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Accurate binning of metagenomic 
contigs via automated clustering 
sequences using information of 
genomic signatures and marker 
genes
Hsin-Hung Lin & Yu-Chieh Liao

Metagenomics, the application of shotgun sequencing, facilitates the reconstruction of the genomes 
of individual species from natural environments. A major challenge in the genome recovery domain 
is to agglomerate or ‘bin’ sequences assembled from metagenomic reads into individual groups. 
Metagenomic binning without consideration of reference sequences enables the comprehensive 
discovery of new microbial organisms and aids in the microbial genome reconstruction process. Here 
we present MyCC, an automated binning tool that combines genomic signatures, marker genes and 
optional contig coverages within one or multiple samples, in order to visualize the metagenomes and 
to identify the reconstructed genomic fragments. We demonstrate the superior performance of MyCC 
compared to other binning tools including CONCOCT, GroopM, MaxBin and MetaBAT on both synthetic 
and real human gut communities with a small sample size (one to 11 samples), as well as on a large 
metagenome dataset (over 250 samples). Moreover, we demonstrate the visualization of metagenomes 
in MyCC to aid in the reconstruction of genomes from distinct bins. MyCC is freely available at http://
sourceforge.net/projects/sb2nhri/files/MyCC/.

High-throughput shotgun sequencing is a powerful means to study genomics of microbial communities. It has 
been used to recover microbial genomes directly from environmental samples, e.g., cow rumen1, human stool2, 
permafrost3, and surface seawater4. Although the assembly of metagenomes poses more complex and varied chal-
lenges than single-genome assembly, several assemblers have been developed that are specific for metagenomes, 
such as Meta-IDBA5, MetaVelvet6 and Ray Meta7.

With advances in sequencing technology, cost-effective deep sequencing of metagenomes provides the 
sequencing depth necessary for metagenome assembly. However, the binning of assembled contigs into 
species- or strain-level clusters remains a significant challenge. A number of approaches have been developed 
to bin metagenomic sequences using genomic signatures8–11, coverage profiles across multiple samples2,12,13, or 
a combination of the two techniques14–16. Emergent self-organizing maps (ESOM) have been used to cluster 
sequences by tetra-nucleotide frequencies8 or by time-series abundance profiles13, however, the definition of 
contour boundaries on the ESOM-based plots represents a laborious and cumbersome task. VizBin provides 
reference-independent visualization of metagenomes, but it also requires subsequent human-augmented bin-
ning10. MaxBin, an automated tool for metagenomic binning mainly based on tetra-nucleotide frequencies com-
bined with one-sample coverage levels, was compared to ESOM in an attempt to demonstrate its automated 
nature and comparable performance15. CONCOCT and MetaBAT combine sequence composition and coverage 
across multiple samples to automatically cluster contigs into bins, however, both techniques require more samples 
(e.g. 50) to achieve better binning results14,16. Although CONCOCT and MaxBin perform automated binning and 
evaluate cluster completeness on the basis of marker genes, they do not provide further evidence of confidence in 
distinguishing a bin from others to prioritize binning sequences. An ideal binning tool should enable clear dis-
tinction of clusters (the visualization of metagenomic data) and automatically produce accurate binning results.
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In this study, we developed MyCC to automatically bin metagenomic contigs based on genomic signatures 
(and additional coverage profiles) and to visualize the binning of such metagenomes. We demonstrate that MyCC 
not only outperformed CONCOCT, MaxBin and MetaBAT in binning metagenomes derived from a small sam-
ple, but also performed well in complex metagenomic samples. Furthermore, the appropriate visualization of 
metagenomes in MyCC allows for reconstructing genomes of distinct clusters.

