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Abstract

Introduction—Aspirin, clopidogrel, prasugrel and ticagrelor are antiplatelet agents for the 

prevention of ischemic events in patients with acute coronary syndromes (ACS), percutaneous 

coronary intervention (PCI), and other indications. Variability in response is observed to different 

degrees with these agents, which can translate to increased risks for adverse cardiovascular events. 

As such, potential pharmacogenetic determinants of antiplatelet pharmacokinetics, 

pharmacodynamics and clinical outcomes have been actively studied.

Areas covered—This article provides an overview of the available antiplatelet 

pharmacogenetics literature. Evidence supporting the significance of candidate genes and their 

potential influence on antiplatelet response and clinical outcomes are summarized and evaluated. 

Additional focus is directed at CYP2C19 and clopidogrel response, including the availability of 

clinical testing and genotype-directed antiplatelet therapy.

Expert opinion—The reported aspirin response candidate genes have not been adequately 

replicated and few candidate genes have thus far been implicated in prasugrel or ticagrelor 

response. However, abundant data supports the clinical validity of CYP2C19 and clopidogrel 

response variability among ACS/PCI patients. Although limited prospective trial data are available 
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to support the utility of routine CYP2C19 testing, the increased risks for reduced clopidogrel 

efficacy among ACS/PCI patients that carry CYP2C19 loss-of-function alleles should be 

considered when genotype results are available.
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1. INTRODUCTION

Platelets are activated in response to vascular injury and/or atherosclerotic plaque rupture 

through a complex network of intra- and intercellular pathways [1]. Activated platelets 

facilitate cell adhesion, initiate the arachidonic acid (AA) pathway to produce thromboxane 

A2 (TXA2), and excrete adenosine diphosphate (ADP), serotonin and other proteins from 

their granules, ultimately to form a platelet clot and eventually a thrombus. Given this 

fundamental role that platelets have in blood loss prevention and vasculature integrity, they 

are inherently implicated in cardiovascular diseases such as atherosclerosis, coronary artery 

disease (CAD) and myocardial infarction (MI), as well as cerebrovascular disease and 

stroke.

Since platelet activation is influenced, in part, by TXA2, ADP, serotonin, thrombin, 

epinephrine and collagen [2], these biological pathways have been leveraged as potential 

targets for antiplatelet therapies. The currently approved oral antiplatelet agents include 

aspirin, clopidogrel, prasugrel and ticagrelor, which are prescribed for prevention of 

ischemic events among patients with ischemic stroke and symptomatic peripheral artery 

disease (PAD), and as dual antiplatelet therapy (DAPT) for patients with acute coronary 

syndromes (ACS). However, variability in patient response to these agents are observed, 

which can translate to increased risks for adverse cardiovascular events [3, 4]. Potential 

pharmacogenetic determinants of response variability have been actively studied for all the 

antiplatelet agents, but none more so than clopidogrel.

The identification of a biologically relevant candidate gene for clopidogrel responsiveness 

(i.e., cytochrome P450-2C19) and the availability of alternative antiplatelet therapies have 

provided the opportunity for genotype-directed antiplatelet therapy in selected patient 

populations. However, despite the enthusiasm for personalized antiplatelet therapy from 

advocates of this paradigm, the uncertain clinical utility and cost-effectiveness of this 

approach has made the field of antiplatelet pharmacogenetics highly studied and frequently 

debated. The current status of antiplatelet pharmacogenetics, with an emphasis on 

antiplatelet candidate genes and clinical pharmacogenetic testing implementation, is the 

focus of this review and is detailed below.

2. ASPIRIN PHARMACOGENETICS

2.1. ASPIRIN RESPONSE

Given its benefit in reducing arterial thrombosis and recurrent cardiovascular events, aspirin 

(or acetylsalicylic acid) has remained a mainstay in antiplatelet therapy with indications 
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including coronary, cerebral, and peripheral vascular disease. However, despite its general 

effectiveness in most patients, a considerable number of individuals experience sub-optimal 

aspirin response, assessed by either laboratory platelet reactivity testing or through its ability 

to prevent cardiovascular events. This interindividual variability in platelet response to 

aspirin has been well documented, and patients with high on-treatment platelet reactivity 

(HTPR) to AA have increased risk of ischemic events [5–7]. Although estimates of aspirin 

non-responsiveness are controversial given the lack of standardized definitions, the use of 

multiple platelet function tests and evaluation of different surrogate endpoints suggest that 

5–60% of patients do not adequately respond to aspirin [8].

Platelet response to aspirin is influenced by several clinical variables (e.g., age, gender, 

smoking, and non-adherence) and coexisting comorbidities including obesity, diabetes, and 

hyperlipidemia [9]; however, these factors only explain ~15% of the variability in on-

treatment ex vivo platelet aggregation [10]. Heritability estimates suggest that 14–39% of 

the variability in platelet responsiveness to aspirin can be attributed to genetic factors, and 

potentially through variants that influence both cyclooxygenase-1 (COX1)-dependent and 

COX1-independent platelet activation pathways [10].

Aspirin inhibits platelet aggregation primarily by the irreversible acetylation of COX1, 

which prevents the conversion of AA to TXA2, a potent platelet agonist. As such, most 

traditional tests of aspirin response have focused on the COX1 pathway through 

measurement of AA-stimulated platelet aggregation or circulating thromboxane B2 levels, 

the stable inactive metabolite of TXA2. Using such assays, aspirin leads to near complete 

inhibition of COX1 in approximately 95% of individuals [11, 12] suggesting that a 

substantial proportion of the variability in response is mediated by factors outside of the 

COX1 pathway. While COX1 inhibition is nearly complete, the effect of aspirin on other 

platelet activation pathways (e.g., collagen, epinephrine, and ADP) is more heterogeneous 

and may explain, in part, the observed variability in response. Recent studies using collagen-

stimulated platelet aggregation have identified novel circulating biomarkers and genetic risk 

loci associated with response variability [13–15]. Consequently, while COX1 dependent 

platelet function assays are the most specific test of aspirin’s canonical mechanism of action, 

recent studies have increasingly used non-COX1-dependent assays to more comprehensively 

define aspirin response and to identify novel genetic determinants of on-treatment platelet 

aggregation and cardiovascular outcomes.

2.2. ASPIRIN CANDIDATE GENES

Most of the initial pharmacogenetic studies of aspirin response variability consisted of 

relatively underpowered candidate gene studies with different designs, participant selection 

(i.e., healthy vs. CAD/ACS patients), and primary outcome (i.e., platelet aggregation vs. 

cardiovascular events). Furthermore, these studies used different aspirin response 

phenotypes and platelet function tests [e.g., light transmission aggregometry, platelet 

function analyzer-100 (PFA-100), and VerifyNow® Aspirin], which subsequently have been 

shown to poorly correlate given the lack of standard definitions of aspirin responsiveness 

and the fact that these assays measure different platelet activation pathways (e.g., AA, 

epinephrine, and collagen) [16, 17]. Although variability in platelet function testing has been 
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previously reviewed [9, 18], it is important to consider these limitations when assessing the 

potential roles of the following candidate genes in aspirin response variability.

