
Systems/Circuits

Movement Enhances the Nonlinearity of Hippocampal Theta
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The nonlinear, metastable dynamics of the brain are essential for large-scale integration of smaller components and for the rapid
organization of neurons in support of behavior. Therefore, understanding the nonlinearity of the brain is paramount for understanding
the relationship between brain dynamics and behavior. Explicit quantitative descriptions of the properties and consequences of nonlin-
ear neural networks, however, are rare. Because the local field potential (LFP) reflects the total activity across a population of neurons,
nonlinearites of the nervous system should be quantifiable by examining oscillatory structure. We used high-order spectral analysis of
LFP recorded from the dorsal and intermediate regions of the rat hippocampus to show that the nonlinear character of the hippocampal
theta rhythm is directly related to movement speed of the animal. In the time domain, nonlinearity is expressed as the development of
skewness and asymmetry in the theta shape. In the spectral domain, nonlinear dynamics manifest as the development of a chain of
harmonics statistically phase coupled to the theta oscillation. This evolution was modulated across hippocampal regions, being stronger
in the dorsal CA1 relative to more intermediate areas. The intensity and timing of the spiking activity of pyramidal cells and interneurons
was strongly correlated to theta nonlinearity. Because theta is known to propagate from dorsal to ventral regions of the hippocampus,
these data suggest that the nonlinear character of theta decreases as it travels and supports a hypothesis that activity dissipates along the
longitudinal axis of the hippocampus.
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Introduction
The nonlinear character of the brain (Buzsáki, 2006) has been
recognized for �50 years (Ashby, 1947; Wiener, 1966) as the
foundation of large-scale integration across local neuron struc-
tures (Steriade, 2001; Buzsáki and Draguhn, 2004) and for the
metastable dynamics critical for rapid neuron organization in

support of behavior (Engström et al., 1996; Friston, 1997; Tog-
noli and Kelso, 2014). Understanding brain nonlinearity is there-
fore fundamental for determining how brain dynamics translate
to behavior (Hasselmo, 2015; Marder, 2015), yet quantitative
descriptions of brain nonlinearity are scarce (Buzsáki, 2006). Us-
ing a thermodynamics analogy, “understanding the brain” can be
achieved by describing either its microscopic states (complete
description of the state of each neuron) or its macroscopic states
(sets of “statistically equivalent” microscopic states). Although
the former does not seem achievable (Marder, 2015), even with
new high-density measures of real-time neural activity (Ziv et al.,
2013), a macroscopic model of brain dynamics could be built on
existing measurement techniques, such as the local-field poten-
tial (LFP). The LFP reflects the activity of a larger number of
neurons (Buzsáki, 2002; Buzsáki et al., 2012; Schomburg et al.,
2012), providing a macroscopic signature of microscopic activity.

Although the characteristics of the hippocampal LFP in rela-
tion to behavior are well documented (Buzsáki, 2005), its nonlin-
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Significance Statement

We describe the first explicit quantification regarding how behavior enhances the nonlinearity of the nervous system. Our findings
demonstrate uniquely how theta changes with increasing speed due to the altered underlying neuronal dynamics and open new
directions of research on the relationship between single-neuron activity and propagation of theta through the hippocampus. This
work is significant because it will encourage others to consider the nonlinear nature of the nervous system and higher-order
spectral analyses when examining oscillatory interactions.
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earity has not been examined explicitly. The goal of the current
investigation was to quantify the nonlinearity of the hippocampal
theta rhythm in relation to movement. Theta is a dominant fea-
ture of hippocampal LFP commonly reported as a 4 –12 Hz os-
cillation associated with active exploration and REM sleep (Jung
and Kornmüller, 1938; Green and Arduini, 1954; Vanderwolf,
1969) that may serve to organize hippocampal neuron firing.
During movement, principal cells of the hippocampus express
spatial receptive fields (O’Keefe and Dostrovsky, 1971). As an
animal passes through a neuron’s place field, the spike timing
systematically shifts to earlier phases of theta between adjacent
cycles (O’Keefe and Recce, 1993). The rate at which this preces-
sion occurs varies along the longitudinal axis of the hippocampus
(Maurer et al., 2005). Interestingly, differences between dorsal
and more ventral regions of the hippocampus are also observed
in theta amplitude and the firing rate of neurons, such that firing
rates and theta power in intermediate CA1 show less velocity
modulation than in dorsal CA1 (Maurer et al., 2005). This sug-
gests that dynamic interactions between hippocampal neurons
and LFP may reflect the behavioral state of an animal, but this
varies according to longitudinal position.

In addition to amplitude, the shape of the theta wave is sensi-
tive to movement, with a transition from a sinusoid to sawtooth
shape at faster running speeds (Buzsáki et al., 1983; Terrazas et al.,
2005). Moreover, a 16 Hz oscillation has been observed to de-
velop as a function of velocity (Czurko et al., 1999; Terrazas et al.,
2005), described as the second harmonic of theta (Harper, 1971;
Coenen, 1975; Leung et al., 1982; Leung, 1982). The standard
technique used to investigate theta, however, has typically been
based on Fourier power-spectrum analysis. Because it ignores
phases, this approach is fundamentally linear. Therefore, the
nonlinear mechanisms underlying the relationship between the
16 Hz oscillation and the sawtooth shape of theta in relation to
running speed (Skaggs, 1995) and dorsoventral position is not
well understood.