Results
MyCC implementation. MyCC was designed as an automated metagenomic binning tool, which allows 
binning of assembled metagenomic contigs without the need for reference sequences and manual interven-
tion. We have developed MyCC as a virtual machine by deploying the required software including Prodigal17,18, 
FetchMG19,20, UCLUST21, BH-SNE9,22 and affinity propagation23 on Ubuntu Desktop 14.04.3 LTS; a schematic 
workflow of MyCC is shown in Fig. 1a. MyCC is open-source and available for download: (http://sourceforge.net/
projects/sb2nhri/files/MyCC/). The detailed instruction for MyCC is also available at the link. Since MyCC was 
managed as a virtual machine, further software installations or configurations are not required. After importing 
the image file of MyCC, the user is able to bin metagenomic contigs. Genes on the metagenomes were predicted 
by Prodigal17 for the identification of a sequence that harbors single-copy marker genes using FetchMG19,20 along 
with UCLUST21. FetchMG extracts 40 universal phylogenetic marker genes24 by utilizing profile Hidden Markov 
Models trained on multiple sequence alignments of their orthologous groups that had been previously identified 
in prokaryotic genomes20, the 40 marker genes have been proven practical for the delineation of prokaryotic 
species25. For each contig, genomic signatures were obtained by calculating the count of occurrences for every 
kmer (e.g. 4 mer) and its reverse complement in that contig. After centered log-ratio (CLR) transformation9,26, 
the resulting high dimensional genomic signatures of metagenomic contigs were reduced to a two-dimensional 
scatter plot (Fig. 1b) using Barnes-Hut-SNE22. The scattered points corresponding to metagenomic contigs were 
clustered by affinity propagation (AP)23, as shown in Fig. 1c. The AP-generated clusters were finally corrected 
(Fig. 1d) based on the sequences harboring marker genes. For example, the six clusters (located in the lower-left 
side of Fig. 1c) are merged into one cluster (in Fig. 1d) because they are adjacent to each other and share marker 
genes. Due memory requirements for AP, a two-stage process was implemented for the binning of metagen-
omic contigs. The first stage was utilized to cluster relatively long sequences using the above-mentioned process, 
and the second stage was implemented to assign each of the remaining short sequences to a pre-defined cluster 

Figure 1. An overview of the MyCC workflow and visualization. (a) A schematic workflow for MyCC.  
(b) A plot of Barnes-Hut-SNE-based dimensionality reduction. (c) Automated clustering by affinity 
propagation. (c) Corrected clusters based on marker genes. These plots were output by MyCC in binning 
Sharon’s dataset (“MyCC.py carrol.fasta -a My.depth.txt -keep”).
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with a sequence possessing the minimum Euclidean distance between the 4 mer genomic signatures of the two 
sequences. As a default, MyCC processes a fraction of contigs (7/10) for first-stage clustering using 4 mer frequen-
cies (-lt 0.7). As described in Supplementary Note, the command is as simple as “MyCC.py assembly.fa”.

Recovering genomes from a metagenome community using MyCC. To demonstrate the effective-
ness of MyCC, the software package was executed on a mock community available at MetaBAT’s website (https://
bitbucket.org/berkeleylab/metabat)16. This community is composed of 25 known genomes. As illustrated by 
Fig. 2a,b, MyCC binned the metagenomic assembly along with the two-library coverage file (command: “MyCC.
py assembly.fa -a depth.txt”) into the 24 clusters and produced a summary file to report genomic features includ-
ing genome size (WholeGenome), N50, No. of contigs (NoOFCtg), and No. of marker genes (Cogs) for each 
cluster. Moreover, the metagenomic sequences binned by MyCC were organized into individual clusters. Here, 
we take Cluster.23 as an example. MyCC classified five centering contigs (in Fig. 2a) as Cluster.23 to constitute a 
2.1 Mbp genome containing 36 marker genes (Fig. 2b) that is quite high for genome completeness. MyCC also 
generated a file named Cluster.23.fasta (Fig. 2c) to include the sequences of the five contigs that were binned into 
this cluster. According to the true assignment of each contig (Fig. 2d), we know that Cluster.23 corresponds to the 
genome of Olsenella uli DSM 7084. The recall for this genome (Fig. 2e) is 98.31% (2, 125, 683/2, 162, 161) and the 
precision of Cluster.23 is as high as 100% (shown in Fig. 2b). Overall, the binned contigs yielded high precision 
(95.87%) and recall (97.28%) for this mock community. Please note that the marker gene counts for Cluster.20 
and Cluster.24 are low (7 and 12, respectively, as shown in Fig. 2b), suggesting that these two clusters are com-
posed of fragmented contigs. In addition, owing to the genetic relatedness between Escherichia and Salmonella, 
MyCC was unable to distinguish them well and placed contigs of three species (Escherichia coli str. K-12 substr. 
MG1655, Salmonella enterica subsp. arizonae serovar 62 and Salmonella bongori NCTC 12419) into the two clus-
ters (Cluster.20 and Cluster.24) (see Supplementary Note for details). Nevertheless, the vast majority of clusters 
produced by MyCC are complete and pure.