2.2.1. Cyclooxygenase-1 (COX1)—Given that COX1 is the molecular target of aspirin, 

multiple studies have evaluated the effect of genetic variants in the COX1 gene [also known 

as prostaglandin synthase 1 (PTGS-1)] on aspirin response, most commonly involving the 

linked c.-842A>G (rs10306114) and c.50C>T (rs3842787) variants [19]. Although it was 

initially reported that healthy individuals with the minor haplotype (c.[-842G;50T]) had 

better on-treatment inhibition of prostaglandin H2 and AA-induced platelet aggregation 

compared to those with the common haplotype (c.[-842A;50C]) [19], subsequent studies on 

stable CAD patients identified the c.-842G allele to actually be associated with aspirin 

resistance and non-responsiveness based on AA-induced platelet aggregation and serum 

TXB2 levels [20]. More recent studies on the COX1 c.-842A>G and c.50C>T variants using 

several different aspirin response phenotypes and platelet function tests observed no 

significant association between these variants and TBX2 levels, platelet aggregation, or 

cardiovascular outcomes [21–28], including a recent systematic review [29]. Consequently, 

the available evidence does not support a clinically relevant role for COX1 variants in aspirin 

response.

2.2.2. Glycoprotein IIIa (GPIIIa)—The glycoprotein IIb/IIIa complex (GPIIb/IIIa) is a 

critical regulator of thrombosis formation through its ability to bind fibrinogen resulting in 

platelet-platelet crosslinks. The PIA1/A2 (c.176T>C, p.L59P, rs5918) variant in the ITGB3 
gene that encodes the GPIIIa subunit has been extensively studied as a risk factor for 

cardiovascular disease and drug response to both aspirin and the GPIIb/IIIa inhibitor 

abciximab. A thorough review of ITGB3 PIA1/A2, including its potential effect on aspirin 

response, has been previously reported [18]. Although there is evidence suggesting that the 

PIA2 allele contributes to MI, stent thrombosis, unstable angina and sudden cardiac death, 

studies measuring the effect of this variant on aspirin response have been less conclusive. 

Collectively, using different platelet function tests and aspirin response definitions, these 

studies have reported that the PIA2 allele results in increased, decreased, or no change in on-

treatment platelet reactivity [9]. A recent systematic review has highlighted the 

inconsistency in PIA1/A2 study results, most likely due to differing platelet function tests 

and/or study cohorts [29]. As a result, while ITGB3 PIA1/A2 likely influences coronary 

thrombosis and the occurrence of stent thrombosis under DAPT [30], its role in aspirin 

response variability remains undetermined.

2.2.3. Glycoproteins VI (GPVI), GPIa/IIa, and GPIbα—Given that collagen stimulates 

platelet aggregation by binding to glycoprotein VI (GPVI) and the glycoprotein Ia/IIa (GPIa/

IIa) receptor complex on the platelet surface, these genes have been considered as candidates 

for aspirin response variability. Pharmacogenetic studies of GPVI and aspirin response have 

led to mixed results. Specifically, the common GPVI c.655C>T variant (p.P219S, 

rs1613662) has been associated with on-treatment platelet function variability in CAD 

patients [20]; however, subsequent studies have not replicated this finding [24, 26]. The 

commonly studied c.759C>T variant of the GPIa gene (ITGA2; rs1126643) has been 

associated with increased risk of stroke, MI, and cardiovascular death [31–33]; however, 
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studies on platelet aggregation variability after DAPT with aspirin and clopidogrel have also 

been conflicting and largely not supportive of a clinically meaningful effect on drug 

response [34–37]. Given that most of these studies were small and generally underpowered, 

larger scale replication efforts will be needed to determine the precise roles of these variants 

on aspirin response.

The GPIbα c.-5T>C variant (rs2243093) of the Von Willebrand receptor has also been 

studied as a candidate for aspirin response variability. Initial studies suggested that this 

variant altered GPIbα mRNA translation [38] and was associated with increased platelet 

reactivity (as measured by reduced PFA-100 closure time) and increased risk of MI among 

aspirin-treated CAD patients [39, 40]. In contrast, subsequent studies reported no evidence 

of association between c.-5T>C and cardiovascular outcomes or aspirin response (including 

TXB2 levels, collagen-stimulated platelet aggregation and PFA-100 closure time) [26, 35, 

41, 42]. Taken together, the available evidence does not support a role for the GPIbα 

c.-5T>C variant in aspirin efficacy.

2.2.4. Platelet Endothelial Aggregation Receptor 1 (PEAR1)—The platelet 

endothelial aggregation receptor 1 (PEAR1) is a type 1 transmembrane receptor that is 

involved in platelet aggregation through GPIIb/IIIa [43] as well as altered megakaryopoiesis 

and thrombopoiesis via the PI3K/PTEN pathways [44]. Early genetic studies identified 

several PEAR1 variants significantly associated with platelet aggregation in response to 

multiple agonists before [45, 46] and after [47–50] aspirin exposure. The most notable 

PEAR1 association has been between the intronic rs12041331 variant and ex vivo platelet 

aggregation in response to several platelet agonists (ADP, collagen, epinephrine) as well as 

pre- and post-antiplatelet therapy treatment (i.e., aspirin and prasugrel) [46, 48–51]. 

Furthermore, PEAR1 rs12041331 significantly reduced 1-year survival in aspirin-treated 

patients undergoing percutaneous coronary intervention (PCI) and increased rates of MI in 

an independent cohort of aspirin-treated patients with stable CAD [49]. Paradoxically, the 

allele that was associated with improved aspirin response, as defined by ex vivo platelet 

aggregometry, was the same allele that resulted in an increased risk of experiencing a 

thrombotic event. In addition, a recent study did not detect any association between PEAR1 
rs12041331 and clinical outcomes in CAD patients [26], indicating that additional clinical 

studies on PEAR1 and aspirin response are still warranted.

2.3. Other Aspirin Candidate Genes

Other commonly investigated aspirin response candidate genes include the TXA2 receptor 

(TBXA2R), ADP receptors (P2RY1 and P2RY12), coagulation factor XIII (F13A1), and 

UDP-glucuronosyltransferase 1A6 (UGT1A6) [18, 52]; however, their inconsistent results 

make it difficult to form any firm conclusions.

3. CLOPIDOGREL PHARMACOGENETICS

Clopidogrel is a second generation thienopyridine that undergoes hepatic biotransformation 

to an active metabolite, which binds irreversibly to the P2Y12 receptor and inhibits ADP-

mediated platelet activation and aggregation (Figure 1). The majority of clopidogrel (~85%) 

is hydrolyzed to inactive metabolites by esterases, including carboxylesterase 1 (CES1), 
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leaving only ~15% available for transformation to the active metabolite [53]. Two sequential 

oxidative reactions by the cytochrome P450 (CYP450) system form the active metabolite: 

the first involving CYP1A2, CYP2B6 and CYP2C19, and the second involving CYP2B6, 

CYP2C9, CYP2C19, CYP3A4 and CYP3A5 [53, 54]. Clopidogrel and aspirin administered 

as DAPT reduces cardiovascular death and ischemic events in ACS patients and those 

undergoing PCI [55–57]. However, wide interindividual variability in ex vivo platelet 

aggregation is common among DAPT-treated patients, and some still experience thrombotic 

events [58–60]. Importantly, patients with persistent HTPR to ADP are at increased risk for 

adverse cardiovascular events [3]. Other clinical factors implicated in clopidogrel response 

variability include age, co-medications, diabetes, disease activity, renal failure, and cardiac 

failure.

