denominator
(Feingold & Korsog, 1986; Westfall, Tobias, & Wolfinger, 2011). This
induces dependence among the test statistics. Another way in which
dependence between the tests is induced is when the design is
unbalanced—that is, with unequal numbers of participants per condition.
The consequence of the dependence between the test statistics is that the
probability of finding at least one significant result, given that all null
hypotheses are true, will be slightly lower than 14 %.
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14 %—see note 1). Note that multiway ANOVAs in the psy-
chological literature often consist of three or four factors, and
this compounds the problem. In the case of three factors, with-
out a priori hypotheses and when all null hypotheses are true,
the total number of tests is seven (i.e., three main effects, three
first-order interactions, and one second-order interaction, 23 −
1) and the resulting probability of a Type I error around 30 %
[i.e., 1 − (1 − .05)7]; with four factors and when all null hy-
potheses are true, the probability of incorrectly rejecting one
or more null hypotheses is around 54 %. It is therefore incor-
rect to compare each of the p values from a multiway ANOVA
table to α = .05.

This is notably different from the situation in which the
researcher uses a multiway ANOVA for confirmatory pur-
poses; that is, the researcher tests one or more a-priori-
postulated hypotheses (i.e., hypothesis testing in the predict
phase of the empirical cycle; de Groot, 1969). In the case of
one predefined hypothesis in a design with two factors, for
example, the family is no longer defined as encompassing all
hypotheses implied by the design (i.e., three), but as all to-be-
tested hypotheses, in this case one, rendering it unnecessary to
adjust the level of α.

The realization that exploratory multiway ANOVAs inher-
ently contain a multiple-comparison problem may come as a
surprise to many empiricists, even to those who use the
multiway ANOVA on a regular basis. In standard statistical
textbooks, the multiple-comparison problem is almost exclu-
sively discussed in the context of one-way ANOVAs (with
Westfall, Tobias, & Wolfinger, 2011, as a notable exception).
In addition, statistical software packages such as SPSS do not
present the possible corrective procedures for the multiway
case, and this invites researchers to compare each of the
p values to α = .05.

We are not the first to identify the multiplicity problem in
the multiway ANOVA (see, e.g., Didelez, Pigeot, & Walter,
2006; Fletcher, Daw, & Young, 1989; Kromrey & Dickinson,
1995; Olejnik, Li, & Supattathum, 1997; Ryan, 1959; Smith,
Levine, Lachlan, & Fediuk, 2002). Earlier work on the prob-
lem, however, does not feature in mainstream statistical text-
books. Moreover, the majority of this work is written in a
technical style that is inaccessible to scholars without sophis-
ticated statistical knowledge. Consequently, empirical work

has largely ignored the multiplicity problem in the multiway
ANOVA. As we will demonstrate shortly, the ramifications
can be profound.

One may argue that the problem sketched above is less
serious than it appears. Perhaps the majority of re-
searchers in psychology test a single prespecified hypoth-
esis, thereby circumventing the multiple-comparison
problem. Or perhaps, whenever they conduct multiple
tests, they use some sort of procedure to adjust the α level
for each test. This is not the case. Pertaining to the former,
it is unfortunately quite common to perform what
Gigerenzer (2004) has termed the Bnull ritual^ in which
a researcher specifies H0 in purely statistical terms (e.g.,
equality of the means) without providing an alternative
hypothesis in substantive terms (e.g., women are more
depressed than men). Additionally, Kerr (1998) notes that
researchers in psychology are quite commonly seduced
into presenting a post-hoc hypothesis (e.g., Caucasian
people are more depressed than African-American people:
main effect of ethnicity on depression) as if it were an a
priori hypothesis (i.e., hypothesizing after the results are
known, or HARKing; see also Barber, 1976). Hence,
hindsight bias and confirmation bias make it difficult for
researchers to ignore the presence of unexpected
Bsignificant^ effects (i.e., effects for which the individual
test has p < .05).

The next section addresses the empirical question of
whether researchers correct for multiple comparisons when
they use the multiway ANOVA. The short answer is that,
almost without exception, researchers interpret the results of
the individual tests in isolation, without any correction for
multiple comparisons.