Binning performance on various datasets. Two simulated metagenomes containing 10 and 100 bac-
terial species and two mock communities consisting of 25 and 64 genomes were used for evaluation of MyCC. 
Except for the mock dataset of 25 genomes provided by MetaBAT16, the other three datasets were designed and 
used for evaluation of metagenomic assembly7,27–29. The simulated reads for the 10 and 100 genomes and the 
sequencing reads of the 64-genome community were assembled separately into metagenomic conitgs by Ray 
Meta7. As displayed in Table 1, by simply inputting metagenomic contigs into MyCC, the sequences were clus-
tered, by default, into 10, 93, 23 and 61 bins for the 10, 100, 25 and 64 metagenomes, respectively. It should 
be noted that CONCOCT14, MaxBin15,30 and MetaBAT16 all utilized the coverage information when binning 
the metagenomic contigs. Nevertheless, in the absence of coverage information, MyCC produced noteworthy 

Figure 2. Explanations for outputs of MyCC. (a) Visualization of metagenomic binning. (b) A summary file 
produced by MyCC, reporting genome size (WholeGenome), N50, numbers of contigs (NoOfCtg) and marker 
genes (Cogs) for each bin. (c) Binning sequences in a cluster are output in FASTA format. (d) Gold-standard 
binning assignments available at MetaBAT’s website. (e) Binning performance evaluation based on the gold-
standard assignments. MyCC was applied to bin a mock dataset of 25 genomes (“MyCC.py assembly.fa -a 
My.depth.txt”).
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binning performance based on its primary and secondary ratings in F1 scores (among the four tools). Comparing 
MyCC with CONCOCT, both packages assigned each contig (longer than 1,000 bp for CONCOCT, ≥1,000 bp for 
MyCC) to a bin. However, MyCC outperformed CONCOCT in terms of finding an accurate number of bins and 
higher F1 scores (89.0 vs. 74.0, 93.0 vs. 83.1 and 85.9 vs. 80.6 in the cases of 100, 25 and 64 genomes, respectively). 
MaxBin and MetaBAT produced an unclassified bin and unbinned some contigs, respectively, which resulted 
in high precision but compromised sensitivity (recall). For example, MetaBAT only binned 8,722 contigs out of 
the 23602-contig metagenomes (64 genomes) to yield a precision and recall of 86.78% and 77.40%, respectively. 
In addition to MyCC’s default settings, the noteworthy F1 scores were obtained by MyCC (highlighted in bold, 
Table 1) when combining 4 mer/5p6 mer frequencies with coverage information. Note that 5p6 mer represents a 
combination of penta-nucleotide (5 mer) and palindromic hexa-nucleotide (p6 mer). To provide a simple, real 
metagenomic dataset for the validation of MyCC, Sharon’s dataset was applied13. With the 18-run coverage pro-
files, MyCC successfully binned Sharon’s assembly into 14 bins with exceptional precision and recall (86.72% and 
98.68%, respectively). Please also note that the five binning results of Sharon’s dataset were assessed by CheckM31 
to provide estimates of genome quality (as shown in Supplementary Table S1). In agreement with the high preci-
sion and recall, MyCC was estimated to produce five high-quality genomes (completeness ≧ 95%, contamination 
≦ 5% and strain heterogeneity ≦ 5%), but the other four binning tools produced only three. Accordingly, the supe-
rior performance of MyCC has been demonstrated in a direct comparison against other metagenomic binning 
tools (CONCOCT, MaxBin and MetaBAT) when applied to a small sample size.

Applications of MyCC. Although most current metagenomic experiments encompass only a few samples, 
it has been reported that more complete genomes have been binned as the number of samples increased14,16. 
MyCC was applied to a benchmark dataset (MetaHIT dataset) provided by MetaBAT16. This dataset was derived 
from MetaHIT human gut metagenome data and contained 290 bacterial genomes. Along with the 264-run 
depth file provided for CONCOCT, MyCC binned the error-free metagenome contigs into 187 clusters. Among 
the 187 clusters, 96 clusters were characterized as possessing “good” binning performance (>90% precision 
and >50% recall). As evaluated on the MetaBAT website (https://bitbucket.org/berkeleylab/metabat/wiki/

No. of 
bins

No. of 
binned 
contigs

Precision 
(%)

Recall 
(%)

F1 
(%)