In order to identify variants that influence clopidogrel response variability, a number of 

candidate genes in the clopidogrel pharmacokinetic and pharmacodynamic pathways have 

been studied. Among them, the most robust association has been with the common 

CYP2C19*2 loss-of-function allele (c.681G>A; rs4244285), which was initially reported in 

2006 to be significantly associated with HTPR in healthy subjects [61]. As detailed below, 

since this initial observation, numerous studies have confirmed CYP2C19 as the major 

genetic determinant of clopidogrel metabolite levels, on-treatment platelet reactivity, and 

adverse cardiovascular event risks.

A single genome-wide association study (GWAS) on clopidogrel response has been 

reported, which identified variants in the CYP2C18-CYP2C19-CYP2C9-CYP2C8 gene 

cluster on chromosome 10q24 to be significantly associated with ADP-induced platelet 

aggregation in a healthy Amish cohort [62]. The most significant variant (rs12777823) was 

in strong linkage disequilibrium with CYP2C19*2, accounting for ~12% of the variation in 

ADP-induced platelet aggregation [62]. Although no other variants reached genome-wide 

significance, this agnostic GWAS validated previous CYP2C19 candidate gene studies and 

confirmed its role as the major genetic determinant of interindividual clopidogrel response 

variability. This important study also determined that on-treatment platelet response is a 

highly heritable trait (h2=0.73) [62].

3.1. CYTOCHROME P450-2C19 (CYP2C19)

The CYP2C19 enzyme metabolizes a large number of clinically relevant drugs (e.g., 

antidepressants, proton pump inhibitors) and has over 30 reported variant star (*) alleles, 

many of which encode reduced or complete loss-of-function enzyme variants [63–65]. Like 

many other CYP450 genes, CYP2C19*1 is considered the wild-type allele encoding normal 

enzyme activity. The CYP2C19*2 variant allele frequencies are ~15% in Caucasians and 

Africans, and 29–35% in Asians while the *3 loss-of-function allele (c.636G>A; rs4986893) 

is typically only found in Asians (2–9%) [66, 67]. The *4 – *8 alleles are rare in the general 

population (<1%) but have extensive in vitro evidence for loss-of-function [63]. In contrast, 

the CYP2C19*17 allele (c.-806C>T; rs12248560) results in enhanced transcription and 

increased activity, and has multi-ethnic allele frequencies ranging from ~3–21% [66]. Based 

on CYP2C19 genotype, individuals can be categorized as ultrarapid (*1/*17, *17/*17), 
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extensive (*1/*1), intermediate (e.g., *1/*2, *1/*3, *2/*17), or poor (e.g., *2/*2, *2/*3) 

metabolizers [63].

3.2. CYP2C19 CLINICAL VALIDITY

3.2.1. Clopidogrel Pharmacokinetics and Pharmacodynamics—Given that 

CYP2C19 is directly involved in both steps of clopidogrel bioactivation, impaired CYP2C19 

activity due to germline loss-of-function alleles results in reduced formation of the active 

metabolite in healthy subjects [68–74] and cardiac patients [75, 76]. Consistent with the 

association between CYP2C19 and clopidogrel pharmacokinetics, numerous studies have 

confirmed the important role of CYP2C19 loss-of-function alleles in HTPR, typically 

measured by ex vivo ADP-induced platelet aggregometry, in both healthy subjects [61, 62, 

68, 71, 72, 77] and CAD patients [62, 71, 76, 78–84]. Although the *2 – *8 alleles are all 

loss-of-function variants, the *3 allele has been reported to have a greater effect on on-

treatment platelet reactivity among East Asian PCI patients [85]; however, other studies have 

not detected any difference in effect between the CYP2C19 loss-of-function alleles on 

clopidogrel response [86–88]. In addition, some studies have also found that the 

CYP2C19*17 increased activity allele results in enhanced platelet inhibition and possibly an 

increased bleeding risk [71, 89–91]; however, this potential effect has not been replicated in 

all studies [62, 92–95].

3.2.2. Clinical Outcomes and Indication—In addition to the association between 

CYP2C19 loss-of-function alleles and reduced active clopidogrel metabolites and HTPR, 

evidence exists linking CYP2C19 genotype with clinical outcomes among clopidogrel-

treated ACS patients, particularly those undergoing PCI. Since the initial 2008 report 

suggesting a relationship between CYP2C19*2, HTPR, and 1-year incidence of death and 

MI among clopidogrel-treated ACS/PCI patients [96], many clinical studies have detected a 

significant association between CYP2C19 loss-of-function alleles and adverse 

cardiovascular events (e.g., cardiovascular death, MI, stroke) including an increased risk for 

stent thrombosis [30, 62, 71, 78, 93, 97–99]. However, a significant effect of CYP2C19 on 

clinical outcomes has not been detected among lower risk CAD patient cohorts [e.g., those 

with low frequencies (<20%) of PCI] or patients with other indications (e.g., atrial 

fibrillation) [100–102], underscoring the importance of indication when considering 

CYP2C19 genetic testing for antiplatelet management [103]. This is supported by data from 

several studies that found the effect of CYP2C19 on clinical outcomes among patients 

treated with clopidogrel to be dependent on the indication for antiplatelet therapy [30, 62, 

71, 78, 93, 97, 99, 100, 104, 105]. Lower risk indications, such as medical management of 

ACS and PAD, derive a lesser overall benefit from clopidogrel therapy compared to higher 

risk indications such as PCI [100, 102, 104]. Consequently, the influence of CYP2C19 on 

clinical outcomes has been most evident among PCI patient cohorts.

Reported meta-analyses suggest that clopidogrel-treated ACS/PCI patients who are 

CYP2C19*2 carriers have an increased risk compared to wild-type patients for both major 

adverse cardiovascular events (MACE) [hazard ratio (HR) 1.55, 95% confidence interval 

(CI) 1.11–2.17 for heterozygotes; HR 1.76, 95% CI 1.24–2.50 for homozygotes] and stent 

thrombosis (HR 2.67, 95% CI 1.69–4.22 for heterozygotes; HR 3.97, 95% CI 1.75–9.02 for 
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homozygotes) [105]. The significance of CYP2C19*2 in stent thrombosis risk among 

ACS/PCI patients has been the most notable, with reported odds ratios for CYP2C19*2 
carriers ranging from 1.75 to 4.68 [106–113]. Given the relationship between CYP2C19 and 

clopidogrel indication detailed above, meta-analyses that include studies with low 

frequencies of PCI or patients without coronary disease have not supported a major role for 

CYP2C19 in clopidogrel response variability in these specific patient populations [104].

3.3. CYP2C19 CLINICAL UTILITY AND PRACTICE GUIDELINES

3.3.1. Randomized Controlled Trials—Clinical utility is commonly established by 

prospective randomized controlled trials (RCTs); however, they can be challenging to 

implement for pharmacogenetic interventions for a number of reasons (e.g., ethnical 

considerations, rapid turnaround time genotyping, adequate power). Despite the difficulties 

with pharmacogenetic RCTs, CYP2C19 genotype-directed antiplatelet therapy trials have 

been reported (Table 1). For example, RAPID GENE concluded that point-of-care genetic 

testing after PCI can be done effectively at the bedside and that treatment of CYP2C19*2 
carriers with prasugrel can reduce HTPR [114], which subsequently was expanded (with 

similar conclusions) to an ST-elevation MI patient cohort in the RAPID STEMI trial [115]. 

