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Abstract

We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and 

analyze systems of interacting objects (people, proteins, webpages) with edges between the 

objects denoting interactions (friendships, physical interactions, links). Mining graphs provides 

valuable insights about individual objects as well as the relationships among them.

In building Ringo, we take advantage of the fact that machines with large memory and many cores 

are widely available and also relatively affordable. This allows us to build an easy-to-use 

interactive high-performance graph analytics system. Graphs also need to be built from input data, 

which often resides in the form of relational tables. Thus, Ringo provides rich functionality for 

manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides 

over 200 graph analytics functions that can then be applied to constructed graphs.

We show that a single big-memory machine provides a very attractive platform for performing 

analytics on all but the largest graphs as it offers excellent performance and ease of use as 

compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph 

analytics with an iterative process of trial-and-error data exploration and rapid experimentation, 

common in data mining workloads.
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1. Introduction

Detecting expert users in a question-answering forum, tracing the propagation of 

information in a social network, or reconstructing the Internet network topology from a set 

of traceroutes are examples of tasks faced by today's data scientists. A common theme to all 

these examples is that they involve input data manipulation as well as graph analytics, where 

graphs are analyzed using various graph algorithms. To solve such problems and extract 
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valuable insights, data scientists must be able to quickly construct graphs from input data, 

and analyze the graphs using various graph algorithms.

Thus, in order to support the work of data scientists, one requires a system that offers a rich 

set of graph manipulation and analysis algorithms. As graphs are rarely given as input, but 

have to be constructed from input data, a modern graph analytics system has to support easy 

manipulation of input data in order to build a desired graph. Arguably the most common 

form of input data are relational tables and while in principle tables can be used to represent 

graphs, dedicated graph structures where the neighbors of each node are easily accessible 

are more efficient for most graph computations. Thus, the system also needs to provide a 

way to convert between graphical and tabular data structures and data representations.

And last, the system also needs to provide fast execution times suitable for interactive use.

In summary, the desiderata for a modern data science oriented graph analytics system are:

1. Ability to process large graphs, on the order of hundreds of millions of nodes and 

billions of edges,

2. Fast execution times that allow for interactive, exploratory use (as opposed to 

batch-mode use),

3. Easy to use front-end that provides many graph algorithms in a commonly used 

high-level programming language,

4. Large number of efficient ready-to-use graph algorithms,

5. Rich support for transformations of input data to graphs.

There are many challenges in building such systems. For example, what underlying 

hardware infrastructure shall one use? A cluster or a big server? How does one design data 

structures for tables and graphs that are efficient, flexible and fast? What operations are 

needed for building graphs from input data tables? What are the considerations for end-to-

end graph analytics systems?

Ringo: Graph analytics on a big-memory machine

We present Ringo, an in-memory interactive graph analytics system that scales to large 

graphs. Ringo combines an easy-to-use Python front-end and a scalable parallel C++ back-

end, which is responsible for rapid data handling and manipulation. Ringo provides 

functionality for efficiently building graphs from input data tables, for converting the tables 

to an efficient graph data structure, and for analyzing graphs using over 200 different graph 

functions through its core graph analytics package SNAP1. Ringo source code is open2.

Recent research in graph analytics systems has been focused on distributed computing 

environments [8, 9, 10, 18, 21, 23, 24] or single-machine systems utilizing secondary 

storage [11, 13, 14]. Such systems offer scalability in the number of cores or in available 

1SNAP is currently downloaded about a thousand times per month and actively used in our research group, as well as by over 500 
students in Stanford University courses.
2http://snap.stanford.edu/ringo
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throughput and size of the secondary storage, but these benefits come at a high price of 

increased communication cost, increased system complexity, and challenges when 

programming non-trivial graph algorithms. On the other hand, big-memory, multi-core 

machines are becoming affordable and widely available; a machine with 1TB of main 

memory and 80 cores costs around $35K.

We observe that most graphs being analyzed today comfortably fit in the memory of one 

such “big-memory” machine. Graph based computations require random data access 

patterns and exhibit notoriously poor data locality, so a single big-memory machine seems a 

natural hardware choice for analytics of all-but-largest graphs.