Prevalence: Multiway corrections in six psychology
journals

We selected six journals that rank among the most widely read
and cited journals in experimental, social, and clinical psy-
chology. For these journals we specifically investigated all
2010 publications:

1. Journal of Experimental Psychology: General, volume
139, issues 1–4 (40 articles)

2. Psychological Science, volume 21, issues 1–12 (285
articles)

3. Journal of Abnormal Psychology, volume 119, issues 1–4
(88 articles)

4. Journal of Consulting and Clinical Psychology, volume
78, issues 1–6 (92 articles)

5. Journal of Experimental Social Psychology, volume 46,
issues 1–6 (178 articles)

Table 1 Example ANOVA table for the three tests associated with a
hypothetical 2 × 3 design with Gender (G) and Ethnicity (E) as indepen-
dent factors

df1 df2 F p value

Main effect G 1 30 5 .0329*

E 2 30 4 .0288*

Interaction G × E 2 30 4.50 .0195*

* significant at α = .05
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6. Journal of Personality and Social Psychology, volumes
98 and 99, issues 1–6 (136 articles)

For each article, we assessed whether a multiway ANOVA
was used. If so, we investigated whether the authors had used
some sort of correction procedure (e.g., an omnibus test) to
remedy the multiple-comparison problem. The results are
summarized in Table 2.

Two results stand out. First, almost half of all articles under
investigation here used a multiway ANOVA, underscoring the
popularity of this testing procedure. Second, only around 1 %
of these studies used a correction procedure (i.e., the omnibus
F test; see below).

In sum, our literature review confirms that the
multiway ANOVA is a highly popular statistical method
in psychological research, but that its use is almost never
accompanied by a correction for multiple comparisons.
Note that this state of affair is different for fMRI and
genetics research, in which the problem is more evident
and it is common practice to correct for multiplicity (e.g.,
Poldrack et al., 2008).

Remedies

As we noted earlier, some statisticians have been aware of the
multiple-comparison problem in multiway ANOVA.
However, our literature review demonstrated that this aware-
ness has not resonated in the arena of empirical research in
psychology. Below we discuss four different procedures to
mitigate the multiple-comparison problem in multiway
ANOVA: (1) the omnibus F test, (2) controlling the family

wise error rate, (3)controlling the false discovery rate, and (4)
preregistration.

Remedy 1: The omnibus F test

In the few cases in which a correction procedure was used, this
involved an omnibus F test. In such a test, one pools the sums
of squares and degrees of freedom for all main effects and
interactions into a single F statistic. The individual F tests
should only be conducted if this omnibus H0 is rejected
(Fletcher, Daw, & Young, 1989; Wright, 1992). So, for exam-
ple, in the case of a 2 × 2 ANOVA, one should first test the
omnibus hypothesis with all three hypotheses included (two
main effects and an interaction). If this result is significant, one
may continue and test the individual hypotheses.

However, the omnibus F test does not control the
familywise Type I error under partial null conditions
(Kromrey & Dickinson, 1995). For example, suppose that in
a three-way ANOVA amain effect is present for one factor but
not in the remaining two factors; then the overall F test is
likely to yield a significant F value because, indeed, the om-
nibus null hypothesis is false. However, the omnibus test does
not remedy the multiple-comparison problem involving the
remaining two factors. Hence, the omnibus F test offers only
weak protection against the multiplicity problem.

Remedy 2: Controlling familywise error rate

The familywise error rate (FWER) refers to the probability of
making at least one Type I error within the family of tests
under consideration; here, the family consists of all tested
effects in a multiway ANOVA without a priori hypotheses.
To control this FWER, one has to make certain that it is small-
er than or equal to α, which usually equals 5 %. Preferably,
FWER is controlled in the strong sense, such that it holds for
any configuration of true and false null hypotheses.