Notably, RAPID STEMI also showed no differences in risk for HTPR between prasugrel-

treated CYP2C19*2 carriers and clopidogrel-treated non-carriers, suggesting that this 

strategy may have clinical utility. These pharmacodynamic end-point trials are further 

supported by a Korean RCT, which also concluded that genotype-directed antiplatelet 

therapy can reduce HTPR among ACS patients [116].

Although the reported pharmacodynamic RCTs support CYP2C19 genotype-directed 

antiplatelet therapy, RCTs powered for actual clinical outcomes are ultimately more likely to 

definitively establish or refute the clinical utility of CYP2C19 genotyping. Notably, a 

prospective RCT with a Chinese PCI patient cohort recently reported that CYP2C19 
genotype-directed antiplatelet therapy significantly decreased the incidence of MACE and 

the risk of 180-day stent thrombosis [117]. In addition to this encouraging RCT, preliminary 

results from the Genotyping Infarct Patients to Adjust and Normalize Thienopyridine 

Treatment (GIANT) trial, presented at the 2013 Transcatheter Cardiovascular Therapeutics 

(TCT) annual meeting, suggest that CYP2C19 genotype-directed antiplatelet therapy post-

PCI may reduce ischemic events at one year [118]. The influence of CYP2C19 genotype-

directed antiplatelet therapy on clinical outcomes will also be evaluated by the much larger 

and ongoing Tailored Antiplatelet Therapy Following PCI (TAILOR-PCI) trial.

3.3.2. Professional Practice Guidelines—The U.S. Food and Drug Administration 

(FDA) added a boxed warning to the clopidogrel label in 2010 highlighting the role of 

CYP2C19 in clopidogrel response. The American College of Cardiology Foundation 

(ACCF) and the American Heart Association (AHA) with endorsement from the Society for 

Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons, 

subsequently issued a ‘clinical alert’ in response to the boxed warning [119]. This expert 

committee urged clinicians to be aware of CYP2C19, impaired clopidogrel metabolism and 

reduced platelet inhibition, but did not recommend routine genetic testing prior to 

clopidogrel initiation, citing a lack of sufficient evidence. However, they did suggest 

Yang et al. Page 8

Expert Opin Drug Metab Toxicol. Author manuscript; available in PMC 2016 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



consideration of genetic testing for patients at moderate to high risk for poor outcomes (e.g., 

those undergoing elective high-risk PCI procedures), and that CYP2C19 poor metabolizers 

should be prescribed an alternative antiplatelet regimen [119]. Similarly, the 2012 

ACCF/AHA ‘Focused Update’ guideline for management of unstable angina/non-ST-

elevation MI did not recommend routine CYP2C19 genetic testing, but stated that it ‘might 

be considered if results of testing may alter management’ [120].

Additional practice guidelines are available for clinicians when the patient genotype is 

already known from previous and/or unrelated testing. These include the Royal Dutch 

Association for the Advancement of Pharmacy Pharmacogenetics Working Group (KNMP-

PWG) [121], and the Clinical Pharmacogenetics Implementation Consortium (CPIC) [66], 

which have recommended consideration of an alternative antiplatelet agent (i.e., prasugrel or 

ticagrelor) for CAD patients who are either CYP2C19 intermediate (e.g., *1/*2) or poor 

metabolizers (e.g., *2/*2) (Figure 2). The CPIC recommendation is restricted to PCI patients 

as current evidence does not support CYP2C19 genotype-directed prescribing for patients 

with lower risk for adverse cardiovascular events (e.g., stroke, PAD; Figure 2) [103]. 

However, CYP2C19 genotype has recently been shown to influence clopidogrel efficacy and 

prognosis in ischemic stroke [122, 123] and subcortical stroke [124] patients, suggesting that 

CYP2C19 genotype-directed therapy for stroke patients might potentially be considered in 

the future.

3.4. OTHER CLOPIDOGREL CANDIDATE GENES

3.4.1. ATP-Binding Cassette, Sub-family B (MDR/TAP), Member 1 (ABCB1)—
Multidrug resistance protein 1 (MDR1), also known as P-glycoprotein 1 (P-gp), is an ATP-

binding cassette (ABC) efflux transporter encoded by ABCB1 that is involved in the 

intestinal absorption of clopidogrel. The most commonly studied ABCB1 variant is the 

synonymous c.3435C>T (p.Ile1145=, rs1045642), which has been associated with HTPR 

[125] and an increased risk of cardiovascular events [30, 93, 126–128]; however, other 

studies have not detected any effect [72, 82, 129] or found an opposite effect [101], and 

meta-analyses of ABCB1 c.3435C>T among CAD patients concluded that there was no 

significant association between c.3435C>T and HTPR or adverse cardiovascular events 

[130]. Given the conflicting results surrounding ABCB1 c.3435C>T, further studies are 

warranted to better understand the relationship between ABCB1 and clinical outcomes 

during clopidogrel treatment.

3.4.2. Carboxylesterase 1 (CES1)—As noted above, 85% of clopidogrel is metabolized 

into inactive carboxylic acid derivatives by hepatic carboxylesterases, primarily CES1. As 

such, genetic variability in CES1 has considerable potential to significantly influence active 

metabolite formation, on-treatment platelet reactivity, and possibly cardiovascular event risk. 

A recent healthy Amish study showed that carriers of the CES1 p.G143E loss-of-function 

variant (c.428G>A, rs71647871) had ~1.6-fold higher circulating active metabolite levels 

compared to c.428G/G homozygotes (30.3 vs. 19.0 ng/ml, p=0.001) [131]. This translated to 

variant allele carriers having greater inhibition of on-treatment ex vivo ADP-stimulated 

platelet aggregation in both healthy subjects (43 vs. 29% of baseline, p=0.003) and CAD 

patients undergoing PCI (45 and 25%, p=0.03) compared to wild-type homozygotes. 
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Although the CAD patient cohort was underpowered to test for cardiovascular events, 

consistent with the pharmacokinetic and pharmacodynamic data, no patients who were 

homozygous for the variant allele experienced a cardiovascular event after one year 

compared to 13.7% of wild-type homozygotes (p=0.44) [131]. Consistent with these data, a 

recent study in human liver s9 fractions revealed that the CES1 p.G143E variant completely 

inhibited the hydrolysis of both clopidogrel and 2-oxo-clopidogrel [132]. Despite the clinical 

validity of CES1 p.G143E for clopidogrel pharmacokinetics and response variability, 

additional studies that comprehensively interrogate the CES1 gene and that are powered for 

clinical outcomes are still warranted.

