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Abstract

In a previous publication, we presented a new computational model called SLAM (Walker & 

Hickok, in press), based on the Hierarchical State Feedback Control (HSFC) theory (Hickok, 

2012). In his commentary, Goldrick (submitted) claims that SLAM does not represent a theoretical 

advancement, because it cannot be distinguished from an alternative lexical + post-lexical (LPL) 

theory proposed by Goldrick and Rapp (2007). First, we point out that SLAM implements a 

portion of a conceptual model (HSFC) that encompasses LPL. Second, we show that SLAM 

accounts for a lexical bias present in sound-related errors that LPL does not explain. Third, we 

show that SLAM’s explanatory advantage is not a result of approximating the architectural or 

computational assumptions of LPL, since an implemented version of LPL fails to provide the same 

fit improvements as SLAM. Finally, we show that incorporating a mechanism which violates some 

core theoretical assumptions of LPL—making it more like SLAM in terms of interactivity—

allows the model to capture some of the same effects as SLAM. SLAM therefore provides new 

modeling constraints regarding interactions among processing levels, while also elaborating on the 

structure of the phonological level. We view this as evidence that an integration of 

psycholinguistic, neuroscience, and motor control approaches to speech production is feasible and 

may lead to substantial new insights.

Introduction

The Semantic-Lexical-Auditory-Motor (SLAM) model of speech production (Walker & 

Hickok, in press) represents an attempt to evaluate the effects of a theoretically motivated 

architectural modification of the Semantic-Phonological (SP) model (Foygel & Dell, 2000). 

The modification involved splitting the phonological layer into two parts: an auditory and a 

motor component. This was motivated by neuroscience data and motor control theory, which 

both highlight the importance of sensorimotor interaction in controlling movement, 

including speech (Hickok, 2012). Part of the neuroscience data that motivated the 

architecture came from conduction aphasia, which can be conceptualized as a sensorimotor 

deficit in the linguistic domain, and thus we specifically predicted the SLAM model would 

provide better fits compared to SP for naming error patterns in this syndrome. Our 

prediction was confirmed without sacrificing fits for other types of aphasia. Furthermore, we 

used the clinical description of the conduction syndrome to predict the model configuration 

that would lead to fit improvements: strong auditory-lexical connections and weak auditory-

motor connections. This prediction was confirmed. Moreover, we discovered that this model 
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configuration improved fits for the conduction aphasia group specifically by accounting for 

sound-related errors via the interaction of the lexical and phonological levels as opposed to 

dysfunction at the phonological level alone. We took SLAM’s success as support for the idea 

that an integration of psycholinguistic, motor control, and neuroscience was (is) feasible 

(Hickok, 2014a, 2014b).

Goldrick (submitted) is unconvinced, however, that SLAM represents any real theoretical 

progress. He argues instead that SLAM does better than SP because it is an approximation of 

a lexical + post-lexical phonological theory (henceforth LPL) proposed by Goldrick and 

Rapp (2007), which he claims provides a better account of the sound-related errors in 

conduction aphasia by placing their source at the post-lexical level. In partial support of his 

claim, he presents a regression analysis showing that SLAM's fit improvements over SP for 

conduction aphasia are correlated with the number of sound-related errors that the patients 

produced. In reply, we make four points. First, Goldrick is comparing his conceptual model 

against a computational implementation of a part of our own conceptual framework. His 

arguments hold no water against our broader theoretical perspective. Second, we extend 

Goldrick's analysis to show that the SLAM fit improvements correlate with the degree of 

lexical bias within conduction patients' sound-related errors, thus implicating the 

involvement of the lexical level in the error pattern in these patients, which LPL does not 

predict but SLAM does. Third, because Goldrick has not used LPL to make quantitative 

predictions about the same data as SLAM, there is no objective metric to evaluate the claim 

that SLAM’s improvement is due to its approximating LPL. Finally, when we implement the 

LPL theory in a computational model, we find that it fails to provide the same fit 

improvements as SLAM.