Ringo is built on the assumption that graphs being analyzed fit in memory of a single 

machine. This approach has significant benefits in that there is no network communication 

overhead, no need for managing the secondary storage, and that the programming model and 

the system use are straightforward. Even though the raw input data might not fit into the 

main memory initially, data cleaning and manipulation often result in significant data size 

reduction, so that the “interesting” part of the data nicely fits into the main memory.

Ringo showcases that a single multi-core machine offers a suitable platform for interactive 

graph analytics, while matching the performance of the fastest distributed graph processing 

systems (Section 3). Figure 1 illustrates Ringo.

The key features of Ringo are as follows:

• A system for interactive and exploratory analysis of large graphs with hundreds of 

millions or even billions of edges,

• Tight integration between graph and table processing and efficient conversions 

between graphs and tables,

• Powerful operations to construct various types of graphs,

• Ringo runs on a single machine with a large main memory, simplifying 

programming significantly and out performing distributed systems on all but the 

largest graphs.

The rest of the paper is organized as follows. Section 2 provides a system overview. System 

evaluation and benchmarks are presented in Section 3. Usage scenarios are described in 

Section 4. Finally, we conclude in Section 5.

2. System Overview

2.1 Design Choices

In designing Ringo for interactive graph analytics, we were informed by two insights. The 

first insight is that all but the largest graphs being analyzed today fit comfortably in memory 

of a big-memory machine. The second insight is that graphs are not analyzed in isolation, 

but are part of a larger data mining workflow, which requires that, in addition to graph 

operations, table analytics operations are integrated in the system as well. We discuss those 

insights and design choices in more detail next.

Perez et al. Page 3

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2016 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Graph sizes—Our goal is to provide fast execution time for commonly analyzed, average 

size graphs rather than provide a scalable solution for extremely large (and rare) graphs.

Classifying graphs from a widely used repository [4] of publicly available real-world 

networks (covering a wide range of areas, such as the Internet, social networks, road 

networks, Web networks) according to the number of edges shows that 90% out of 71 graphs 

have less than 100 million edges and only one graph has more than 1 billion edges (Table 1). 

Most graphs fit in a few GB of RAM, and the largest graph requires only about 30GB of 

RAM. Furthermore, very few real-world, non-synthetic graphs with more than one billion 

edges are discussed regularly in present research literature, Twitter2010 with 1.5B edges and 

Yahoo Web graph with 6.6B edges being the most common. Assuming 20 bytes of storage 

per edge, even the Yahoo Web graph requires only about 135GB and fits easily in a 1TB 

RAM machine. Other studies confirm our observation that most analytics datasets are 

limited in size [5, 22].

Based on this evidence we conclude that big-memory machines allow for storing and 

processing large graphs in-memory. As we show later in the experimental section, such 

machines also have sufficient compute power to execute graph analytics at speeds 

comparable to the fastest distributed graph processing systems.

Graph analytics workflow—Graph analytics often follow the workflow presented in 

Figure 2. Raw data is stored in a big data repository and handled by a system like Hadoop to 

extract the initial data for analysis. The extracted data is organized in a set of relational 

tables and a major part of the graph analytics workflow is then to construct many different 

graphs from the tables. Once graphs are built, we require graph specific operations, such as 

PageRank, connected components, shortest paths. Although graphs can be represented as 

relational tables and graph operations can be implemented using relational operations, we 

find it is more efficient (in terms of memory as well as speed) to have optimized graph-

specific data structures. Thus, given graphs represented as tables, the next step is to convert 

these tables to a graph representation. We then execute graph operations and integrate the 

results back to tables. The result is an iterative process, where data can be rapidly converted 

from tables to graphs and vice versa.

To provide fast execution speed in Ringo, we implemented table processing as part of the 

system, which allows us to tightly integrate table and graph processing and to rapidly 

convert large datasets from one representation to another.

2.2 Graphs in Ringo

Ringo graph representation—A critical operation for fast execution of graph 

algorithms is quick access to neighboring nodes and edges. Additionally, we require that our 

graph representation is dynamic, so in existing graphs nodes and edges can be quickly added 

or removed. A challenge is thus to strike a balance between opposing requirements for fast 

access to a node's neighborhood and having a dynamic graph structure.