Simulated dataset

10 Genomes (2,185 contigsa)

CONCOCT 19 2,185 98.78 97.67 98.2

MaxBin 10 2,125 93.16 97.17 95.1

MetaBAT 9 1,653 90.26 95.13 92.6

MyCC (default) 10 2,185 97.79 97.79 97.8

MyCC (one stage) 11 2,185 99.17 98.45 98.8

100 Genomes (8,978 contigsa)

CONCOCT 79 8,977 59.67 97.40 74.0

MaxBin 84 7,308 89.64 84.52 87.0

MetaBAT 105 5,430 92.72 89.59 91.1

MyCC (default) 93 8,978 87.45 90.54 89.0

MyCC (5p6 mer, cov) 88 8,978 89.68 94.09 91.8

Mock datasets

25 Genomes, 2 libraries (1,893 contigsa)

CONCOCT 29 1,892 72.67 97.15 83.1

MaxBin2 26 1,892 90.00 90.38 90.2

MetaBAT 31 1,742 93.78 93.57 93.7

MyCC (default) 23 1,893 88.97 97.35 93.0

MyCC (4 mer, cov) 24 1,893 95.87 97.28 96.6

64 Genomes (23,602 contigsa)

CONCOCT 84 23,585 70.63 93.90 80.6

MaxBin 56 20,639 84.96 81.83 83.4

MetaBAT 70 8,722 86.78 77.40 81.8

MyCC (default) 61 23,602 83.19 88.76 85.9

MyCC (5p6 mer, cov) 57 23,602 84.36 92.85 88.4

Real dataset

Sharon’s dataset, 18 runs (2,294 contigsa)

CONCOCT 32 2,291 79.92 97.58 87.9

GroopM 13 1,687 88.39 86.29 87.3

MaxBin2 10 2,294 82.94 93.75 88.0

MetaBAT 10 1,573 85.46 93.66 89.4

MyCC (4 mer, cov) 14 2,294 86.72 98.68 92.3

Table 1. Binning performance on various datasets (simulated reads, mock libraries and real samples). 
aOnly contigs with a length longer or equal to 1,000 bp.
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Home), this number (96 clusters) is substantially larger than those obtained by the other binning tools includ-
ing Canopy, CONCOCT, GroopM12 and MaxBin (81, 56, 4, and 34 clusters, respectively), albeit it is the same 
as the one obtained by MetaBAT. In this fashion, MyCC was validated in its suitability to large-scale metage-
nomes. Furthermore, MyCC was applied to bin metagenomes of Drosophila melanogaster intestinal samples32. 
Sequencing reads of the Drosophila microbiota were de novo assembled by Ray Meta into 21,985 metagenomic 
contigs (≧ 1,000 bp). The contigs were then binned into 11 clusters by MyCC. Among the 11 clusters, three clus-
ters with at least 75% of the marker genes were examined further for identification of the closest species. CheckM 
was also used to estimate the genome completeness and contamination of these clusters. The three clusters were 
assessed to be near complete (completeness ≧ 90%) with low contamination (≦ 5%). Finally, two new genomic 
sequences of Acetobacter pasteurianus and Lactobacillus fructivorans may be recovered from the clusters produced 
by MyCC (Cluster.5 and Cluster.6 in Supplementary Note). These two sequence files were separately annotated 
by Prokka33 to generate 2447 and 1055 coding sequences. In respect of number of coding sequences, the num-
bers of putative coding sequences are adequate because the protein numbers for Acetobacter pasteurianus IFO 
3283-01 (NCBI reference sequence: NC_013209.1) and Lactobacillus fructivorans KCTC 3543 (RefSeq assembly: 
GCF_000185465.1) are 2621 and 1283, respectively. By virtue of the reference-independent approach, MyCC has 
been demonstrated, on the gut microbiota in flies and in infants, as a favorable tool for automated metagenomic 
binning.

Discussion
MyCC provides an automated method to recover genomes from metagenomic assemblies using genomic sig-
nature information and single-copy marker genes. In the current work, MyCC was identified as the most opti-
mal binning and visualization tool when applied to small sample sizes and was more than capable of binning 
large-scale metagenomes.