3.4.3. Other CYP450 Genes—Other CYP450 enzymes are directly involved in the 

hepatic bioactivation of clopidogrel [53], which prompted their interrogation as candidate 

genes for clopidogrel response. In addition to CYP2C19, several other CYP450 enzymes 

(i.e. CYP1A2, CYP2B6, CYP2C9, CYP3A4 and CYP3A5) are also necessary for active 

clopidogrel metabolite formation, and all of these genes have known variant alleles. Some 

candidate gene studies identified significant effects on clopidogrel response 

(pharmacodynamic or clinical outcomes) with germline variants in CYP1A2 (with possible 

smoking interaction) [133, 134], CYP2C9 [68, 98, 135–137], CYP3A4 [138, 139], and 

CYP3A5 [140, 141]; however, the majority of clinical clopidogrel pharmacogenetic studies 

have not confirmed a significant independent role for these other CYP450 genes [61, 71, 72, 

77, 80, 93, 142–145].

3.4.4. Purinergic Receptor P2Y, G-protein Coupled, 12 (P2RY12)—The platelet 

P2Y12 purinergic receptor is encoded by P2RY12 and two functional haplotypes (H1 and 

H2) have been identified [146]. The minor H2 haplotype has been associated with increased 

ADP-induced platelet aggregation in healthy subjects [146]; however, recent studies of these 

alleles have concluded that the H2 haplotype has no influence on platelet function among 

clopidogrel-treated patients undergoing PCI [147–149] [150]. Based on these and other 

conflicting reports [72, 80, 93, 151], a clinically relevant effect of common P2RY12 variants 

on clopidogrel efficacy is unlikely.

3.4.5. Paraoxonase 1 (PON1)—Paraoxonase 1 (PON1) is an aromatic esterase 

responsible for hydrolyzing endogenous and xenobiotic compounds in the liver, and in 2011, 

the PON1 p.Q192R variant (c.575A>G, rs662) was reported to significantly impact 

clopidogrel pharmacokinetics, pharmacodynamics, and the occurrence of both MACE 

(OR=3.9, 95% CI 2.1–7.2, p<0.001) and stent thrombosis (HR=10.2, 95% CI 4.3–71.4, 

p<0.001) [152]. These dramatic data suggested that PON1 p.Q192R had a greater effect on 

clopidogrel efficacy than the well-described CYP2C19*2 allele. The PON1 association was 

identified using in vitro metabolomic profiling of HEK293 cell microsomal preparations, 

which suggested that PON1 hydrolyzed the γ-thiobutyrolactone ring of 2-oxo-clopidogrel 

into the active H4 thiol metabolite. However, subsequent clopidogrel kinetic studies 

concluded that PON1 cannot generate H4 in cell-based systems, but mediates the formation 

of another thiol metabolite (Endo), which does not correlate with antiplatelet response [73]. 

In addition, the reported association between PON1 p.Q192R and clopidogrel 

pharmacokinetics, pharmacodynamics and clinical outcomes has been refuted by multiple 
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pharmacogenetic studies [127, 153–158], including a systematic meta-analysis [159]. As 

such, the current body of evidence does not support a role for PON1 in clopidogrel 

pharmacogenetics.

4. PRASUGREL PHARMACOGENETICS

Prasugrel is a third generation thienopyridine administered with aspirin as DAPT for the 

management of ACS patients undergoing PCI. Prasugrel is hydrolyzed by carboxylesterases 

to yield thiolactone (R-95913), which undergoes hepatic bioactivation by CYP3A4, 

CYP2B6, CYP2C9, CYP2C19 and CYP2D6, to generate its active metabolite (R-138727) 

(Figure 1). Like clopidogrel, the prasugrel active metabolite antagonizes the P2Y12 receptor 

and impairs ADP-mediated activation [160]. Prasugrel is rapid-acting and generates a higher 

level of active metabolite compared to clopidogrel, resulting in a more potent and effective 

platelet inhibition [161–164]; however, the increased efficacy is counterbalanced by an 

increased risk for major bleeding [165]. Despite the advantages of prasugrel over 

clopidogrel, HTPR has also been reported among prasugrel-treated PCI patients, which was 

associated with higher rates of thrombotic events [166].

Given that prasugrel undergoes CYP450-mediated hepatic bioactivation, initial 

pharmacogenetic studies on prasugrel response focused on CYP450 variant alleles [68, 74, 

75, 164]. Prasugrel pharmacokinetics and pharmacodynamics were initially tested for 

association with CYP450 variants among healthy subjects; however, no significant 

relationship was detected for either active metabolite exposure or pharmacodynamic 

response [68]. A small study of CAD patients also failed to detect a significant difference in 

prasugrel active metabolite exposure or pharmacodynamic responses based on CYP2C19 
genotype status [75]. Notably, the large TRITON-TIMI 38 trial included a pharmacogenetic 

substudy of prasugrel-treated ACS patients with planned PCI and genotyped 54 alleles in six 

CYP450 genes. No significant effects on prasugrel pharmacokinetics or pharmacodynamics 

were identified, nor were any CYP450 variants associated with clinical outcomes [164]. 

Considering most studies use ADP-induced platelet aggregation as a measure of platelet 

function, a subsequent clinical study was performed to assess the influence of CYP2C19 
alleles on prasugrel response as determined by platelet reactivity index (PRI) from 

vasodilator-stimulated phosphoprotein (VASP) analysis. Interestingly, similar to clopidogrel, 

CYP2C19*2 carriers had a significantly higher PRI and risk of HTPR than noncarriers 

[167], which remained consistent with a subsequent study on prasugrel maintenance therapy 

response by PRI VASP [168]. Although not conclusive as these results have yet to be 

replicated by an independent research group, these data do underscore the lack of 

concordance between different platelet function tests and the challenges with interpreting 

data across studies that measure antiplatelet therapy response by light transmission 

aggregometry, VASP and/or the VerifyNow® platelet function assay.

In addition to the CYP450 genes, a few other candidate genes have been interrogated for 

association with prasugrel response. For example, the ABCB1 gene was also genotyped in 

the TRITON-TIMI 38 pharmacogenetic substudy; however, it was not significantly 

associated with any outcomes in prasugrel-treated ACS/PCI patients [126]. Interestingly, the 

PEAR1 gene was genotyped in a small study of healthy Han Chinese subjects, which 
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reported a significant association between selected PEAR1 variants and ADP-induced 

platelet aggregation; however, the extremely small sample size of the study (n=36) indicates 

that these findings are preliminary.

5. TICAGRELOR PHARMACOGENETICS

Ticagrelor is a cyclopentyl-triazolo-pyrimidine agent that is an allosteric ADP antagonist 

that does not require hepatic bioactivation to generate an active metabolite; however, after 

oral administration and absorption, it is degraded to its primary active (ARC124910XX) and 

inactive (AR-C133913XX) metabolites through CYP3A4/5-mediated metabolism (Figure 1) 

[169, 170]. Consequently, the ticagrelor label recommends avoiding coadministration with 

strong CYP3A inhibitors and inducers among patients with ACS. Although this also 

suggests that CYP3A4 and/or CYP3A5 variant alleles may potentially influence ticagrelor 

efficacy, pharmacogenetic studies have yet to prove this hypothesis. Additionally, the role of 

CYP3A4 in generating the active ticagrelor metabolite may also be responsible for the 

reported drug interaction between ticagrelor and statins. Since ticagrelor is both a CYP3A4 

substrate and inhibitor, its use results in higher serum concentrations of simvastatin and 

lovastatin when coadministered, as these drugs are also metabolized by CYP3A4. This 

interaction may be responsible, in part, for the mortality benefit observed with ticagrelor 

compared to clopidogrel in the PLATO trial, as ticagrelor significantly increases the potency 

of CYP3A4-metabolized statins, which in turn may increase the vascular benefit derived 

from the statin [171].