One possible approach for efficient graph representation would be to use the Compressed 

Sparse Row format [3]. This format uses two vectors, a vector for nodes and a vector for 
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edges. The edge vector is sorted by source nodes and indexed by the node vector for fast 

access. While this approach offers high performance for traversal operations, it does not 

perform well for dynamic graphs, since graph updates cause prohibitive maintenance costs 

of the single big edge vector (e.g., deleting a single edge requires time linear in the total 

number of edges in the graph).

Ringo supports dynamic graphs by representing a graph as a hash table of nodes. Each node 

maintains sorted adjacency vector of neighboring nodes. Space requirements for this 

representation are similar to those of the Compressed Sparse Row format. However, we 

found that representing graphs as a hash table of nodes and the associated adjacency vectors 

does not dramatically impact the performance of graph algorithms (e.g., deleting a single 

edge only requires time linear in the node degree).

Ringo graph operations—To provide a rich set of graph constructs and algorithms, 

Ringo builds on the publicly available Stanford Network Analysis Platform (SNAP) [2]. 

SNAP provides more than two hundred out-of-the-box graph constructs and algorithms that 

are available for use on Ringo in-memory graph data structure.

2.3 Tables in Ringo

Table representation—In addition to graph objects, Ringo implements its own native 

relational table objects to allow for efficient and flexible parallel implementations of 

operations important for graph construction, to support fast conversions into graph objects, 

and to avoid any performance overheads related to frequent transitions to and from external 

systems during the iterative data analysis process. Tables in Ringo have a schema, which 

defines table columns and their types (integer, floating point, or string). Since tables have 

been studied extensively [25], we only describe some Ringo specific details here.

As most tabular operations in Ringo are graph related and primarily use iterations over 

columns, Ringo table representation optimizes this use by implementing tables with a 

column based store. In Ringo each row has a persistent unique identifier. This allows for fast 

in-place grouping, filtering and selection. Moreover, identifiers allow for fine-grained data 

tracking, so the user can identify data records even after they undergo a complex set of 

operations.

Ringo provides basic relational operations on table objects, such as select, join, project, 

group & aggregate, set operations, order (sort), and similar. In addition, Ringo also provides 

a number of advanced graph construction operations, described next.

Graph construction—In order to construct a graph, we first manipulate input data tables 

into an edge table that has two columns, a column with edge source nodes and a column 

with edge destination nodes. Once the edge table is constructed we transform it into a Ringo 

graph in-memory data structure.

In some cases, the edge table can be constructed using basic relational operations, such as 

join and select. However, often graph construction requires advanced operations unique to 

Ringo. Ringo allows for creating edges based on node similarity or temporal order of nodes. 

Perez et al. Page 5

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2016 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ringo implements SimJoin, which joins two records if their distance is smaller than a given 

threshold, and NextK, which joins predecessor-successor records.

2.4 Converting Between Tables and Graphs

Fast conversions between graph and table objects are essential for data exploration tasks 

involving graphs. Without the loss of generality we limit our discussion to conversions of 

directed graphs.

Conversion of tables to graphs—The goal is to generate a directed graph G = (V; E) 

from table T, with edge source column S and edge destination column D. Nodes V in the 

graph are defined by unique values in columns S and D. And each row r T defines an edge e 

E with the source node provided in column S and the destination node provided in column 

D, e = (rS; rD).

A directed graph in Ringo is represented as a node hash table, where each node contains two 

sorted adjacency vectors providing its in-neighbors and out-neighbors. The problem of 

converting a table to a graph is how to transform an edge list given by two columns in a table 

to a node hash table with sorted neighbor vectors. The challenge is to transform tables with 

hundreds of millions of rows at speeds that make the system suitable for interactive use.

We experimented with several approaches and found that a “sort-first” algorithm works the 

best. The algorithm builds a graph representation from a table by first making copies of the 

source and destinations columns, then sorting the column copies, computing the number of 

neighbors for each node, and then copying the neighbor vectors to the graph hash table. 