Visualization of metagenomes. The visualization of metagenomic data via Barnes-Hut-SNE was previ-
ously proposed by Laczny et al.9. The authors implemented a program known as VizBin to render the visualization 
for human-augmented binning of metagenomic contigs10. In comparison with VizBin (Supplementary Fig. S1)  
on the Sharon’s dataset, MyCC not only provides the visualization of metagenomes with clearly separated clus-
ters (Fig. 1b) but also performs automated clustering without reference genomes and a priori knowledge of the 
number of genomes (Fig. 1c,d); this feat is performed by incorporating coverage information and exploiting 
affinity propagation and along with single-copy marker genes. As illustrated in Fig. 1d, MyCC successfully organ-
ized Enterococcus faecalis contigs into the cluster (precision of 96.83%) found at the top-right corner (Cluster.1 
with contigs in yellow color) to recover the genome of Enterococcus faecalis with a recall of 100%; however, it 
was difficult to locate the points of Enterococcus faecalis on the VizBin-produced plots (Supplementary Fig. S1). 
The scatter plot visualization combined with the summary file (illustrating genome size and number of marker 
genes for each cluster) in MyCC enable us to recover individual genomes from the metagenomes (as evident 
from the Fig. 2). Similar to cluster evaluation with single-copy marker genes in MaxBin15 and CONCOCT14, 
CheckM31 can be used after metagenomic binning to prioritize genome bins for post-binning processes16. A 
visualization plot and marker gene counts provided by MyCC have already addressed this need. We have demon-
strated that the two draft genomes of Acetobacter pasteurianus and Lactobacillus fructivorans were recovered from 
Drosophila intestinal samples (Supplementary Note). Furthermore, the adoption of multiple parameter settings 
(e.g., 4 mer/5 mer/5p6 mer, w/wo coverage information and one/two stages) substantiate MyCC’s versatility for 
various datasets; results are provided in Table 1.

Parameter settings in MyCC. MyCC was applied to various metagenome datasets to systematically explore 
the effect of different settings, which include genomic signature (4 mer or 5p6 mer), one or two stages, and with 
or without coverage information; results are provided in Supplementary Fig. S2. Except for the simple commu-
nity (10 genomes) that possessed a narrow coverage distribution (70-130X), incorporating coverage information 
with the genomic signature improves MyCC’s binning accuracy. Because it is unlikely to observe even coverage 
distribution in natural metagenomic communities, we would suggest including coverage information in MyCC, 
if available. In addition, we found that the signature setting on 4 mer and 5p6 mer sequences was advantageous 
for binning simple and complex metagenome communities, respectively. We therefore recommended that users 
leverage the default settings for genome number estimation, and subsequently select 5p6 mer when more than 50 
clusters are produced. As for implementing MyCC in one or two stages, this matter depends on the computing 
system and influences computational efficiency. Due to memory requirements for affinity propagation, we have 
employed sparse similarity to AP and design two stages to partially address the need for extended system mem-
ory. All the datasets in Table 1 (23,602 conitgs at most) were able to be complete for binning by MyCC within 1.5 h 
using Intel Xeon E31245 CPU with 4 GB RAM (see Supplementary Note). In spite of this, future work should be 
directed at memory-efficient clustering as large datasets require large memory size.