On the relation between SLAM, HSFC, and LPL

Goldrick begins his commentary by correctly noting that we presented an implementation of 

aspects of Hickok’s (2012) Hierarchical State Feedback Control (HSFC) theory. He then 

fails to notice that (a) the unimplemented aspects provide exactly the post-lexical component 

he calls for and (b) the goal of SLAM was to assess precisely the one bit that we changed, 

not a full-blown implementation of the entire system as we understand it. In Goldrick’s 

(submitted) Figure 1, the SLAM architecture is redrawn to show its similarity to the LPL 

theory and to highlight the difference with respect to the existence of a post-lexical stage of 

phonological processing, present in LPL and absent in SLAM. But this is misleading with 

respect to the broader theoretical context in which SLAM is situated. Figure 1 here 

compares the architectures of the LPL conceptual theory with the HSFC conceptual theory. 

HSFC proposes the existence of sensorimotor loops that correspond to different hierarchical 

levels of phonological processing. One could readily map the auditory-phonological loop 

onto LPL's lexical phonological level and the somatosensory-phonological loop onto the 

post-lexical level. With this alignment there are no presumed architectural advantages of 

LPL in terms of selection levels. That is, if we implemented this more complete architecture 

we would, according to Goldrick’s arguments, provide a better fit to more of the data1. This 

remains to be seen, of course, but it is an interesting and potentially fruitful direction for 

further development. And now that we better understand the computational effects of 
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sensorimotor loops in word production models, which was the aim of developing SLAM, we 

are in a good position to take the next step.

What are the sources of sound-related errors in conduction aphasia?

The symptom complex of conduction aphasia was a major motivation for the development of 

the dual stream model of language processing (Hickok, 2000, 2001; Hickok et al., 2000; 

Hickok & Poeppel, 2000, 2004, 2007) and has remained central in recent work, such as the 

HSFC model, aimed at understanding the computational neuroanatomy of the dorsal, 

sensorimotor stream (Hickok, 2012, 2014a, 2014b; Hickok, Houde, & Rong, 2011). SLAM 

was developed specifically to assess the effects of the auditory-motor architecture of the 

HSFC framework on computational models of speech production. Because the HSFC was 

developed in part to explain conduction aphasia, we predicted that SLAM should improve 

the fits in this group by providing an architecture in which the auditory-motor interaction 

could be weakened while maintaining relatively strong lexical-auditory interaction. Our 

predictions were confirmed. We did not have further predictions regarding how this 

computational arrangement would generate the tendency to produce mainly sound-related 

errors, as is found in conduction aphasia. What we discovered in our analysis of the model, 

however, is that such errors were not only a function of misselection at the phonological 

level but also a function of strong auditory-phonological feedback to the lexical level that 

increased the probability of selecting a sound-related word at that level. The model thus 

generated a new hypothesis regarding an additional computational source of sound-related 

errors in conduction aphasia.

Goldrick (submitted) in his commentary presented new evidence linking SLAM’s 

improvement over SP to a better account of the conduction patients' sound-related errors in 

particular, extending our analysis in a way that is fully consistent with the assumptions of 

the HSFC framework. However, Goldrick questions SLAM’s computational explanation of 

sound-related errors and asserts instead that they arise as a consequence of post-lexical 

deficits. Quoting Goldrick (2011): "Disruption to post-lexical processing therefore results in 

the production of phonologically related words as well as nonwords, accounting for the 

overall performance pattern discussed above … Individuals with deficits to a post-lexical 

stage, governed by relationships among fully-specified phonological structures, will not be 

influenced by lexical factors."

1Goldrick's primary argument hinges on the claim that SLAM is a limited implementation of HSFC and therefore accidentally 
captures the details of the LPL theory rather than the intended theory. The criticism implies that Walker and Hickok (in press) 
overlooked the presence of post-lexical errors in the data, and because SLAM is an approximation of LPL, it is accidentally 
accounting for these errors in order to improve the fit. We note that, while SP and SLAM are both limited implementations of larger 
theories, the models both attempt to account for the theoretical notion of post-lexical errors through a practical implementation of 
lenient scoring. For patients with obvious articulatory-motor impairment, including verbal apraxia (e.g., Romani & Galluzzi, 2005; 
Romani, Galluzzi, Bureca, & Olson, 2011; Galluzzi, Bureca, Guariglia, & Romani, 2015), scoring is such that responses with a single 
addition, deletion, or substitution of a phoneme or consonant cluster are scored as correct. This scoring procedure is based on the 
assumption that the error occurred after the correct selection at the phonological layer of the model (Schwartz et al., 2006). This means 
that many of the sound-related errors that Goldrick assumes would be better explained by LPL and, by extension, SLAM were actually 
excluded from the analysis. Nevertheless, according to the LPL theory, any patient has the potential to exhibit a post-lexical processing 
error. Thus, while the analysis of SLAM clearly did not overlook the potential for post-lexical errors, it is possible that our efforts did 
not remove these effects from the data entirely (See Goldrick, Folk, and Rapp, 2010 for further discussion). We therefore tried to 
evaluate Goldrick's claim that SLAM's improvements are in fact due to its approximation of the LPL theory.
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One way to test this claim then is to look within the sound-related errors for correlations 