The theta rhythm is also known to propagate along the hip-
pocampal longitudinal axis (Lubenov and Siapas, 2009; Patel et
al., 2012), losing amplitude as it moves into more ventral regions
(Maurer et al., 2005; Royer et al., 2010). It is not known, however,
how this relates to longitudinal differences in the modulation of
neuron activity by velocity. To understand the nature of the saw-
tooth shape of theta and the 16 Hz frequency component in the
hippocampus, we investigated the nonlinear character of the
theta rhythm in the dorsal and intermediate regions of the hip-
pocampal CA1 subregion. The nonlinearity was quantified in
terms of phase coupling between different Fourier frequency
bands that were estimated using third-order Fourier statistics.

Materials and Methods
Subjects and behavior. Neurophysiology data were obtained from three
Brown Norway/Fisher-344 hybrid male rats between 8 and 12 months of
age. The rats were housed individually and maintained on a 12 h light/
dark cycle. Recordings took place during the dark phase of the cycle.
Surgery was conducted according to the National Institutes of Health’s
guidelines for rodents and approved Institutional Animal Care and Use
Committee protocols.

Before surgery, the animals were food deprived to 85% of their ad
libitum weight. During this time period, the rats were trained to run on
circular tracks for food reinforcement. Food was given on either side of
the barrier and at the 180° opposite point. Rats ran for �20 min, resulting
in a variable number of laps per session depending on motivation and
other factors. Each track running session was flanked by a rest period in
which the rat rested in a towel lined pot located near the track. For the

present analyses, only data obtained during running conditions are
presented.

Surgical procedures. Neuronal recordings were made in the dorsal and
intermediate CA1 subregion of the hippocampus. Before surgery, rats
were administered ampicillin (Bicillin; Wyeth Laboratories; 30,000 U,
i.m., in each hindlimb). The rats were implanted, under isofluorane an-
esthesia, with an array of 14 separately movable microdrives (“hyper-
drive”). This device, implantation methods, and the parallel recording
technique have been described in detail previously (Gothard et al., 1996).
Briefly, each microdrive consisted of a drive screw coupled by a nut to a
guide cannula. Twelve guide cannulae contained tetrodes (McNaughton
et al., 1983; Recce and O’Keefe, 1989), four-channel electrodes con-
structed by twisting together four strands of insulated 13 �m nichrome
wire (H.P. Reid). Two additional tetrodes with their individual wires
shorted together served as an indifferent reference and an EEG recording
probe. A full turn of the screw advanced the tetrode 318 �m.

For 1 rat, the tetrodes were divided into 2 groups of 7 (“split bundle
drive”), permitting recording simultaneously from the septal (3.0 mm
posterior, 1.8 mm lateral to bregma) and middle (6 mm posterior, 5.0
mm lateral to bregma) regions of the hippocampus. For the other 2 rats,
recordings were made sequentially, first from the intermediate (5.7 mm
posterior, 5.0 mm lateral to bregma). After intermediate recordings were
completed, the implant was removed. Rats were then implanted with a
new array in dorsal/septal (3.0 mm posterior, 1.4 mm lateral to bregma)
regions. In all cases, the implant was cemented in place with dental acrylic
anchored by dental screws. A ground lead was connected to one of the
jeweler’s screws placed in the skull. After surgery, rats were orally admin-
istered 26 mg of acetaminophen (Children’s Tylenol *Elixir; McNeil).
They also received 2.7 mg/ml acetaminophen in the drinking water for
1–3 d after surgery and oral ampicillin (Bicillin; Wyeth Laboratories) on
a 10 d on/10 d off regimen for the duration of the experiment. Data from
these animals have been used in other unrelated analyses that have been
published previously (Maurer et al., 2005; Maurer et al., 2006a, 2006b;
Maurer et al., 2012), drawing from a database of �900 well isolated
pyramidal neurons.

Electrophysiological recording. Twelve tetrodes were lowered after sur-
gery into the hippocampus, allowed to stabilize for several days just above
the CA1 hippocampal subregion, and then gradually advanced into the
CA1 stratum pyramidale. Another probe was used as a neutral reference
electrode and was located in or near the corpus callosum. The final probe
was used to record theta field activity from the vicinity of the hippocam-
pal fissure. Each tetrode was attached to four separate channels of a
50-channel unity-gain head stage (Neuralynx). A multiwire cable con-
nected the head stage to digitally programmable amplifiers (Neuralynx).
The spike signals were amplified by a factor of 1000 –5000, band-pass
filtered between 600 and 6 kHz, and transmitted to the Cheetah Data
Acquisition system (Neuralynx). Signals were digitized at 32 kHz and
events that reached a predetermined threshold were recorded for a du-
ration of 1 ms. Spikes were sorted offline on the basis of the amplitude
and principal components from the four tetrode channels by means of a
semiautomatic clustering algorithm (BBClust; P. Lipa, University of Ar-
izona, Tucson, AZ, and KlustaKwik; K.D. Harris, Rutgers University,
Newark, NJ). The resulting classification was corrected and refined man-
ually with custom-written software (MClust; A.D. Redish, University of
Minnesota, Minneapolis, MN), resulting in a spike-train time series for
each of the well isolated cells. No attempt was made to match cells from
one daily session to the next, so the numbers of recorded cells reported
does not take into account possible recordings from the same cells on
consecutive days. However, because the electrode positions were ad-
justed from one day to the next, recordings from the same cell over days
were probably relatively infrequent. Putative pyramidal neurons were
identified by means of the standard parameters of firing rate, burstiness,
spike waveform shape characteristics (Ranck, 1973), and the first mo-
ment of the autocorrelation (Csicsvari et al., 1998).