Ticagrelor has a faster onset and offset of action and achieves a more pronounced and 

consistent antiplatelet response than clopidogrel [172], which has translated to superior 

efficacy among ACS patients, including reductions in stent thrombosis and all-cause 

mortality [173]. A subset of patients in the PLATO trial were genotyped for CYP2C19 loss-

of-function and increased-function alleles and the common ABCB1 c.3435C>T variant; 

however, unlike clopidogrel, no significant association was observed between either gene 

and the primary composite outcome of cardiovascular death, MI, or stroke at 12 months 

[101]. In addition, a GWAS was also performed with this cohort in an effort to identify 

variants associated with ticagrelor plasma and major metabolite (AR-C124910XX) levels 

[174]. Although only reported to date in abstract form, one variant in SLCO1B1 
(rs113681054) and two independent variants (rs62471956, and rs56324128) were 

significantly associated with ticagrelor plasma levels. The SLCO1B1 rs113681054 variant 

and an additional variant in UGT2B7 (rs61361928) were also significantly associated with 

metabolite levels; however, both of these pharmacogenetic effects were limited to ticagrelor 

pharmacokinetics, as the variants did not associate with efficacy or safety of ticagrelor 

treatment [174].

6. ANTIPLATELET PHARMACOGENETIC TESTING AND CLINICAL 

IMPLEMENTATION

6.1. CYP2C19 GENETIC TESTING

Although the landscape of U.S. FDA regulatory oversight over clinical genetic testing is 

potentially about to undergo a major restructuring [175, 176], clinical laboratories currently 
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can offer genetic tests that are either approved for in vitro diagnostic testing by the U.S. 

FDA or as in-house validated laboratory-developed tests. Most U.S. FDA-approved 

CYP2C19 tests interrogate *2, *3 and *17, but do not include the low frequency *4 – *8 
alleles despite their established loss-of-function (Table 2). In contrast, these alleles are 

frequently included in most CYP2C19 laboratory-developed tests. Clinical laboratories that 

interrogate CYP2C19 by Sanger or next-generation sequencing would identify these rare 

alleles as well as other novel coding variants of uncertain clinical significance. In addition to 

surveying the testing menus of local CLIA-certified laboratories for CYP2C19 genetic 

testing availability, the National Institutes of Health (NIH) Genetic Testing Registry (GTR) 

is a central location for voluntary submission of genetic test information by laboratory 

providers [177].

6.2. BARRIERS TO CYP2C19 IMPLEMENTATION

The ongoing publication of genome-directed practice guidelines and the availability of high-

throughput multiplexed genotyping and next-generation sequencing technologies are 

increasing the accessibility of clinical pharmacogenetic testing, both theoretically and 

practically. However, physician adoption of clinical CYP2C19 testing has not been 

widespread, which is likely due to a number of barriers [178, 179], including testing 

logistics, clinician education and acceptance, pharmacogenetic testing reimbursement, and 

uncertain cost-effectiveness.

6.2.1. CYP2C19 Testing Logistics—One of the frequently cited barriers to 

implementing CYP2C19 genetic testing for antiplatelet therapy is the need for a rapid 

turnaround time of results to the patient’s medical record to enable drug selection by 

clinicians prior to patient discharge. Although genotyping platforms have been developed 

that can be completed within a few hours from receipt of a specimen, clinical genetic testing 

laboratories also need to have dedicated sample accessioning, technologist and director 

effort, and electronic report returning capabilities to efficiently execute same-day testing. 

Additionally, cardiac catheterization laboratories also need dedicated effort to consent their 

patients for genetic testing, which would likely translate to unpredictable daily specimen 

volumes being sent to the genetic testing laboratory. The need for rapid results combined 

with this irregular receipt of specimens together contribute to significant challenges when 

implementing real-world CYP2C19 genotype-directed antiplatelet therapy. Despite these 

difficult testing logistics, prospective clinical CYP2C19 genetic testing has been 

successfully accomplished at selected medical centers [180, 181].

Another testing strategy that can circumvent the issue of rapid turnaround time genotyping is 

pre-emptive pharmacogenetic testing [182]. This approach deposits CYP2C19 genotype data 

into patient electronic medical records through prospective or biobank patient recruitment 

and CLIA-certified genetic testing, and alerts prescribers through clinical decision support at 

the point-of-care if and when clopidogrel is ordered and the patient carries an at-risk 

CYP2C19 genotype. Although this model has inherent challenges and significant costs for 

effective clinical implementation, pre-emptive CYP2C19 genetic testing has recently been 

deployed at several academic medical centers [183–185].
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6.2.2. CYP2C19 and HTPR Association—An important barrier to clinical 

implementation of CYP2C19 genotype-directed antiplatelet therapy is the association 

between CYP2C19 and HTPR. CYP2C19 genetic testing has a relatively low estimated 

positive predictive value for HTPR (~20%) [186], which has driven the ongoing search for 

additional germline variants implicated in clopidogrel response variability. Similarly, the 

summarized sensitivity and specificity of CYP2C19*2 for predicting HTPR has been 

reported to be 38% and 80%, respectively [187], indicating that a significant number of 

patients who are not *2 carriers will still have HTPR and potentially be overlooked 

following a negative genotype result. As such, these data suggest that in addition to 

CYP2C19 genotype, the available phenotype and clinical data should also be incorporated to 

guide antiplatelet therapy.

6.2.3. Clinician Awareness, Education and Acceptance—An ongoing effort 

towards the application of clinical pharmacogenetics is increasing clinician education and 

acceptance. Continuing education efforts in genomics for practicing physicians are 

becoming more available given that most survey studies have consistently concluded that the 

physician workforce is unprepared for any large-scale application of genomic medicine 

[188, 189]. Education in pharmacogenetics is inherently a part of those efforts, and 

enhancing the professional curricula for all relevant healthcare professionals (e.g., 

physicians, physician assistants, pharmacists, nurses and genetic counselors) is going to be 

necessary for proper implementation of genotype-guided pharmacotherapy [190]. Clinician 

acceptance of clinical pharmacogenetics currently varies widely, and is undoubtedly tied to 

their general understanding and perception of the field. Ongoing professional education in 

pharmacogenetics will hopefully facilitate not only a greater acceptance and understanding 

of the field, but a more informed and rational implementation of clinical pharmacogenetic 

testing, including genotype-guided antiplatelet therapy.

6.2.4. CYP2C19 Testing Reimbursement and Cost-effectiveness—Insurance 

coverage for CYP2C19 genetic testing is available from selected providers; however, this 

issue is continually evolving. A recent proposed draft for local coverage determination by 

the Centers for Medicare and Medicaid Services (CMS; Palmetto GBA, Virginia) 

determined that CYP2C19 genetic testing (CPT 81225) is medically necessary for patients 

with ACS undergoing PCI initiating or reinitiating clopidogrel therapy, but not for medical 

management of ACS without PCI, stroke, or PAD. How, or if, CMS will be implementing 

this draft more broadly is not yet determined. Notably, the University of Florida Health 

Personalized Medicine Program recently reported that ~85% of third-party payers (including 

Medicare) reimbursed CYP2C19 genotyping for PCI patients [191].