Advantages of our method are that sorting can be done in parallel and that it does not require 

any thread-safe operations on vectors and hash tables. While concurrent access is still 

performed, there is no contention among the threads, which minimizes locking and allows 

fast execution on multi-core machines. Since the number of neighbors is calculated 

explicitly, there is also no need to estimate the size of the hash table or neighbor vectors in 

advance.

Conversion of graphs to tables—The conversion from a graph to a table involves 

building a node table or an edge table. This conversion can be easily preformed in parallel 

by partitioning the graph's nodes or edges among worker threads, pre-allocating the output 

table, and assigning a corresponding partition in the output table to each thread. The threads 

iterate over nodes or edges in their graph partitions and write the output to their assigned 

partitions in the output table.

2.5 Ringo Implementation

We highlight aspects of Ringo implementation that allow for high-performance graph 

processing in an interactive environment.

High-level language front-end—The user interacts with Ringo through a Python 

module. Ringo front-end utilizes our graph processing engine to execute time critical parts. 

We use SWIG [1] to connect the Python front-end with the parallel C++ table and graph 

processing back-end engine.
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High-performance graph processing engine—Ringo graph processing engine is 

based on SNAP [2], a highly efficient C++ graph analysis library that implements complex 

graph classes and a rich set of graph constructs and algorithms. For Ringo, we have 

expanded SNAP with several new components, including table processing, conversions 

between tables and graphs, and parallel graph algorithms. OpenMP was used to parallelize 

critical loops in the code for full utilization of our target multi-core platforms.

Concurrent hash tables and vectors—The OpenMP layer relies on fast, thread-safe 

operations on concurrent hash tables and vectors, which are critical for achieving high 

performance of graph operations. We implemented an open addressing hash table with linear 

probing [16]. To support fast graph construction, we extended the node hash table with 

thread-safe insertions to a node's adjacency vector. Concurrent insertions to a vector are 

implemented by using an atomic increment instruction to claim an index of a cell to which a 

new value is inserted.

3. System Performance

In this section, we show Ringo performance on a single, big-memory, multi-core machine. 

Experiments demonstrate that such machines are able to execute critical operations at speeds 

that are needed for interactive graph analysis.

Experimental datasets and setup

For our benchmarks, we use two popular graphs, LiveJournal and the larger Twitter2010 
(Table 2), that have been widely used for benchmarks of other large-scale graph processing 

systems [6, 8, 11, 12, 14, 17, 18]. In many cases, graphs used for analyses are of sizes 

similar to LiveJournal. However, larger graphs do exist and can be easily processed on 

machines with 1TB RAM. For example, the Twitter2010 graph takes only about 13GB of 

main memory in Ringo (Table 2), which means that the system could easily process graphs 

that are an order of magnitude larger.

Our measurements were performed on a machine with 1TB RAM and 4× Intel CPU 

E7-4870 at 2.40GHz, each CPU has 10 cores and supports 20 hyperthreads for a total of 80 

hyperthreads, running CentOS 6.4. A similar machine costs $35K as of Nov 2014.

Parallel graph algorithms

We demonstrate graph analysis capabilities of big-memory machines by using PageRank 

[20] and undirected triangle counting—two key graph algorithms that are often used for 

benchmarking purposes. PageRank is an example of an iterative message-passing-like 

computation. We measured the runtime of 10 iterations. Triangle counting is directly related 

to relational joins, one of the central problems in database systems [19]. We ran each 

experiment 5 times, and report the average runtimes. Table 3 shows the results. It is worth 

comparing the performance of Ringo to the recently published results on the Twitter2010 
graph.

For triangle counting, a recently published method [13] took 469s using 1 machine with 6 

cores and SSD based secondary storage, while a different, distributed approach took 564s on 
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a cluster of 200 processors [6]. Ringo takes 263s on 1 machine with 80 hyperthreads. The 

implementation of the algorithm in Ringo was simple, using a straightforward approach, 

similar to [6] and parallelizing the execution with a few OpenMP statements.