Theta activity in the CA1 layer was taken from the tetrode that col-
lected the most pyramidal neurons while the fissure LFP was recorded
from a separate probe that was positioned 0.5 mm below the CA1 pyra-
midal layer. LFP signals were band-pass filtered between 1 and 300 Hz
and sampled at 2.4 kHz, amplified on the head stage with unity gain, and
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then amplified again with variable gain amplifiers (up to 5000). Several
light-emitting diodes were mounted on the head stage to allow position
tracking. The position of the diode array was detected by a television
camera placed directly above the experimental apparatus and recorded
with a sampling frequency of 60 Hz. The sampling resolution was such
that a pixel was 0.3 cm.

Time-series analysis. Throughout the current study, the phrase “time
series” will be used in its traditional sense of a sequence of unprocessed
measurements (numbers) indexed in time, synonymous to raw, unfil-
tered voltage traces of the EEG. This study assumes that EEG time series
express essential properties of the underlying physical processes of the
brain; that is, the physiological interactions contributing to the extracel-
lular transmembrane currents. In principle, these processes could be
represented using a mathematical formalism that uses a set of differential
equations to describe their time evolution. The term “system” will there-
fore be used as it is in “dynamical systems” theory, to denote the differ-
ential equations that describe the brain processes and the time evolution
of their solutions. Therefore, “system” can be thought of as a mathemat-
ical abstraction completely describing the brain processes.

In the mathematical description introduced above, EEGs are functions
of, and carry information about, the state of the underlying system. The
central focus of this study is the nonlinear character of the system and
the central observation that the nonlinearity of the brain is reflected in
the EEG time series. If the system is linear, then known solutions can be
added to construct new solutions; that is, the solution space is a linear
space. Under quite general uniformity conditions, sinusoids form a basis
of the solution space, the Fourier basis. The general solution is a super-
position of sinusoids with different amplitudes (which include the initial
phase) and thus completely defined by the distribution of amplitudes.
The stochastic general solution is a superposition of sinusoids with ran-
dom amplitudes. The joint probability density of the amplitude set de-
fined completely the statistics of the solution. Therefore, the geometry of
the solution space of a linear system is trivial: any point in the space
spanned by the Fourier basis is a solution to the system and the general
solution is completely characterized by the projections on the elements of
the basis (amplitudes).

In contrast, in the case of nonlinear systems, two solutions cannot be
added to construct a new solution, which makes them rather intractable
unless some simplifying assumptions can be made. Our central assump-
tion is that the brain is a weakly nonlinear system and, for weakly non-
linear systems, the general solution can still be represented, in the leading
order, as a superposition of sinusoids. However, the amplitudes cannot
be constant (otherwise, the system would be linear) and therefore have to
evolve. Indeed, decomposition on a linear basis (e.g., the Fourier one)
yields a system of equations that describes the evolution of amplitudes
through mutual interactions.

The geometry of the nonlinear solution space becomes nontrivial: a
general solution is a trajectory in the space spanned by the Fourier basis.
The stochastic solution will therefore be characterized by statistically
correlated amplitudes and phases. Phase correlations are expressed in the
peculiar appearance of the shape of the solution, for example, in the
development of time series asymmetries. It follows that such a solution is
not completely defined by its power spectrum and knowledge about the
phase correlations is essential.

The analysis of the theta spectral band EEG time series used in the
current study was based on standard techniques used for stationary sig-
nals (Priestley, 1981; Papoulis and Pillai, 2002). We assume that the EEG
time series g(t) is a stochastic process, stationary in the relevant statistics,
and decompose it using the discrete Fourier transform (DFT) as follows:

gj �
1

N �
n�1

N

Gn exp�2�fntj�; Gn � �
j�1

N

gj exp� � 2�fntj�; (1)

Where gj � g(tj) is a sequence of N points collected at times tj � j�t, with
j � 1, 2, . . ., N, �t is the sampling interval, and Gn � G( fn) is the
sequence of complex Fourier coefficients corresponding to the fol-
lowing frequencies:

fn �
n

N�t
, with n � 1, 2, . . ., N. (2)

The family of sequences sn(tj) � exp (�2�fntj) form the Fourier basis,
also called modes. The second-order (linear) statistics of the Fourier
spectrum of time series g are characterized by the spectral density as
follows:

S
n

� S� fn� � E[GnGn
�] (3)

Where Gn is the series of complex Fourier coefficients of process g, fn is a
frequency band in the Fourier representation (Eq. 2), and E[. . .] is the
expected-value operator. Spectral densities describe the frequency distri-
bution of variance. If the process g is linear, it is completely characterized
by its variance and consequently its variance density S

n
. A realization of

the process can be derived by assigning a set of random phases (uni-
formly distributed in [��, �]) to modal amplitudes defined e.g., as
√�S

n
��2. Note that the spectral density contains no information about

phases, their correlation, and, therefore, about the nonlinearity of the
process.