between lexical factors and SLAM fit improvement. Specifically, if sound-related errors are 

arising via interactions with the lexical level, then the amount of SLAM fit improvement 

should correlate with the amount of lexical bias among the sound-related errors. That is, 

SLAM should provide better fits for patients who produce more sound-related errors that are 

also real words, as opposed to sound-related errors that result in a non-word. On the other 

hand, if SLAM is only accounting for post-lexical deficits, fit improvements should be 

unrelated to the lexical status of the errors. We define the lexical bias for a patient using the 

empirical logit, i.e., the log-odds that a sound-related error is a word versus a non-word,

The numerator of the odds ratio includes the counts of Formal and Mixed (real word, sound-

related) errors, while the denominator includes only the sound-related Non-word errors (i.e., 

subtracting the Abstruse Neologisms that do not share any phonemes with the target). We 

examined the responses from 49 of the 50 patients analyzed by Goldrick (submitted); 

presumably, the excluded patient was added to the online database (Mirman et al., 2010) 

after our most recent query, and we do not expect data from a single patient to influence our 

results. We found that the differences in model fit (RMSD) between SP and SLAM 

significantly correlated with the lexical bias of the sound-related errors (r(47) = .30, p = .03); 

that is, when conduction patients produced more real-word sound-related errors, SLAM 

provided better fits. Excluding Mixed errors from the lexical bias definition, under the 

assumption that these errors could result from earlier semantic processing deficits, increased 

the correlation (r(47) = .46, p = .001). This does not preclude the possibility that sound-

related errors also arise from post-lexical processing deficits in conduction aphasia, but it 

does show that at least some of the SLAM fit improvement is coming from better modeling 

of sound-related errors arising via interaction with the lexical level. Goldrick's assumption 

that the SLAM model is only accounting for post-lexical sound-related errors is therefore 

unfounded.

How do we know if LPL accounts for the same data as SLAM?

The LPL theory is a conceptual one, not a computational implementation. We can readily 

compare the amount of variance accounted for by the two computational models we 

evaluated, SP and SLAM, and apply quantitative metrics to determine which one does a 

better job. Goldrick does not present a quantitative metric to evaluate the performance of the 

LPL theory relative to these models, making it impossible to confirm or refute his claim 

based on his arguments. For example, Goldrick asserts that SLAM has “great difficulty” in 

accounting for his prototypical case of a patient with only sound-related errors. What we 

know is that SLAM predictions for this case deviate (using the RMSD metric) from the 

observed values on average by 1.5% (Figure 2), which is better than the typical fit error 

values across all patients. Is this a good fit, or is SLAM having great difficulty? The only 

way to tell is to compare it with the fit of a competitor model. If the competitor’s fit differs 

by 10%, then SLAM provides a good fit. If the competitor’s fit is off by 0.01%, then indeed 
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SLAM is having great difficulty. Since Goldrick provides no quantitative comparison, his 

assertions are vacuous.

The same lack of quantitative comparison undermines Goldrick's critique of our 

methodological approach. The critique is based on a set of simulations involving the SP 

model reported previously (Goldrick, 2011). The simulations involved generating artificial 

datasets with SP as well as two alternative models. Data from the three models were then fit 

with parameters from the SP model. Goldrick claims that “the degree of fit was equivalent 

for all three artificial case series.” From this observation, he suggests that model fitting 

cannot always discriminate between theoretical accounts. However, his statements are 

misleading and his simulation strategy is inadequate. In order to discriminate models 

quantitatively, it is not enough to look at fits from a single model and judge them good or 

poor, equivalent or different. Rather, one needs to evaluate the fits of each model and assess 

whether one provides a better account of the data than the other.