PowerGraph [8] is one of the highest performing graph processing systems. Using 64 

machines with 512 cores, PowerGraph took 3.6s per iteration of the PageRank algorithm. On 

the other hand, Ringo takes around 6s per iteration, while using 6× fewer cores, only one 

machine and 13GB RAM. Similarly to the implementation of triangle counting, PageRank 

implementation in Ringo is based on a straightforward, sequential algorithm with a few 

OpenMP statements for parallel execution. Even though the purpose of Ringo is not to be 

the fastest graph engine, comparisons show the viability of big-memory machines for 

processing all-but-the-largest graphs.

In addition to fast execution times, Ringo graph processing also keeps a low memory 

footprint. The computation of 10 iterations of PageRank on the Twitter2010 graph had a 

memory footprint of 18.3GB, and triangle counting on that same graph had a memory 

footprint of 22.6GB. In both cases the memory footprint was less than twice the size of the 

graph object itself.

Table operations

While the focus of Ringo is on graph analytics, table operations are necessary for processing 

the data prior to graph construction and are a fundamental part of the analysis process. To 

support interactive data exploration the table operations have to execute quickly and at 

speeds comparable to graph operations.

We benchmark Ringo on two essential table operations, select and join (Table 4). For select 

benchmarks, rows are chosen based on a comparison with a constant value. The value is 

determined so that it either selects 10,000 elements from the table or all elements except 

10,000. The purpose of two measurements is to show performance when the output is either 

very small or similar in size to the input table. We show results for the select in-place 

operation, where the current table is modified.

For join benchmarks, the input table is joined with a second, single column table. The values 

in the second table are chosen so that the output table has either 10,000 elements or all 

elements from the input table except 10,000. Ringo join operation always produces a new 

table object. Overall, results in Table 4 demonstrate that Ringo offers robust performance 

over a range of scenarios.

Conversions between tables and graphs

Next we present performance of Ringo algorithms when converting tables to graphs and vice 

versa (discussed in Section 2.4).

Table 5 gives Ringo execution times for conversions of LiveJournal and Twitter2010 datasets 

between table and graph representations. For example, in the specific case of the 

Twitter2010 graph, the conversion of the table containing a single large edge vector to a 

graph means that a table with 1.5B rows must be traversed, and 1.5B pairs of node 
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identifiers are extracted. Each element of a pair is inserted to the node hash table in the 

graph and elements are added to the two corresponding adjacency vectors, which must be 

sorted. This results in a graph representation with a total of 42M nodes, and 84M vectors 

containing adjacent nodes.

Overall, the conversion from a table to a graph is performed at a rate of over 10M table rows 

or graph edges per second and about 50M edges per second in the opposite direction, so 

graphs with tens of millions of edges can be processed in seconds. The conversion scales 

well as the processing rate does not degrade for large graphs.

Sequential performance

For moderately large real-world graphs such as LiveJournal, even sequential 

implementations of graph algorithms are fast enough for interactive analysis. We measured 

the runtime of sequential implementations of 3 commonly used graph algorithms on the 

LiveJournal graph: 3-core of the graph, single source shortest path (runtime averaged over 

10 random sources), and finding strongly connected components (Table 6). All algorithms 

executed in about 30 seconds or less. For larger graphs, parallel implementations of graph 

algorithms are needed, and we are currently expanding the set of parallel algorithm 

implementations available through Ringo.

4. Ringo Scenarios

We demonstrate Ringo on real-world graph analytic scenarios, illustrating its applicability, 

ease of use, and performance.

4.1 End-to-end Graph Analytics

Our demo will showcase Ringo capabilities in an end-to-end graph analytics scenario. 

SIGMOD attendees will be able to interact with Ringo and observe ease of use and 

integration of table and graph operations.

Finding Java experts on StackOverflow—We will show a realistic and representative 

use case where the goal is to identify top Java experts in the StackOverflow user community. 

For demonstration we will use complete data from StackOverflow, which is the world's 

largest question-answering website, where users post questions, then others answer them. As 

the answers are given, the person posting the question has the option of picking the best 

answer by “accepting” it. In order to identify top experts our demo will start with complete 

StackOverflow data (8M questions, 14M answers, 34M comments). The demo will then 

follow these steps: manipulate tables to build a graph which connects users providing Java 

related questions and answers, and use a graph algorithm to identify top Java experts.