The nonlinear character of the system, expressed in phase correlations
across spectral components, is described in the lowest order by the
bispectrum, first proposed for ocean waves by Hasselmann et al. (1963)
and further developed by Rosenblatt and Van Ness (1965) and others
(Kim and Powers, 1979; Masuda and Kuo, 1981; Elgar, 1987), as follows:

B
n,m

� B� fn, fm� � E	GnGmGm
n
� �, (4)

Where fn and fm are two frequencies in the Fourier sequence in Equation
2. In other words, in this notation, fn and fm are waves of different fre-
quencies. When the bispectrum is derived from a single time series, the
result is described as the auto-bicoherence (simply referred to as bico-
herence in the present study). The bispectrum is statistically zero if the
Fourier coefficients are mutually independent; that is, for a linear system.
For nonlinear systems, the bispectrum will exhibit peaks at triads ( fn, fm,
fn
m) that are phase correlated, measuring the degree of three-wave
coupling. The real and imaginary part of the bispectrum B provide mea-
sures of third-order statistics (Masuda and Kuo, 1981; Elgar, 1987), as
follows:

��3�
n,m

Bn,m � � � iA (5)

Where � is the skewness and A is the asymmetry of the process (Haubrich
and MacKenzie, 1965; Masuda and Kuo, 1981) and � is its SD, with the
sign of � and A (�) indicating the direction of the skew or asymmetry.
Both � and A are “global” measures of the nonlinearity of the process
(Fourier modes obviously have zero skewness and asymmetry). Mean-
ingful skewness/asymmetry estimates can be defined for a frequency
band only if it is wide enough (see below) to contain all of the relevant
phase-coupled modes.

To eliminate the distortion induced by the variance distribution, the
bispectrum can be normalized (Haubrich and MacKenzie, 1965) as
follows:

b
n,m

�
Bn,m

� E��GnGm�2�E��Gn
m�2��1/ 2 . (6)

The squared modulus and the phase of the normalized bispectrum are
called bicoherence and biphase. Although definition 5 does not insure
that 	bn,m	 
 1 (see, e.g., Kim and Powers, 1979; Elgar and Guza, 1985), it
was adopted here for its simplicity and ease of implementation. Equation 4
implies that the real and imaginary part of the normalized bispectrum can be
interpreted as the “frequency distribution” of skewness and asymmetry. In
the sequel, we will refer to the real and imaginary parts of the normalized
bispectrum as skewness and asymmetry distributions as follows:

�n,m � R�bn,m�; An,m � I�bn,m�, (7)

Where R{z} and I{z} are the real and imaginary parts of the complex
number z, respectively.

The bispectrum (and thus the normalized bispectrum) has well known
symmetries with respect to its arguments (Rosenblatt and Van Ness,
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1965; Fig. 1), which is equivalent to saying that different regions in the
plane spanned by ( fn, fm) contain equivalent (redundant) bispectral in-
formation, as follows:

B��fn, �fm� � B�� fn, fm� Quadrants 1 � 3 and 2 � 4

are equivalent. (8)

B� fm, fn� � B� fn, fm� Octants 1 � 2 are equivalent. (9)

B� fn, fm� � B�� fn, �fm, fm� Octants 1 � 8 and 2 � 7

are equivalent. (10)

From rules 8 –10, it follows that the first octant of the plane ( fn, fm)
contains all nonredundant bispectral information. For the DFT, the
nonredundant domain reduces to a segment of the first octant bounded
by a line parallel to the second diagonal passing through the maximum
(Nyquist) frequency. The nonredundant domain in the ( fn, fm) plane is
illustrated in Figure 1. The figure contains a basic, minimal receipt for
understanding bispectral distributions. At any point in the ( fn, fm) plane,
the value of the bispectrum B( fn, fm) represents the phase correlation
between the Fourier modes with frequencies fn, fm, and fn
m� fn 
 fm,.
In other words, the triad contains the two coordinates of the point and
the frequency defined by the intersection of the second diagonal with the
horizontal axis.

Implementation of bispectral analysis. To estimate second-order Fou-
rier statistics, the time series were de-meaned, linearly de-trended, and
divided into 50% overlapping segments of �4 s windows (2 13-point
windows for the sampling rate fs � 1988 Hz for rats 7951 and 8042; 214
for fs � 936 Hz for rat 7805), with a frequency resolution of ��f � 0.25
Hz. The total time intervals for analysis were chosen so as to yield a
number of degrees of freedom (DOF) �170 for all data analyzed and
DOF � 300 for the data presented. The statistics of the bispectrum of
stationary processes are well understood (Haubrich and MacKenzie,
1965; Elgar and Guza, 1985; Elgar and Sebert, 1989; and many others).
Briefly, for the normalization used here (Eq. 6), the probability density
function (PDF) is approximated by the noncentral 	 2 distribution,
where 	b	 2 is the mean value of the bicoherence, and the parameters n and

 are given by the following (equations 6 – 8 in Elgar and Sebert, 1989).

f� 	b	2


 � 
 	2�	b	2, n� with n �
DOF 	b	2

2�1 � 	b	2�3, and 
 �
	b	2

n

(11)

Knowledge of the theoretical PDF allows for estimating confidence limits
for any mean value of the bicoherence. Because zero mean that bicoher-
ence is meaningful for distinguishing between linear and nonlinear sto-
chastic processes, an important consequence of the above discussion is

that the zero-mean bicoherence is 	 2 distributed with n � 2. From this,
a confidence level can be derived. With DOF � 300, the zero-mean
bicoherence 	b	 
 0.05 at 90% confidence level and bicoherence 	b	 
 0.1
at 95%. This is consistent with Elgar and Guza’s (1985) estimate

of 	b	 � � 6

DOF

 0.15 at 99% (Haubrich and MacKenzie, 1965 gives

this relation for a different bispectral normalization and for the confi-
dence level of 95%).