To demonstrate this point and to evaluate whether our methods can indeed discriminate SP 

and SLAM, we ran simulations similar to those carried out in Goldrick (2011). Specifically, 

we generated three artificial data sets using the SP model and three using SLAM. Two of the 

artificial datasets from each model were generated by simulating 175 naming attempts from 

each of 1,000 simulated patients, following Goldrick (2011); the third artificial dataset was 

generated by simulating 175 naming attempts from each of 255 simulated patients (see 

below). For the first two artificial datasets, a given patient was simulated using a set of 

model parameters selected randomly from a continuous distribution of parameters. Goldrick 

(2011) used a single continuous distribution of parameters in his simulations, namely, all 

weights were independently and normally distributed with a mean of 0.025, a standard 

deviation of 0.01, and truncated on the interval [0.0001, 0.05]. Since this parameter space 

distribution is an arbitrary choice, we used two different arbitrary distributions applied to 

each model (SP and SLAM) to provide a more thorough evaluation of model 

discriminability. The first was a normal distribution with mean 0.02 and standard deviation 

0.01 truncated on the interval [0.0001, 0.04]. These values were selected because we used a 

maximum weight of 0.04 in our original simulations for both SP and SLAM. Also, in 

accordance with our original simulations of SLAM, the LM-weight was re-sampled until it 

was less than the LA-weight (Walker & Hickok, in press). The normal distribution assumes 

that most aphasic patients will have weights around 0.02, and few will have extreme weight 

values. In the second simulated dataset, we used a uniform distribution of weight values, that 

is, a distribution in which any value is equally likely to be selected over the interval [0.0001, 

0.04]; again we constrained the LM-weight to be less than the LA-weight for the SLAM 

simulations. Our third simulation used the empirical distribution of weight configurations in 

our sample rather than randomly sampling from a continuous distribution of parameter 

values. For each of the 255 patients in our sample, we generated a new simulated patient 

with 175 naming attempts using the best fit parameter values from each model. These 

procedures generated six datasets: three generated by SP and three generated by SLAM. We 

then fit each dataset with each of the models, using the same maps with 2,321 points and 

10,000 naming attempts that we used in our previous studies.
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For each data set, we used a paired, two-tailed t-test to assess whether the models produced 

significantly different fits to the data on average. We note that null hypothesis testing is not 

the only way to quantitatively compare models, but it provides a familiar frame of reference. 

Our null hypothesis was that the models have equal fit to the data on average and thus cannot 

be discriminated with our method. Table 1 shows the average fit of each model to each data 

set, along with the preferred model if we had enough evidence to reject our null hypothesis 

and successfully discriminate between them.

In each comparison, the true model that generated the data provided a better fit compared to 

the alternative model. A statistical test of the difference in fits between the two models 

shows that the difference is statistically significant in each case (or all but one case if the p = 

0.0512 is counted as non-significant). This makes it a non-trivial finding that there are 

enough individuals from a broad sample of post-acute aphasic patients concentrated in 

regions of parameter space to detect a difference between the models; if SLAM did not truly 

improve fits over SP for the aphasia population, then our model comparisons would have 

indicated this. We note that these effect sizes would be much larger if the analysis was 

applied to the empirical distribution of only the conduction patients. We also note that our 

observed effect sizes2 are much smaller than those reported by Goldrick (2011). If we had 

used Goldrick's (2011) model evaluation method (comparing datasets, not models), we 

would simply observe that the average fit of the SP model to the SP_normal data is very 

similar to the average fit of the SP model to the SLAM_normal data, 0.0118 and 0.0123, 

respectively, and conclude without further analysis that it is impossible to discriminate 

between the models. This illustrates the importance of comparing different models of the 

same data.

How does an implemented version of LPL fare?

Goldrick contends that the only reason SLAM improves fits over SP is because SLAM 

includes an intervening layer between lexical selection and the model's output, accidentally 

capturing the critical components of the LPL theory. He explains that the SLAM architecture 

can be converted into an implementation of the LPL theory simply by removing the lexical-

motor weight, and more importantly, adding a further selection step at the auditory layer. 

Indeed, the added selection step is the crucial difference between the theories under 

consideration. SLAM does not include an extra selection step, so minimizing the LM weight 

is the best it can do (without becoming a different model) to approximate LPL. But we 

already demonstrated that restricting this weight for all patients (i.e., approximating LPL) 

leads to worse predictions (Walker & Hickok, in press). Thus, it is clear that SLAM, as we 

previously implemented it, does not improve over SP by approximating the structure of LPL. 

We therefore considered the possibility that a different model that better represents the LPL 

theory might account for the same data as SLAM.