One method to control FWER in the strong sense is the
sequential Bonferroni procedure (also known as the
Bonferroni–Holm correction), which was first introduced by
Hartley (1955) and subsequently (independently) reinvented
and/or modified by others (Hochberg, 1988; Holm, 1979;
McHugh, 1958; Rom, 1990; Shaffer, 1986; Wright, 1992).
To illustrate the procedure, let us revisit our hypothetical ex-
ample in which a researcher conducts a two-way ANOVA
with G and E as independent factors (the uncorrected results
are listed in Table 1). The results of the sequential Bonferroni
correction procedure for this example are presented in Table 3.
First, one sorts all significant p values in ascending order—
that is, with the smallest p value first (see also Fig. 1 for a
visual explanation of the method). Next, one computes an
adjusted α level, αadj. For the smallest p value, αadj equals α
divided by the number of tests. Thus, in this example we
conduct three tests, so αadj for the smallest p value equals

Table 2 Percentages of articles overall and in the six selected journals
that used a multiway analysis of variance (mANOVA), and the
percentages of these articles that used some sort of correction procedure

% Articles Using
mANOVA

% Articles Using
mANOVA+ Correction

Overall 47.62 1.03

JEPG 84.61 0

Psych Sci 43.16 0

J Abn Psych 31.82 0

JCCP 16.30 0

JESP 65.17 2.59

JPSP 54.41 1.35

Overall = all papers from the six journals together; JEPG = Journal of
Experimental Psychology: General; Psych Sci = Psychological Science; J
Abn Psych = Journal of Abnormal Psychology; JCCP = Journal of Con-
sulting and Clinical Psychology; JESP = Journal of Experimental Social
Psychology; JPSP = Journal of Personality and Social Psychology
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.05/3 = .01667. For the second p value, αadj equals α divided
by the number of tests minus 1. So, in our example, the next
αadj equals .05/2 = .025. For the final p value, αadj equals α
divided by 1 (i.e., the total number of tests minus 2). So, in our
example, the final αadj equals .05/1 = .05. Next, one evaluates
each p value against these adjusted α levels, sequentially, with
the smallest p value evaluated first. Importantly, if the H0

associated with this p value is not rejected (i.e., p > αadj), then
all testing ends and all remaining tests are considered nonsig-
nificant as well.

In our example, we evaluate p = .0195 against αadj =
.01667: p > αadj, and therefore we conclude that the G × E
interaction is not significant. The sequential Bonferroni pro-
cedure mandates that we stop testing, and we conclude that the
remaining main effects are not significant, either. Thus, when
the sequential Bonferroni correction procedure is applied to
our example, none of the effects are significant; without a
correction procedure, all of the effects are significant.

Thus, the sequential Bonferroni correction procedure al-
lows control over the FWER by evaluating each null hypoth-
esis—from the one associated with the smallest to the one
associated with the largest p value—against an α level that
is adjusted in order to control for the inflated probability of a
Type I error. In this way, the probability of rejecting one or
more null hypotheses while they are true will be no larger than
5 % (for a proof, see Hartley, 1955). Note that for relatively
small numbers of tests k, the sequential Bonferroni correction
is notably less conservative than the standard Bonferroni cor-
rection, in which one divides α by k for all null hypotheses.
However, sequential Bonferroni is still a relatively conserva-
tive procedure, in that it always retains the remaining H0s
whenever one H0 is not rejected, regardless of how many
remain. That is, it does not matter whether one has five or
50 null hypotheses, one single H0 that is not rejected means
that all remaining null hypotheses are also not rejected. As
such, some have argued that procedures such as (sequential)
Bonferroni, while adequately controlling the probability of a
Type I error, reduce power to find any effect, and thus inflate
the probability of a Type II error (not rejecting H0 when the

alternative hypothesis H1 is true; see, e.g., Benjamini &
Yekutieli, 2001; Nakagawa, 2004).

Another disadvantage of the sequential Bonferroni proce-
dure is conceptual: The significance of a particular factor de-
pends on the significance of other, unrelated factors. For in-
stance, the main effect for G reported in Table 1 has p = .0329.
If the effects for the other two factors (i.e., G × E and E) had
been more compelling (e.g., p = .01 for both), the final and
third test for G would have been conducted at the α = .05
level, and the result would have been labeled significant. This
dependence on the results from unrelated tests may strike one
as odd.

The sequential Bonferroni procedure is by no means the
only one in its class, and we present it here merely as a pro-
totypical example of a procedure that seeks to control FWER.
Awell-known alternative procedure is the regular Bonferroni

Table 3 Results from the sequential Bonferroni (seqB) and Benjamini–
Hochberg (BH) procedures for the example from Table 1

Effect p Value αadj seqB αadj BH H0 seqB H0 BH

G × E .0195 .0167 .0167 retained rejected

E .0288 .0250 .0333 retained rejected

G .0329 .0500 .0500 retained rejected

αadj seqB = the adjusted alpha level with the sequential Bonferroni pro-
cedure; αadj BH = the adjusted alpha level with the Benjamini–Hochberg
procedure; H0 seqB = evaluation of the null hypotheses with the sequen-
tial Bonferroni procedure;H0 BH= evaluation of the null hypotheses with
the Benjamini–Hochberg procedure.