The time–frequency representation (windowed Fourier transform;
Mallat, 1999) was used to represent the time evolution of the EEG fre-
quency content (2 12-point window at 90% overlap). Bispectral analysis
was used to examine the nonlinearity of the EEG time series and was
implemented using a lower-frequency resolution and increased DOF by
using 210-point windows (0.5 s) segments.

To compare the nonlinear character of theta across hippocampal re-
gions and velocity conditions, we defined a global nonlinearity measure
as the square root of the bicoherence integrated over the frequency do-
main (Sheremet et al., 2002), as follows:

� � � �
n,m�1

n

8�b� n,m�2

�f
2� 1 �

1

2

n,m��

1

2

(12)

where

b� n,m � � bn,m if bn,m � 0.1
0 otherwise (13)

The value 0.1 is the 95% confidence level of 	b�n,m	 � 0, where 	bn,m	 is the

normalized bispectrum matrix (Eq. 6); �f �
1

N�t
is the frequency in-

crement, 
 is the Kronecker symbol, as in the following:


n,m � �1 if n � m
0 otherwise , (14)

and the rest of the symbols have the same meaning as in Equation 6. The
measure � is proportional to the Euclidean norm of the matrix 	bn,m	,

where the coefficient �1 �
1

2

n,m� accounts for the symmetries of bn,m,

that is, for the diagonal appearing only four times in the full matrix.
All calculations were coded in MATLAB using its implementation of

the DFT. The bispectral estimates were computed using code based on
modified functions of the HOSA toolbox (Swami et al., 2000).

Spike spectrogram. To determine the frequency in which neuronal
spiking occurred, we implemented spectral analyses on spike trains
(Leung and Buzsáki, 1983). First, action potentials were sorted based
upon the velocity of the rat. Spikes between either 10 –20 cm/s or 60 –70

Figure 1. Bispectral symmetries (see Eq. 7–9). Left, Quadrant and octants of the frequency plane. Red triangle represents the area containing nonredundant information for the DFT. Right, Peak
in the bispectral estimate (represented by the black dot) represents a phase-coupled triplet ( fn, fm, fn 
 m), where fn, fm are two frequencies in the Fourier representation sequence defined in
Equation 1. If a bispectral peak (black dot) is on the first diagonal, then m � n, meaning that frequency fn is phase correlated to its second harmonic f2n � 2fn.
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cm/s were analyzed separately, placing the spikes for each velocity seg-
ment into 1 ms bins for the duration of the recording. This often resulted
in a sparse, but periodic vector of spike counts. The power spectra of the
spike trains were then calculated via the Thomson multitaper method.

Results
Simplified nonlinear EEG model
Here, we constructed a simplified model that illustrates the
bispectral signature of stochastic processes with measurable
global skewness and asymmetry. The model consists of two non-
linear time series (Figs. 2, 3) constructed using periodic analytical
functions (period 1 s) based on elliptic Jacobi functions
(Whitham, 2011) deformed to have controllable asymmetry
(Figs. 2a, 3a). The process analyzed in Figure 2 has negative skew-
ness and zero asymmetry; the process analyzed in Figure 3 has
zero skewness and positive asymmetry (Figs. 2a, 3a). For a real-
istic aspect, a Gaussian noise process with a spectral law of f� 2

(Figs. 2b,c, 3b,c) is added to the analytic functions. The spectra of
the time series (both analytic and “noisified”) exhibit peaks at the
harmonics of the fundamental frequency of 10 Hz. Note that
the DOF values for the model are arbitrary, so the statistics of the
processes represented in Figures 2, 3, and 4 are arbitrarily close to
the theoretical ones.

Different components of the bispectrum of the noisified time
series are shown in Figures 2d–f, 3d–f, and 4d–f. The modulus of
the normalized bispectrum (Eq. 6, Fig. 2d, 3d) exhibits seven, but

potentially more, distinct peaks. Based on the diagram in Figure
1, these indicate the frequency triplets that are strongly phase
coupled. One can distinguish coupling up to the sixth harmonic
of the peak: ( fp, fp, 2fp), ( fp, 2fp, 3fp), ( fp, 3fp, 4fp), ( fp, 4fp, 5fp),
(2fp, 2fp, 4fp), (2fp, 3fp, 5fp), (2fp, 4fp, 6fp), as well as (3fp, 3fp, 6fp).
For the first nonlinear time series (Fig. 2), the skewness distribu-
tion � (real part of the normalized bispectrum, Eq. 6, Figs 2e, 3e)
shows the same peaks, but negative, in accordance with the global
skewness of the time series. Because the time series has no asym-
metry, the asymmetry distribution 
 is statistically zero (Fig. 2f).
Alternatively, for the nonskewed but asymmetric time series (Fig.
3), the skewness distribution is statistically zero (Fig. 3e), but the
asymmetry distribution is positive (Fig. 3f).