2Goldrick (2011) reports that the SP model fits the SP-generated dataset with 0.01 mean RMSD and other datasets with 0.017 mean 
RMSD. Even though this represents a 70% increase in error, and is judged by Goldrick (2011) to be "equivalent", these effect sizes 
regard the difference in fit between datasets, not the difference in fit between models. These comparisons should not be confused with 
our effect sizes in fit between models, which is a more clearly interpretable quantity.
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We created a new LPL model by modifying SLAM in accordance with Goldrick's 

suggestions: removing the lexical-motor weight3, adding a selection step at the auditory 

layer, and removing the lexical input to phonemes after they are selected. This last 

modification implements Goldrick’s assumption that post-lexical processing is a distinct 

stage. Quoting Goldrick (submitted): "Note that this is a distinct stage of production 

processing in that it follows the explicit selection of an abstract phonological representation. 

In general, such selection mechanisms serve to reduce interactions across processing levels, 

increasing the degree to which distinct subprocesses can exhibit distinct patterns of 

impairment." Thus, by removing lexical input to phonemes after they are selected, we are 

implementing this theoretical position. In the LPL implementation, the phonological units 

correspond to SLAM's auditory units, and the phonetic units correspond to the motor units. 

The phonetic units can be thought of as localist representations of feature bundles, and none 

of the phonemes in the artificial lexicon share phonetic features. We refer to the connections 

as S-weights, P-weights, and PL-weights. For the LPL model to be viable, the boost of 

activation to each phonological unit should be large enough to successfully propagate over a 

further number of timesteps to produce mostly correct responses in the healthy model. We 

verified that delivering a boost of 150 to each phonological unit and running the model an 

additional 8 timesteps with the weights set at the maximum (0.04) was able to approximate 

the normal pattern (~97% correct). We then used the same procedures that we used 

previously (Walker & Hickok, in press) to fit the same patient data with our implementation 

of LPL, using a parameter map that included 2,321 points. As can be seen in Figure 3a, a 

scatterplot comparing the models' fits (RMSD) shows that LPL offers no improvements over 

SP: that is, fit differences are within 1SD of the fit difference between SLAM and SP. Figure 

3b compares model fits for LPL versus SLAM. Note the cloud of points that fall outside the 

1SD range; these indicate SLAM’s fit advantage over LPL. Figure 3c shows that the 

conduction patients are once again fit better by SLAM compared to LPL. It is clear that 

SLAM significantly outperforms LPL in the same way that it outperforms SP.

The above simulation shows that SLAM's improvement over SP cannot be accounted for 

simply by the addition of another processing level. Nevertheless, Goldrick (submitted) 

proposes a further modification of the SLAM model. He argues that SLAM’s inclusion of 

strong feedback (following SP) renders the model empirically inadequate. Instead he 

promotes Rapp and Goldrick's (2000) Restricted Interaction Account (RIA). We tested this 

assertion computationally by adding the RIA assumptions to the LPL model implementation 

described above, creating LPL/RIA4. According to RIA, there should be no feedback from 

the lexical to the semantic layer, and "limited" feedback from the phonological to the lexical 

layer. Following Ruml, Caramazza, Shelton, and Chialant (2000), who also implemented the 

RIA assumptions in a computational model to fit patient data, we used a feedback 

attenuation value of 0.1 for the P-weights, meaning that the connection strength was 1/10 of 

the value in the reverse direction compared to the forward direction. The PL-weights 

3In order to reuse our earlier code to map a 4-parameter space, the LM-weight was allowed to vary between 0 and 1e-8, then all points 
greater than or equal to 5e-9 were removed, as they likely represent duplicate predictions. If an LM-weight was not exactly zero in the 
final map, it remained several orders of magnitude smaller than the activation levels in the network.
4We only implemented assumptions regarding feedback. Other versions of RIA have made different assumptions regarding the size of 
the lexicon, the implementation of damage as noise, the strength of the boosts, the number of timesteps, and an additional stage of pre-
lexical, conceptual processing, which we did not address.
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remained fully interactive5, and again lexical influences were removed during post-lexical 

processing. The scatterplot (Figure 4) shows that this LPL/RIA model makes worse 

predictions than the fully interactive SP model.