Comparison to automated binning tools. CONCOCT is an algorithm that combines sequence compo-
sition and coverage across multiple samples to automatically cluster contigs. It has been compared with LikelyBin, 
MetaWatt, CompostBin and SCIMM to demonstrate that it performs better than the four alternatives14. MaxBin 
uses one-sample coverage information in addition to tetra-nucleotides frequencies for automated binning15. 
MaxBin 2 (a new version of MaxBin) supports multiple samples at the same time, thereby enabling construction 
of multiple metagenomes30. MetaBAT serves as an efficient tool for reconstructing genomes from complex micro-
bial communities; this is achieved by integrating probabilistic distances of genome abundance with sequence 
composition16. MyCC was compared to these three binning tools on datasets with small sample sizes (1 to 11 
samples; note that Sharon’s dataset comprises 11 samples in 18 runs). GroopM required at least three samples for 
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binning12, it was thus only applied to the Sharon’s dataset for comparison. The results given in Table 1 provide 
compelling evidence for accurate binning of MyCC on metagenomic contigs derived from a small size of samples. 
Relative performance of the various binning tools (evaluated by benchmark. R, available in MetaBAT’s website 
https://bitbucket.org/berkeleylab/metabat) on the five datasets can be found in Supplementary Fig. S3–S7. Those 
results are in line with Table 1 for verifying the applicability of MyCC. Although the execution time of MyCC for 
these datasets ranged from 10 minutes to 1.5 hours depending on the number of contigs, it is relatively shorter 
than the time required for metagenome assembling using Ray Meta (20 hours to 12 days). Parallel affinity prop-
agation should be explored to accelerate the clustering process. In addition to the small samples, MyCC was 
applied to the MetaHIT dataset and the binning result was evaluated by benchmark. R. The binning performance 
of MyCC compared to Canopy, CONCOCT, GroopM, MaxBin and MetaBAT is displayed in Supplementary Fig. 
S8. MyCC exhibited improved recall in half of the bins at the cost of less precision; nevertheless, it nearly achieved 
the best F1 and F0.5 in the first-hundred bins. Based on the visualization of metagenomes (Fig. S9) in MyCC, 
separable and outer clusters with a moderate number of marker genes (e.g., > 25) can be selected for further inves-
tigation. For example, MyCC binned the metagenomic contigs into Cluster.4 with a precision of 97.71%, Cluster.7 
with a precision of 99.35%, and Cluster.10 with a precision of 100% to recover the genome of Alistipes putredinis 
DSM 17216 with a recall of 83.93%, Bacteroides pectinophilus ATCC 43243 with a recall of 76.04%, and Tannerella 
sp. 6_1_58FAA_CT1 with a recall of 85.07%. Accordingly, applying MyCC to a metagenome community recov-
ered genome sequences with a high degree of fidelity.

Materials and Methods
Implementation of MyCC. The MyCC algorithm was implemented in Python (https://www.python.
org/). As illustrated in Fig. 1, Prodigal (v2.6.2) was applied for metagenomic gene prediction and translation17,18. 
FetchMG (v1.0), downloaded from http://www.bork.embl.de/software/mOTU/fetchMG.html, was subse-
quently employed to extract 40 single-copy universal marker genes19,20 from the predicted amino acid sequences. 
Sequences containing species-level marker genes were identified by UCLUST (v1.2.22q) with an identity thresh-
old of 95%21. With respect to each contig, genomic signatures were obtained via calculation of the count of 
occurrences for every kmer and its reverse complement in that contig. In the case of tetra-nucleotides (4 mer), 
136-dimensional genomic signatures of metagenomic contigs were produced. In addition to the 4 mer case, 5 mer 
(512 dimensions) and 5p6 mer (576 dimensions) features have been implemented in the signature extraction 
of penta-nucleotides and penta-nucleotides combined with palindromes of hexa-nucleotides, respectively. One 
pseudocount was added to eliminate zero counts; the counts were subsequently normalized by dividing by the 
sum of each contig signature. Subsequently, the normalized values for each signature were standardized via com-
putation of the quotient between the signature and the geometric mean of that signature in a process referred to 
centered log-ratio (CLR) transformation9. In addition to the genomic signature, a coverage file was, as an option, 
provided to MyCC. In contrast to adding pseudocount to contig signature, only the non-zero depths were taken 
for CLR transformation. The processed high-dimensional genomic signatures (plus coverage information) of each 
contig was reduced to two dimensions by Barnes-Hut-SNE (v0.1.1) (https://github.com/danielfrg/tsne), which 
allows us to conveniently visualize the metagenomic contigs in a scatter plot (Fig. 1b)22. The following parame-
ters were used for Barnes-Hut-SNE: perplexity of 20, theta of 0.5 and no PCA. The scatter points (representing 
contigs) were clustered by affinity propagation (Fig. 1c)23 with the following settings: maxits =  1000, convits =  15 
and dampfact =  0.8. The executable software required to compute affinity propagation (apcluster_linux64) was 
downloaded from http://www.psi.toronto.edu/affinitypropagation/software/. Negative-squared Euclidean dis-
tances between pairs of data points were used as input measures of similarity for affinity propagation in order to 
cluster data. To perform affinity propagation efficiently, the squared Euclidean distances shorter than 500 were 
employed as the sparse similarity between two points (default: “-st 500”). The sequences containing species-level 
marker genes identified beforehand were employed for cluster correction. If sequences in a cluster were found to 
harbor more than two duplicate marker genes, the data points corresponding to that cluster were split into two 
clusters via a technique known as spectral clustering34. If sequences in two adjacent clusters were found to harbor 
complementary marker genes, the two clusters were merged into one. Such processes were iteratively performed 
until no cluster required segmentation or merging, results are shown in Fig. 1d. As a virtual machine, MyCC is 
fully automated and easy to use. It is also assembled as a docker container, which can run on a local host or in the 
Cloud.