The contrast spectral and bispectral analysis and the effective-
ness of the bispectral components in detecting nonlinearity is
illustrated in Figure 4. Here, a linear time series is constructed by
assigning Fourier modes random phases uniformly distributed in
[��,�] to amplitudes derived from the spectral density of the
negatively skewed, symmetric time series (Fig. 2b), as described
above. Importantly, a simple spectral density analysis does not
distinguish between the linear and the nonlinear time series be-
cause these two oscillations have the same spectral density char-
acteristics (Fig. 4c). This illustrates the point that spectral density
estimators contain no information about phase correlation
across the spectrum, and thus no information about the nonlin-

Figure 2. Bispectral analysis of a noisy time series with negative skewness. a, Signal based on a cnoidal function. b, Signal with added f � 2 Gaussian noise with at 20% signal variance. c, Spectra
of the two time series. d–f, Normalized bispectrum of the noisy time series depicting the modulus (d), the real part (e; skewness distribution), and the imaginary part (f; asymmetry distribution).
The power spectra of the signal with added f � 2 Gaussian noise are repeated in g–i for reference.
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ear character of the process. Bispectral analysis (cf. Figs. 2d–f,
4d–f), however, reveals clearly the linear character of the linear
time series in Figure 4b. The normalized bispectrum and all of its
components are statistically zero.

This simple example makes several points: (1) the bispectrum
can identify phase coupling, (2) the different components of the
bispectrum are useful to identify the effect of the phase coupling
on the skewness and asymmetry of the process, and (3) the pres-
ence of phase coupling can be detected even in the presence of
Gaussian noise and below the noise level. Finally, this analysis
suggests a more general meaning for the concept of harmonics.
Harmonics can be defined in several ways. A mode Gkn with
frequency fkn � kfn, with k integer, is called the kth harmonic of
mode Gn. This definition is trivial and not useful: because spec-
tral estimates are never exactly zero at any frequency, such har-
monics always exist but have no statistical relationship with the
mode Gn. It is tempting to describe spectral distributions such as
that in Figure 3 as fundamental frequency and its harmonics.

The inability of the spectral density estimators to distinguish
between linear and nonlinear systems makes another important
point: the presence of peaks in spectral densities at multiples of a
given frequency (harmonics) might have different meanings. For
linear systems, harmonics are statistically independent and their
presence does not modify the statistics of the process. For non-
linear systems, the presence of harmonics might be accompanied
by phase correlations that have significant and fundamental ef-
fects on the shape and statistics of the process.

Based on this discussion, hereafter, we reserve the term “har-
monic” only for cases in which there is a phase correlation be-
tween the harmonics and the fundamental frequency (mode).
The determination of whether certain modes are or not harmon-
ics of a spectral peak has to involve an examination of the bispec-
tral characteristics.

Relation between theta and velocity in EEG measured in the
dorsal and intermediate CA1
An examination of LFP time series showed obvious changes in
the shape of the hippocampal theta (Fig. 5), in agreement with
previous studies (Harper, 1971; Coenen, 1975; Leung et al., 1982;
Leung, 1982; Terrazas et al., 2005). The unfiltered LFP trace was
well approximated by a near-sinusoidal 6 – 8 Hz band-pass signal
for running speeds 
20 cm/s (Fig. 5a,c). At running speeds �20
cm/s (Fig. 5b), the dorsal LFP trace became asymmetric and
skewed, departing significantly from the 6 – 8 Hz signal. Note that
the departure of the raw LFP from the 6 – 8 Hz filter was attenu-
ated in the intermediate hippocampus, even at fast running
speeds (Fig. 5d). These data suggest the development of cycle
skew and asymmetry may be associated with the 16 Hz frequency
noted in prior investigations.

Velocity and the CA1 spectrogram
To examine the effect of running speed on the LFP, the average
shape of the power spectrogram as a function of running speed
was calculated (Fig. 6). At low speeds, the 4 – 60 Hz frequency

Figure 3. Bispectral analysis of a noisy time series with positive asymmetry. a, Signal based on a sinusoidal function. b, Signal with added f � 2 Gaussian noise with at 20% signal variance. c,
Spectra of the two time series. d–f, Normalized bispectrum of the noisy time series depicting the modulus (d), the real part (e; skewness distribution, and the imaginary part (f; asymmetry
distribution). The power spectra of the signal with added f � 2 Gaussian noise are repeated in g–i for reference.
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band was dominated by a single spectral peak located approxi-
mately between 6 and 7 Hz (Fig. 6a–d). As the speed increased,
the peak quickly narrowed, became more prominent, and shifted
toward 8 Hz while additional peaks developed at frequencies n f�
(n � 1 integer) where f� � 8 Hz. For simplicity, we will call the n
f� peaks putative theta “harmonics” (see simulation above). The
dominance of the putative harmonics increased with movement
speed at the expense of the bands separating them. This effect was
more pronounced in the dorsal region of the hippocampus,
where harmonics could be identified up to n � 6 (Fig. 6a,b),
whereas the intermediate region developed no more than n � 2
(Fig. 6c,d).