Finally, we hypothesized that our implementation of LPL might be able to approximate 

SLAM if it incorporated the same mechanism that we previously identified as driving the fit 

improvements: strong phonological feedback to the lexical level that influences the weak 

phonological feedforward link to the output layer (Walker & Hickok, in press). The only 

way we were able to do this was to drop Goldrick’s proposed restrictions on interaction, 

both with respect to the RIA assumptions and the post-lexical interaction restriction. That is, 

we allowed lexical representations to influence "post-lexical" processing, in order to capture 

the effects that SLAM suggests are occurring via interaction with the lexical level, creating 

LPL/SLAM. To be clear, this is a test of the feedback mechanism as the explanatory factor 

in model improvement over SP for conduction aphasia, rather than a test of either the LPL or 

the SLAM models. Due to the interactivity, the lexical layer received a strong boost of 

feedback activation during phonological selection and, coupled with weak feedforward 

activation across low PL-weights, this may have the same effect as the two separate 

phonological sources in SLAM. Although LPL/SLAM still yields a worse fit than SP and 

SLAM on average, this implementation does capture many of the improvements observed 

with SLAM, accompanied by strong P-weights and weak PL-weights (Figure 5). The 

implication is that this mechanism, strong phonological-lexical interaction that influences 

weak phonological selection, can lead to improved fits for conduction aphasia naming 

regardless of the other theoretical or computational details of the model. The mechanism 

provides constraints on assumptions about interactivity of phonological and lexical 

processing for future models of conduction aphasia.

Summary

The question raised by Goldrick (submitted) is whether SLAM represents an improvement 

over his LPL model. He argues that it offers no improvement. We have argued here that it 

does. First, we pointed out that SLAM implements a portion of a conceptual model (HSFC) 

that encompasses LPL. Second, we showed that SLAM accounts for a lexical bias among 

sound-related errors that LPL does not explain. Third, we showed that SLAM’s explanatory 

advantage is not a result of approximating the architectural or computational assumptions of 

LPL. Finally, we showed that abandoning some core theoretical assumptions of LPL—

making it more like SLAM in terms of interactivity—allowed LPL to capture some of the 

same effects as SLAM. SLAM therefore provides new modeling constraints regarding 

interactions among processing levels, while also elaborating on the structure of the 

phonological level. We view this as evidence that an integration of psycholinguistic, 

neuroscience, and motor control approaches to speech production is feasible and may lead to 

substantial new insights (Hickok, 2014a, 2014b).

5The connections are 1-to-1, so the interactivity has no effect; a stronger boost could simply compensate for reduced feedback.
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Figure 1. 
The lexical + post-lexical (LPL) model (left) compared with the Hierarchical State Feedback 

Control (HSFC) model (right).
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Figure 2. 
Observed response pattern in a patient with no semantic errors and SLAM’s best fit 

predictions.
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Figure 3. 
A) The scatterplot compares model fits (RMSD) for LPL and SP. B) The scatterplot 

compares model fits (RMSD) for LPL and SLAM. The solid diagonal line represents 

equivalent fits, and the dotted lines represent 1SD of fit difference between SLAM and SP. 

C) The bar graph shows SLAM's fit improvements over LPL, grouped by aphasia type
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Figure 4. 
The scatterplot compares model fits (RMSD) for LPL/RIA and the (fully interactive) SP. 

The solid diagonal line represents equivalent fits, and the dotted lines represent 1SD of fit 

difference between SLAM and SP.

Walker and Hickok Page 14

Psychon Bull Rev. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
A) The scatterplot compares model fits (RMSD) for LPL/SLAM and SLAM. B) The bar 

graph shows LPL/SLAM's fit improvements over SP, grouped by aphasia type C) The 

boxplots show the weight configurations for the 19 patients with LPL/SLAM fit 

improvements over SP greater than .01 RMSD.
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Table 1

Results from paired, two-tailed t-tests comparing mean RMSD for the SP and SLAM models. The data sets 

that were generated with parametric distributions each have 1,000 simulated patients. The data sets that were 

generated with empirical distributions each have 255 simulated patients.

Data set SP fit
(mean RMSD)

SLAM fit
(mean RMSD)

Preferred
model

p-value

SP_normal 0.0118 0.0124 SP 0.0021

SP_uniform 0.0116 0.0123 SP 0.0006

SP_empirical 0.0099 0.0106 SP 0.00006

SLAM_normal 0.0123 0.0117 SLAM 0.0155

SLAM_uniform 0.0120 0.0116 SLAM 0.0512

SLAM_empirical 0.0105 0.0096 SLAM 0.00004
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