Cost-effectiveness studies on CYP2C19-guided antiplatelet therapy have been inconclusive, 

but have suggested that this strategy may be a more cost-effective approach [192–194]. 

However, some studies also support widespread use of ticagrelor regardless of CYP2C19 
status [192, 195]. Real-world application of these approaches will undoubtedly be 

influenced by factors that are difficult to model, including clinician preference, treatment 

indication and contraindications, and personal insurance coverage and policy.
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7. EXPERT OPINION

Interpatient variability in pharmacokinetics, pharmacodynamics and/or clinical outcomes 

when treated with antiplatelet agents has prompted extensive studies on potential 

pharmacogenetic determinants of antiplatelet response. This has been further driven, in part, 

by the fact that CAD patients with HTPR have increased risks for ischemic events. However, 

discordant results across aspirin pharmacogenetic studies have hampered the ability to 

identify true aspirin response genes and variants, likely due to differences in study designs, 

response definitions, and assays used to measure platelet function. As such, the available 

data do not support any implementation of clinical genetic testing for aspirin response at this 

time. Similarly, although there is limited data available, no candidate genes have been 

reported for prasugrel and ticagrelor that have been adequately replicated with 

pharmacokinetic or pharmacodynamic response measurements, nor have any genes been 

convincingly associated with any clinical outcomes using these potent antiplatelet agents.

The major genetic determinant of clopidogrel metabolite levels, on-treatment platelet 

reactivity, and adverse cardiovascular event risks among ACS/PCI patients are CYP2C19 
loss-of-function alleles. In contrast, the clinical validity of other candidate clopidogrel 

response genes (ABCB1, CES1, other CYP450 genes, and P2RY12) is uncertain due to the 

absence of adequate replication at this time. The effect of reduced CYP2C19 activity on 

clopidogrel response has prompted the availability of clinical CYP2C19 genotyping and the 

implementation of genotype-directed antiplatelet therapy at some institutions. However, 

given that the only reported prospective trials testing CYP2C19 genotype-guided antiplatelet 

therapy had pharmacodynamic primary endpoints (i.e., platelet reactivity) and not clinical 

outcomes, the utility of this approach is frequently debated. Cost-effectiveness studies have 

also been inconclusive with respect to pharmacogenetic guided antiplatelet therapy and 

cardiology society guidelines do not currently recommended routine CYP2C19 genotyping, 

together ultimately leaving the decision to test ACS/PCI patients up to the individual 

clinician when clopidogrel is being considered.

Consistent with the ACCF/AHA guideline statements, CYP2C19 genotyping should be 

considered when treating patients at moderate to high risk for poor outcomes (including 

those undergoing PCI) with clopidogrel. In addition, CYP2C19 poor metabolizers should be 

prescribed an alternative antiplatelet regimen [119] following physician consideration of all 

available clinical information. The debate regarding whether or when to perform CYP2C19 
genetic testing is complicated and ongoing, and will hopefully be better informed by the 

ongoing prospective trials evaluating CYP2C19-directed antiplatelet therapy, clarity 

regarding third-party payer policies, and more convincing cost-effectiveness data. However, 

the increasing availability of direct-to-consumer genetic testing, other sequencing programs 

and general public awareness/interest in genomics is resulting in patients already having 

personal genetic data available, which will likely only increase in the near and ongoing 

future. In this context, CYP2C19 genotype data, and potentially other future candidate gene 

variants, can be used to inform antiplatelet therapy, and recommendations on how to 

incorporate these pharmacogenetic variables can be found by CPIC [66] and other 

professional guidelines. A personalized strategy for ACS/PCI patients has the potential to 

target the more potent antiplatelet agents to at-risk patients (i.e., CYP2C19 loss-of-function 
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allele carriers), while sparing the remaining patients from the increased expense of non-

generic medication and associated increased risks for bleeding.

With respect to the ongoing discovery efforts in antiplatelet pharmacogenetics, it is 

becoming increasingly appreciated that research studies need to utilize more 

multidisciplinary and integrative systems biology designs to more comprehensively evaluate 

the effect of antiplatelet agents on platelet reactivity and cardiovascular events. For example, 

recent studies have successfully used a composite aspirin platelet function score that 

included both non-COX1-dependent platelet reactivity in response to multiple agonists 

(ADP, collagen, and epinephrine) and canonical measures of aspirin response (AA-

stimulated platelet aggregation) to identify novel determinants of aspirin responsiveness 

[196, 197]. Moreover, the Pharmacogenomics Research Network (PGRN) and 

Pharmacometabolomics Research Network (PMRN) have shown that integration of 

pharmacogenomics data with high-resolution metabolomic profiling can increase our 

understanding of the effects of aspirin on metabolism, identify novel metabolites, signaling 

pathways, and gene variants that influence response to therapy [13–15]. In addition to 

highlighting their utility for the antiplatelet pharmacogenomics field, the success of these 

study design approaches also suggest that they should be considered for other drug response 

discovery research.
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ARTICLE HIGHLIGHTS BOX

• Oral antiplatelet agents are indicated for prevention of ischemic events resulting 

from acute coronary syndromes, ischemic stroke, and symptomatic peripheral 

artery disease; however, variability in patient response has been observed, which 

can translate to increased risks for adverse cardiovascular events.

• Aspirin pharmacogenetic studies have identified a number of candidate aspirin 

response genes and variants; however, heterogeneity in study design, aspirin 

response definition, and platelet function assays have contributed to limited 

replication between studies.

• The major genetic determinant of clopidogrel metabolite levels, on-treatment 

platelet reactivity, and adverse cardiovascular event risks are CYP2C19 loss-of-

function alleles, which has prompted the recent implementation of clinical 

CYP2C19 genotype-directed antiplatelet therapy at selected institutions.

• Prasugrel and ticagrelor result in a more potent and effective platelet inhibition 

than clopidogrel and the limited pharmacogenetic data available have not 

identified any genetic variants with strong effects implicated in response 

variability for these agents.

• Pharmacogenomics discovery research needs to embrace multidisciplinary and 

integrative systems biology study designs to more comprehensively evaluate 

interindividual variability in drug response and to facilitate the identification of 

more robust candidate genes and variants.
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Figure 1. 
Metabolic pathway of P2Y12-receptor inhibitors. CYP: cytochrome P450; GP: glycoprotein; 

hCE: human carboxylesterase; MDR1: multidrug resistance protein 1. Reprinted by 

permission from Macmillan Publishers Ltd: [199] © 2014.
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Figure 2. 
Clinical Pharmacogenetics Implementation Consortium (CPIC) algorithm for suggested 

clinical actions based on CYP2C19 genotype when considering clopidogrel treatment for 

ACS/PCI patients. ACS: acute coronary syndromes; PCI: percutaneous coronary 

intervention; UM: ultrarapid metabolizer; EM: extensive metabolizer; IM: intermediate 

metabolizer; PM: poor metabolizer. 1 Other possible CYP2C19 genotypes with rare loss-of-

function alleles exist beyond those illustrated (see [66]). 2 Note that prasugrel and ticagrelor 

are only recommended when not contraindicated clinically. Reprinted from [66] by 

permission of John Wiley and Sons © 2013 American Society for Clinical Pharmacology 

and Therapeutics.