Fig. 1 A visual representation of the sequential Bonferroni method for
controlling familywise error rate. All p values are sorted in ascending
order and are assigned a rank number from 1 (smallest) to k (largest).
Next, one starts by evaluating the first (smallest) p value (p(1)) against the
adjustedα (αadj), which is—for the first p value—equal to α divided by k.
If the p value is smaller than αadj, then the first hypotheses H(1) is
rejected, and one proceeds to the second p value. If the p value is
not smaller than αadj, then one immediately accepts all null hy-
potheses and stops testing
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correction, in which α, for every p value alike, is divided by
the total number of tests. As such, the regular Bonferroni
correction does not have the conceptual drawback of the sig-
nificance of one result being dependent on the other results for
unrelated tests. However, as compared to sequential
Bonferroni, the regular Bonferroni is inferior in terms of pow-
er. Other methods to control FWER are, for example, the
Simes procedure (Simes, 1986) and the Hommel correction
(Hommel, 1988).

Remedy 3: Controlling false discovery rate

An alternative might be to forgo control of FWER and instead
to control the false discovery rate (FDR; Benjamini, Drai,
Elmer, Kafkafi, & Golani, 2001; Benjamini & Hochberg,
1995), which is the expected proportion of erroneous rejec-
tions ofH0 among all rejections ofH0.When controlling FDR,
the probability of a Type II error is smaller than when control-
ling FWER, but this comes at the expense of a higher proba-
bility of a Type I error. Controlling FDR is particularly appro-
priate for applications in genetics and neuroimaging, in which
the goal is to identify candidate effects from a large set; these
candidates can then be tested more rigorously in follow-up
confirmatory experiments.

One way to control FDR is with the Benjamini–
Hochberg procedure (BH; Benjamini & Hochberg,
1995). To illustrate the procedure, consider again our hy-
pothetical example for which the uncorrected results are
listed in Table 1. The results of the BH procedure for this
example are presented in Table 3, and they were obtained
as follows: First, one sorts all p values in ascending or-
der—that is, with the smallest p value first (see also Fig. 2
for a visualization of the method). Next, one computes an
adjusted α level, αadj. For the largest p value, αadj equals
α times the rank number of the largest p value (3, in our
example), divided by the total number of tests (also 3 in
this example): .05 × (3/3) = .05. For the middle p value,
αadj equals .05 × (2/3) = .0333; for the smallest p value,
αadj equals .05 × (1/3) = .01667. Next, one evaluates each
p value against these adjusted α levels, with the largest p
value being evaluated first. Importantly, if the H0 associ-
ated with this p value is rejected (i.e., p < αadj), then all
testing ends and all remaining tests are considered signif-
icant as well.

In our example, we evaluate p = .0329 against αadj =
.05: p < αadj, and therefore we conclude that the main
effect of G is significant (and thus, H0 is rejected).
According to the BH procedure, we stop testing and con-
clude that this main effect, the other main effect, and the
interaction are all significant. Note that this conclusion is
drawn despite the fact that the p value for the G × E
interaction exceeded the adjusted alpha level. In the alter-
native situation, that we would have retained the null

hypothesis of the first p value, the testing would have
continued by evaluating the second p value against its
adjusted alpha.

The BH procedure is certainly not the only way to control
FDR. Other procedures include the Benjamini–Hochberg–
Yekutieli procedure (Benjamini & Yekutieli, 2001), which
controls FDR under positive dependence assumptions, and
the Efron method (Efron, Storey, & Tibshirani, 2001; Efron,
Tibshirani, Storey, & Tusher, 2001), which controls not exact-
ly FDR, but local FDR, which is the conditional probability
that the null hypothesis is true given the data.