Demonstrantion scenario—The SIGMOD attendee will first load complete 

StackOverflow data3 in a form of relational tables. The attendee will then manipulate the 

input tables in order to build a graph representing the interactions in the forum's social 

network. For example, one way to build a graph is to connect users who answered the same 

3Freely available at http://data.stackexchange.com.
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question. A different way is to connect Stack-Overflow users that answered each other's 

questions. Ringo provides rich functionality for the SIGMOD attendee to build various kinds 

of graphs based on the StackOverflow data. Once the graph is built, the attendee will 

identify important nodes in the graph. Ringo implements over 200 different graph analytics 

algorithms (e.g., PageRank, Hits, and various other node centrality measures) that the 

attendee may try out to find Java experts.

Below, we show Ringo Python commands for the above demo4. The attendee will load the 

StackOverflow posts table P, extract all the Java posts JP, and build two new tables: 

questions table Q and answers table A:

P = ringo.LoadTableTSV (schema,‘posts.tsv’)

JP = ringo.Select (P,‘tag=java’)

Q = ringo.Select (JP,‘type=question’)

A = ringo.Select (JP,‘type=answer’)

Next, the attendee will build a graph and apply the PageRank algorithm on it. Ringo 

primitives for this task are:

QA = ringoJoin (Q,A,‘Answerid’,‘PostID’)

G = ringo.ToGraph (QA,‘UserID-1’,‘UserID-2’)

PR = ringo.GetPagerank (G)

S = ringo.TableFromHashMap (PR,‘User’,‘Scr’)

The Answers table on column PostId is joined with the Questions table on column 

AnswerId. The resulting QA table has two UserId columns, corresponding to the users that 

asked questions and the users whose answers were accepted. Using these user columns in 

QA, ToGraph() transforms the QA table into an optimized graph data structure G, where 

each node represents a user and an edge indicates that an answer by the destination node was 

accepted by the source node. GetPageRank() calculates the PageRank scores of all the 

nodes in G. The remaining line builds the final table S with the users' PageRank scores.

The above example clearly demonstrates that a system cannot treat graph analytics in 

isolation, but that graph analytics needs to be integrated with table operations. With Ringo 

we will demonstrate a system, where graph and table operations are tightly integrated. 

Besides implementing table operations as part of the system, in Ringo this integration 

involves fast conversions between table and graph data structures as well as customized table 

operations, suitable for graph analytics.

Ringo ease of use—We will also demonstrate several factors that contribute to ease of 

use of Ringo: integrated processing of graphs and tables, Python front-end, and execution on 

a single machine.

4For complete code for the demo, see http://snap.stanford.edu/ringo
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What the attendees will see and do—The attendees will be able to load the 

StackOverflow dataset in Ringo and perform graph analytics on the dataset. First, an 

attendee will be able to execute operations that identify the top Java experts on 

StackOverflow. Second, the attendee will be able to vary the parameters to identify top 

experts on StackOverflow in other programming languages and topics of interest, or change 

the operations to explore alternative measures of expertise. Third, the attendee will be 

invited to an open exploration of the StackOverflow dataset by applying Ringo graph 

analytics capabilities.

4.2 Performance Demonstration

This part of our demo will center around Ringo performance. Attendees will be able to 

observe system performance and resource utilization on a range of input datasets and 

hardware platforms.

Graph analytics operations—Several types of operations are critical for graph 

analytics: graph operations, table operations, conversions between tables and graphs, and 

data input/output. For the demo, we will show performance of a range of Ringo operations 

on the LiveJournal and the Twitter2010 datasets. LiveJournal is a typical representative of a 

graph dataset, while the Twitter2010 dataset is one of the largest publicly available real-

world graph datasets.

Hardware used for demonstration—Big-memory machines provide a viable platform 

for interactive graph analytics. Large RAM on such machines can deliver fast random 

access, required by graph algorithms. In our demo, we will show how Ringo performs on a 

wide range of operations on a big-memory machine. For our demo, we will use a machine 

with 1TB RAM and 4x Intel CPU E7-4870 at 2.40GHz, running CentOS 6.5. Each CPU has 

10 cores and supports 20 hyperthreads for a total of 80 hyperthreads.