Yang et al. Page 30

Expert Opin Drug Metab Toxicol. Author manuscript; available in PMC 2016 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 31

TA
B

L
E

 1

R
ep

or
te

d 
ra

nd
om

iz
ed

 c
on

tr
ol

le
d 

tr
ia

ls
 te

st
in

g 
C

Y
P2

C
19

 g
en

ot
yp

e-
di

re
ct

ed
 a

nt
ip

la
te

le
t t

he
ra

py

T
ri

al
P

ri
m

ar
y 

E
nd

po
in

t
Sa

m
pl

e 
Si

ze
C

lin
ic

al
tr

ia
ls

.g
ov

 I
de

nt
if

ie
r

M
aj

or
 F

in
di

ng
R

ef
er

en
ce

R
A

PI
D

 G
E

N
E

T
he

 p
ro

po
rt

io
n 

of
 C

Y
P2

C
19

*2
 c

ar
ri

er
s 

w
ith

 H
T

PR
 

af
te

r 
1 

w
ee

k 
of

 tr
ea

tm
en

t
18

7
N

C
T

01
18

43
00

N
o 

C
Y

P2
C

19
*2

 c
ar

ri
er

s 
tr

ea
te

d 
w

ith
 1

0 
m

g 
pr

as
ug

re
l d

ai
ly

 
in

 th
e 

ra
pi

d 
ge

no
ty

pi
ng

 g
ro

up
 h

ad
 H

T
PR

 a
t d

ay
 7

, 
co

m
pa

re
d 

to
 3

0%
 g

iv
en

 s
ta

nd
ar

d 
tr

ea
tm

en
t (

75
 m

g 
cl

op
id

og
re

l d
ai

ly
) 

(p
=

0.
00

92
).

[1
14

]

R
A

PI
D

 S
T

E
M

I
T

he
 p

ro
po

rt
io

n 
of

 C
Y

P2
C

19
*2

 o
r 

A
B

C
B

1 
T

T
 c

ar
ri

er
s 

w
ith

 H
T

PR
 a

ft
er

 1
 m

on
th

 o
f 

tr
ea

tm
en

t
10

2
N

C
T

01
45

21
39

A
m

on
g 

ca
rr

ie
rs

 o
f 

at
-r

is
k 

ge
no

ty
pe

s,
 tr

ea
tm

en
t w

ith
 

pr
as

ug
re

l w
as

 s
up

er
io

r 
to

 a
n 

au
gm

en
te

d 
do

si
ng

 s
tr

at
eg

y 
of

 
cl

op
id

og
re

l i
n 

re
du

ci
ng

 H
T

PR
.

[1
15

]

A
hn

 S
G

, e
t a

l.
T

he
 p

ro
po

rt
io

n 
of

 p
at

ie
nt

s 
w

ith
 H

T
PR

 a
ft

er
 3

0 
da

ys
 o

f 
tr

ea
tm

en
t

65
N

A
Ta

ilo
re

d 
an

tip
la

te
le

t t
he

ra
py

 a
cc

or
di

ng
 to

 p
oi

nt
-o

f-
ca

re
 

ge
ne

tic
 a

nd
 p

he
no

ty
pi

c 
te

st
in

g 
re

du
ce

d 
H

T
PR

 a
ft

er
 3

0 
da

ys
.

[1
16

]

X
ie

 X
, e

t a
l.

C
om

po
si

te
 o

f 
m

aj
or

 a
dv

er
se

 c
ar

di
ac

 o
r 

ce
re

br
ov

as
cu

la
r 

ev
en

ts
, i

nc
lu

di
ng

 d
ea

th
 f

ro
m

 a
ny

 c
au

se
, M

I,
 s

tr
ok

e 
an

d 
is

ch
em

ia
-d

ri
ve

n 
ta

rg
et

-v
es

se
l r

ev
as

cu
la

ri
za

tio
n,

 f
or

 th
e 

18
0-

da
y 

pe
ri

od
 a

ft
er

 r
an

do
m

iz
at

io
n

60
0

C
hi

C
T

R
-T

R
C

-1
10

01
80

7 
a

Pe
rs

on
al

iz
ed

 a
nt

ip
la

te
le

t t
he

ra
py

 a
cc

or
di

ng
 to

 C
Y

P2
C

19
 

ge
no

ty
pe

 a
ft

er
 P

C
I 

ca
n 

si
gn

if
ic

an
tly

 d
ec

re
as

e 
th

e 
in

ci
de

nc
e 

of
 M

A
C

E
 a

nd
 th

e 
ri

sk
 o

f 
18

0-
da

y 
ST

 in
 C

hi
ne

se
 

po
pu

la
tio

n.

[1
17

]

G
IA

N
T

D
ea

th
, M

I 
an

d 
ST

 b
et

w
ee

n 
ge

ne
tic

al
ly

 r
es

is
ta

nt
 p

at
ie

nt
s 

(*
2 

ge
no

ty
pe

) 
w

ith
 a

da
pt

ed
 tr

ea
tm

en
t v

er
su

s 
no

n-
re

si
st

an
t p

at
ie

nt
s 

(*
1 

ge
no

ty
pe

)
14

45
N

C
T

01
13

43
80

C
Y

P2
C

19
 g

en
ot

yp
e-

di
re

ct
ed

 a
nt

ip
la

te
le

t t
he

ra
py

 p
os

t-
PC

I 
m

ay
 r

ed
uc

e 
is

ch
em

ic
 e

ve
nt

s 
at

 o
ne

 y
ea

r.
[1

18
]

TA
IL

O
R

-P
C

I
O

cc
ur

re
nc

e 
of

 M
A

C
E

 o
ne

 y
ea

r 
af

te
r 

PC
I

59
45

N
C

T
01

74
21

17
E

st
im

at
ed

 p
ri

m
ar

y 
co

m
pl

et
io

n:
 J

un
e 

20
16

N
A

H
T

PR
: h

ig
h 

on
-t

re
at

m
en

t p
la

te
le

t r
ea

ct
iv

ity
; M

A
C

E
: m

aj
or

 a
dv

er
se

 c
ar

di
ov

as
cu

la
r 

ev
en

ts
; M

I:
 m

yo
ca

rd
ia

l i
nf

ar
ct

io
n;

 N
A

: n
ot

 a
va

ila
bl

e;
 P

C
I:

 p
er

cu
ta

ne
ou

s 
co

ro
na

ry
 in

te
rv

en
tio

n;
 S

T
: s

te
nt

 th
ro

m
bo

si
s.

a C
hi

ne
se

 C
lin

ic
al

 T
ri

al
 R

eg
is

tr
y.

Expert Opin Drug Metab Toxicol. Author manuscript; available in PMC 2016 July 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 32

TABLE 2

CYP2C19 genotyping tests approved by the U.S. FDA for in vitro diagnostic (IVD) usea

Assay Alleles Interrogated Company

INFINITI® CYP2C19 Assay *2, *3, *17 Autogenomics, Inc.

Verigene® CYP2C19 Test *2, *3, *17 Nanosphere, Inc.

Spartan RX CYP2C19 Assay *2, *3, *17 Spartan Bioscience, Inc.

xTAG® CYP2C19 Kit v3 *2, *3, *17 Luminex Molecular Diagnostics, Inc.

a
As listed on the U.S. Food and Drug Administration in vitro Diagnostic Product Database [198].
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