Remedy 4: Preregistration

Another effective remedy is preregistration (e.g.,
Chambers, 2013; Chambers et al., 2013; de Groot, 1969;
Goldacre, 2009; Nosek & Lakens, 2014; Wagenmakers,
Wetzels, Borsboom, van der Maas & Kievit, 2012; Wolfe,
2013; for preregistration in medical clinical trials, see, e.g.,
www.clinicaltrials.gov). By preregistering their studies and
their analysis plans, researchers are forced to specify
beforehand the exact hypotheses of interest. In doing so,
as we have argued earlier, one engages in confirmatory
hypothesis testing (i.e., the confirmatory multiway
ANOVA), a procedure that can greatly mitigate the
multiple-comparison problem. For instance, consider ex-
perimental data analyzed with a 2 × 2 × 3 multiway
ANOVA; if the researcher stipulates in advance that the
interest lies in the three-way interaction and the main effect
of the first factor, this reduces the number of tested hypoth-
eses from seven to two, thereby diminishing the multiplic-
ity concern.

Conclusion

We have argued that the multiway ANOVA harbors a
multiple-comparison problem, particularly when this anal-
ysis technique is employed relatively blindly—that is, in
the absence of strong a priori hypotheses. Although this
hidden multiple-comparison problem has been studied in
statistics, empiricists are not generally aware of the issue.
This point is underscored by our literature review, which
showed that, across a total of 819 articles from six leading
journals in psychology, corrections for multiplicity are
virtually absent.

The good news is that the problem, once acknowledged,
can be remedied in one of several ways. For instance, one
could use one of several procedures to control either the
FWER (e.g., with the sequential Bonferroni procedure) or
the FDR (e.g., with the Benjamini–Hochberg procedure).
These procedures differ in terms of the balance between
safeguarding against Type I and Type II errors. On the one
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hand, it is crucial to control the probability of rejecting a true
null hypothesis (i.e., the Type I error). On the other hand, it is
also important to minimize the Type II error—that is, to max-
imize power (Button et al., 2013). As we have shown in our
fictitious data example, the side toward which the balance
shifts may make a dramatic difference in what one would
conclude from the data: When using sequential Bonferroni
(i.e., better safeguard against Type I errors at the cost of a
reduction in power), all null hypotheses were retained; when
using the Benjamini–Hochberg procedure (i.e., less control
over Type I errors but more power), all null hypotheses were
rejected. So, what is a researcher to do when various correc-
tion procedures result in such different conclusions? It appears
prudent to follow the statistical rule of thumb for handling
uncertainty: When in doubt, issue a full report that includes
the results from all multiple-correction methods that were ap-
plied. Such a full report allows the reader to assess the robust-
ness of the statistical evidence. Of course, the royal road to
obtaining sufficient power is not to choose a lenient correction
method; instead, one is best advised to plan for a large sample
size (Klugkist, Post, Haarhuis, & van Wesel, 2014).

And there is even better news. Many, if not all, correction
methods for controlling either FWER or FDR are easy to
implement using the function p.adjust() in the basic stats

package in R (R Development Core Team, 2007). All that is
required is to input a vector of p values, and the function
evaluates these according to the chosen correction method.

We realize that our view on differential uses of the
multiway ANOVA (i.e., exploratory vs. confirmatory) hinges
on the specific definition of what constitutes a family of hy-
potheses; and we acknowledge that other definitions of such a
family exist. However, in our view, the intentions of the re-
searcher (exploratory hypothesis formation or confirmatory
hypothesis testing) play a crucial part in determining the size
of the family of hypotheses. It is vital to recognize the multi-
plicity inherent in the exploratory multiway ANOVA and to
correct the current unfortunate state of affairs2; the alternative
is to accept that our findings might be less compelling than
advertised.

Fig. 2 Avisual representation of the Benjamini–Hochberg procedure for
controlling false discovery rate. All m p values are sorted in ascending
order and assigned a rank number from 1 (smallest) to k (largest). Next,
one starts by evaluating the last (largest) p value (p(k)) against the

adjusted α (αadj), which is—for the last p value—equal to k divided by
m times α. If the p value is smaller than αadj, then all null hypotheses are
rejected and testing stops. If the p value is not smaller than αadj, then one
proceeds to the next p value

2 Fortunately, some prominent psychologists, such as Dorothy Bishop,
are acutely aware of the multiple-comparison problem in multiway
ANOVA and urge their readers to rethink their analysis strategies:
http://deevybee.blogspot.co.uk/2013/06/interpreting-unexpected-
significant.html.
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