Simulated datasets. Simulated Illumina sequences for a low complexity (10 genome) metagenome were 
downloaded from http://www.bork.embl.de/~mende/simulated_data/27. A complex simulated metagenome (100 
genomes) was produced with abundances following a power law by executing Ray Meta-associated scripts7. The 
two metagenome datasets (4 Gbp and 40 Gbp reads) were assembled de novo by Ray Meta (Ray version 2.3.1) 
with a k-mer length of 31 into 3,256 and 14,513 contigs, respectively. The reads were then mapped back onto the 
contigs to determine coverage with Bowtie 235.

Mock datasets. A metagenomic assembly of a mock community (25 genomes), along with two-library align-
ment files (.bam and .bai), were downloaded from http://portal.nersc.gov/dna/RD/Metagenome_RD/MetaBAT/
Software/Mockup/16. Sequencing data (over 11 Gbp) of a mixture of archaeal and bacterial synthetic communities 
(64 genome), deposited in the NCBI Sequence Read Archive (SRA) under the Accession of SRR60624929, were 
downloaded for metagenome assembly with Ray Meta, resulting in 77,990 contigs. The reads were mapped to the 
contigs by Bowtie 2.

Sharon’s dataset. An infant human gut microbiome has been analyzed for microbial genome reconstruc-
tion by Sharon et al.13. The authors produced a metagenome assembly (2,329 contigs) and provided the assembly 
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along with binning information (carrol.scaffolds_to_bin.tsv) in http://ggkbase.berkeley.edu/carrol/. Sequence 
reads of 18 Illumina runs (SRR492065-66 and SRR492182-97) for the infant gut metagenome were downloaded 
from the NCBI SRA (SRA052203). After removing contigs shorter than 1,000 bp, the reads were mapped to 2,294 
contigs with Bowtie 2 in order to produce coverage profiles of each run.

Drosophila microbiota. A metagenomic approach has been taken to assess microbiota composition dur-
ing Drosophila aging32. Sequencing data were downloaded from NCBI SRA (SRP061446) and assembled by Ray 
Meta. The sequencing reads were mapped to the Ray Meta-assembled contigs for producing coverage profiles. The 
metagenomic assembly and the coverage profile were input to MyCC for binning.

Performance evaluation. The Ray Meta-assembled contigs for the 10-genome, 64-genome and 
100-genome metagenomes were aligned against reference genomes using BLAST to define the gold-standard 
binning assignments. For the 25-genome and Sharon’s datasets, the binning assignments (as gold standards) 
were downloaded directly from their respective websites (http://portal.nersc.gov/dna/RD/Metagenome_RD/
MetaBAT/Software/Mockup/ and http://ggkbase.berkeley.edu/carrol/, respectively). Given the availability of gold 
standards, we computed precision and recall to evaluate binning performance14,15. Assume there are N genomes 
in the dataset, which were binned into M clusters. The overall precision and recall are calculated as equations (1) 
and (2)

=
∑

∑ ∑
×

=

= =
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in which Sij indicates the total length of contigs in a cluster i corresponding to a reference genome j. In addition to 
the precision and recall, an F1 score (equation (3)) is used to weigh both measurements by taking their harmonic 
mean:

= ×
×
+

F ecision call
ecision call

1 2 Pr Re
Pr Re (3)

To benchmark MyCC against a synthetic metagenomic assembly obtained from 264 MetaHIT human gut 
metagenome data (the MetaHIT dataset16, available at https://bitbucket.org/berkeleylab/metabat/wiki/Home), 
the 195,601 contigs in the filtered assembly were binned by MyCC along with the depth file for CONCOCT 
(command: “MyCC.py assembly-filtered.fa -lt 0.4 -st 50 -a depth_concoct.txt 56 mer”). Additionally, the bin-
ning results of Canopy, CONCOCT, GroopM, MaxBin and MetaBAT (bin1, sensitive mode) were separately 
downloaded from the folder of results in http://portal.nersc.gov/dna/RD/Metagenome_RD/MetaBAT/Files/. 
These results were all evaluated by benchmark. R (provided in the link) to demonstrate binning performance (see 
Supplementary Methods).
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