Phase dependence of spectral peaks
The development of spectral peaks in the 16 Hz range and higher
have considerable overlap with beta (10 –30 Hz) (Penttonen and
Buzsáki, 2003) and low-gamma (25–50 Hz) (Colgin et al., 2009;
Belluscio et al., 2012). Therefore, the development of higher fre-
quencies at faster velocities may be due to the appearance of
rhythms other than the evolution of theta harmonics. Beta and
low-gamma, however, are meaningful as distinct rhythms only if
they are statistically independent of the theta rhythm. Therefore,
the identity of harmonics can be tested simply by checking their
statistical relation to theta. In the lowest order, this can be
achieved by using bispectral analysis. Compared with other
methods for examining frequency coupling between two differ-

ent frequencies (Lachaux et al., 1999), this approach has the ad-
vantage that it provides direct measures of phase coupling
between Fourier frequency bands with no a priori (arbitrary)
band identification (filtering). Bispectrum components provide
complementary information about the stochastic process ana-
lyzed. The absolute value of the normalized bispectrum (bicoher-
ence; Fig. 2) is a measure of the nonlinearity of the signal and is
statistically zero for independent frequency bands (stochastic
process with uncorrelated phases). The real and imaginary parts
provide measures of the contribution of different bands to the
skewness (Fig. 3) and asymmetry (Fig. 4) of the total signal. For
low-velocity conditions (Fig. 7a), dorsal CA1 bicoherence esti-
mates (Fig. 7a,d) were statistically zero over the entire Fourier
space (no phase correlation). This implies that the asymmetry
and skewness measures were also statistically zero (Fig. 7b,c).
That is, the LFP process was nearly sinusoidal. This agreed with
the general aspect of the trace (Fig. 5a,c). In contrast, bispectral
measures estimated for high-velocity conditions exhibited a dis-
tinct pattern of peaks, coinciding with the location and develop-
ment of the harmonics (see Fig. 1 for instructions on how to read
the plots). The bicoherence showed significant phase coupling
between theta and the harmonics, with correlations distinguish-
able for up to the sixth harmonic in dorsal CA1. The bicoherence
peaks were reproduced in the skewness and asymmetry distribu-
tions shown in Fig. 7, e and f, where the negative sign indicates the
type of skewness and asymmetry produced by the peaks. Remark-

Figure 4. Bispectral analysis of a linear and nonlinear time series. a, b, Nonlinear signal (a; red) and linear signal (b; black) constructed from the spectrum of the nonlinear signal using random
phases uniformly distributed in [0, 2�]. c, Spectra of the nonlinear and linear time series (red and black, respectively). d–f, Normalized bispectrum of the linear time series (cf. Figs. 2, 3) for the
modulus (d), the real part (e; skewness distribution), and imaginary part (f; asymmetry distribution). The power spectra of the linear decomposition are repeated in g–i for reference.
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ably, the nonlinearity of theta was modulated across the hip-
pocampal regions. The same analysis performed for intermediate
CA1 (Fig. 7j–r) exhibited weaker nonlinearity, with coupling only
between theta and the second harmonic clearly distinguishable.

To compare the magnitude of the EEG nonlinearity across
hippocampal regions and velocity conditions directly, the mean
global nonlinearity measure (Eq. 12–14) for each rat in the dorsal
and intermediate hippocampus for the low and high velocities
was calculated. Figure 8 illustrates the effects of speed on theta
nonlinearity for the three rats tested. The nonlinearity measure �
is consistently higher for higher speeds, with the nonlinearity of
the dorsal CA1 region dominating the nonlinearity of the inter-
mediate CA1 region. This comparison revealed that there was a
significant main effect of hippocampal region (F(1,4) � 30.6, p 

0.01; repeated measures) on the magnitude of the nonlinearity
such that the EEG in the dorsal hippocampus was more nonlinear
than the intermediate. Although there was no overall main effect
of velocity (low vs high) on nonlinearity (F(1,4) � 5.9, p � 0.08;
repeated measures), the interaction between hippocampal region
and velocity was significant (F(1,4) � 9.1, p 
 0.05; repeated mea-
sures). Post hoc analysis indicated that this interaction effect was
due to a significant difference in EEG nonlinearity across velocity
conditions in the dorsal hippocampus (p 
 0.05), but not in the
intermediate hippocampus (p � 0.2). Together, these data indi-
cate that EEG in the dorsal hippocampus is more nonlinear and
more sensitive to changes in speed of movement relative to the
intermediate hippocampus.