Ringo also works well on standard personal computers, provided that the datasets fit in the 

RAM available. As discussed before, 90% of graphs in SNAP require only a few GB of 

RAM (see Table 1), so they can fit in memory of a typical desktop or laptop. We will demo 

Ringo also on a laptop with 8GB RAM and an Intel Core i5-4258U CPU at 2.40GHz with 2 

cores, costing around $1,500.

What the attendees will see and do—The attendees will be able to use Ringo on a big-

memory machine and on a personal computer. Initially, the attendee will choose either a big-

memory machine or a laptop environment and load one of the datasets, LiveJournal or 

Twitter2010. (Only LiveJournal will be available on the laptop due to RAM limitations.) 

Next, the attendees will be able to execute a wide range of graph algorithms and observe 

their performance and the hardware utilization.

5. Conclusion

We presented Ringo—a system for interactive and exploratory analysis of large graphs with 

hundreds of millions of nodes and edges. Ringo exposes its functionality through high-level 

Python programming language, the language of choice of today's data scientists. Tight 
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integration between graph and table processing and efficient conversions between graphs 

and tables allow for powerful operations that make it easy to perform complex analytic 

tasks.

Overall, we demonstrate that big-memory machines are suitable for performing interactive 

analyses of all, but the very largest graphs. In many real-world scenarios graph sizes are well 

below a terabyte and in such cases big-memory machines have significant benefit over large 

distributed clusters. Single machines are easier and more efficient to program, while the cost 

and complexity of cross-machine communication and scheduling are eliminated.
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Figure 1. Ringo system overview
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Figure 2. 
Graph analytics workflow. Using a system like Hadoop, data of interest is extracted from a 

big data storage into a set of relational tables. Graphs are built using graph construction 

operations on tables; the results are converted to graphs. Graph analytic operations are then 

applied to the graphs. Results of graph operations are added back to tables.
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Table 1

Graph size statistics of 71 graphs publicly available in the Stanford Large Network Collection. 90% of graphs 

have less than 100M edges. Only one graph has more than 1B edges

Number of Edges Number of Graphs

<0.1M 16

0.1M – 1M 25

1M – 10M 17

10M – 100M 7

100M – 1B 5

>1B 1
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Table 2

Experiment graphs. Text Size is the size of the input text file, Graph Size is the size of the corresponding 

Ringo graph object, and Table Size is the size of the Ringo table object

Graph Name LiveJournal [7] Twitter2010 [15]

Nodes 4.8M 42M

Edges 69M 1.5B

Text File Size 1.1GB 26.2GB

In-memory Graph Size 0.7GB 13.2GB

In-memory Table Size 1.1GB 23.5GB
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Table 3

Performance of parallel graph algorithms for PageRank and Triangle Counting on a single big-memory 

machine with 80 cores. For PageRank, ten iterations were timed

Operation LiveJournal Twitter2010

PageRank 2.76s 60.5s

Triangle Counting 6.13s 263.6s
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Table 4

Ringo performance of Select and Join operations on tables. Numbers give measured times on our test datasets. 

The Rows/s gives the processing rate in millions of table rows processed per second. The processing rate for 

Join takes the sizes of both input tables into account.

Dataset LiveJournal Twitter2010

Select 10K, in place <0.2s 1.6s

Rows/s 405.9M 935.3M

Select all-10K, in place <0.1s 1.6s

Rows/s 575.0M 917.7M

Join 10K 0.6s 4.2s

Rows/s 109.5M 348.8M

Join all-10K 3.1s 29.7s

Rows/s 44.5M 98.8M
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Table 5

Execution times for converting tables to graphs and vice versa. The Edges/s row gives the processing rate in 

millions of edges processed per second.

Graph Name LiveJournal Twitter2010

Table to graph 8.5s 81.0s

Edges/s 13.0M 18.0M

Graph to table 1.5s 29.2s

Edges/s 46.0M 50.4M
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Table 6

Runtime of single-threaded implementations of commonly used graph algorithms on the LiveJournal graph: 3-

core, single source shortest path (SSSP), and strongly connected component decomposition (SCC).

Algorithm Runtime

3-core 31.0s

SSSP 7.4s

SCC 18.0s
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