Neuronal activity and theta nonlinearity
Because theta has been hypothesized to organize spike timing of
neurons (O’Keefe and Recce, 1993; Lisman and Idiart, 1995;
Skaggs et al., 1996; Harris et al., 2003), we examined action po-
tential frequency as a function of velocity for single cells in dorsal
and intermediate CA1 using spectral density estimates (Fig. 9).
The spectral power of spiking in the theta band demonstrated
that dorsal neurons were sensitive to changes in velocity. There
was a significant increase in both frequency (t(5) � 7.75, p 

0.001) and amplitude (t(5) � 3.58, p 
 0.02) between slow and
fast velocities, which is consistent with a previous report (Geisler
et al., 2010). This was not the case in the intermediate hippocam-
pus, in which neither the frequency (t(5) � 0.48, p � 0.66) nor the
amplitude (t(5) � 1.12, p 
 0.33) was significantly affected by
velocity. Second harmonic peaks were seen to develop for the
pyramidal cell action potential spectrograms in the dorsal and
intermediate region of the hippocampus, but not for the in-
terneurons. The arrows in Figure 9 indicate a second harmonic
peak that is significantly different from 0 (p 
 0.05 for both
comparisons) for the pyramidal cell spike spectrogram in high-
velocity conditions only. Given the appearance of harmonics ex-
clusively in principal neurons, it suggests that harmonic activity
may be related to rebound activity after inhibition (Cobb et al.,
1995; Diba et al., 2014). Specifically, velocity-dependent increases
of interneuron activity may invoke rebound excitation, leading to
pyramidal cells firing two distinct bursts within a single theta
cycle (see Discussion).

Figure 5. Change of LFP shape as a function of rat running speed. Representative examples of LFP during low running speeds (
20 cm/s; a, c) and high running speeds (�20 cm/s; b, d) showing
the raw data (green), narrow filter (orange), and wide-band filter (black) that captures the asymmetry that developed as a function of running velocity in the dorsal hippocampus.
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Discussion
Using bispectral analysis, the current study documents the novel
findings that (1) the CA1 subregion of the hippocampus has har-
monics that are statistically dependent on theta; (2) higher-order
harmonics emerge as a function of running speed in dorsal CA1
and, to a lesser extent, in intermediate CA1; and (3) harmonics
were the source of the overall deformation of the LFP shape (neg-
ative skewness and asymmetry). Therefore, theta harmonics are
in fact the spectral signature of the shape change of the LFP and
express the increased nonlinearity of the theta rhythm in re-
sponse to faster running speeds and increased neural activity. The
harmonics cannot be regarded as a distinct (statistically indepen-
dent) set of oscillations and are therefore not related to the beta
and low-gamma rhythms.

These results show that the theta rhythm changed in response
to running behavior, becoming more nonlinear as the animal’s
movement velocity increased. In the time domain, this is ex-
pressed as the development of skewness and asymmetry in the
theta shape; in the spectral domain, it is expressed as the devel-
opment of a chain of harmonics statistically phase coupled to the
theta oscillation. This evolution is reflected in the spiking activity
of principal cells (Maurer et al., 2005) and modulated across

regions of the hippocampus: it is stronger in the dorsal CA1 than
in the intermediate CA1. The current findings add to our under-
standing of how dynamic activity patterns vary as a function of
anatomical position along the longitudinal axis of the hippocam-
pus. Because theta is known to propagate from dorsal to ventral
regions (Petsche and Stumpf, 1960; Lubenov and Siapas, 2009;
Patel et al., 2012), these data suggest that the nonlinear character
of theta decreases as it travels and suggests a hypothesis that ac-
tivity during movement dissipates along the longitudinal axis of
the hippocampus. Future studies will need to test this idea
directly.

Although the potential mechanisms that attenuate theta non-
linearity as it travels are not known, the dorsal and ventral regions
of the hippocampus are dissociated in terms of patterns of gene
expression and the behavioral impact of lesions (Nadel, 1968;
Stevens and Cowey, 1973; Sinnamon et al., 1978; Moser et al.,
1993; Moser et al., 1995; Long and Kesner, 1996; Moser and
Moser, 1998; Kjelstrup et al., 2002; Burton et al., 2009; Wang et
al., 2015). In fact, it has been proposed that the hippocampal
longitudinal axis is functionally organized along a gradient
(Strange et al., 2014; Long et al., 2015) and others have even
proposed that the dorsal and ventral hippocampus should be

Figure 6. Power spectral density as a function of movement velocity. Normalized spectral density (logarithmic scale) as a function of velocity averaged over four rats (see Materials and
Methods) for dorsal CA1 (a) and intermediate CA1 (c). The frequency axis was normalized by 8 Hz. Spectral densities (logarithmic scale) are shown for three velocities for dorsal CA1 (b)
and intermediate CA1 (d).
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Figure 7. Representative bispectral properties of hippocampal LFP in the dorsal and intermediate CA1 region from rat 7805. The variability of the normalized bispectral distribution as a function
of running speed (a–c: speed 
10 cm/s; d–f: speed �30 cm/s) for the modulus (a, d), the real part (b, e; skewness distribution), and the imaginary part (c, f; asymmetry distribution). g, h,
Normalized power spectral densities (maximum value � 1) are provided for reference (red, low speed; blue, high speed). Note that, in d, the contour lines outline 6 distinct regions of triad phase
correlations (using the format fn, fm, fn
m depicted in Fig. 1: [8 Hz, 8 Hz, 16 Hz], [16 Hz, 8 Hz, 24 Hz], [24 Hz, 8 Hz, 32 Hz], and [32 Hz, 8 Hz, 40 Hz], [16 Hz, 16 Hz, 32 Hz], [24 Hz 16 Hz 48 Hz]). j–r are
equivalent to a–i except that data were obtained from intermediate CA1. Bispectral maps are colored for absolute values�90% (�0.05) and contoured for absolute values�95% (�0.1). Contour
lines are drawn with an increment of 0.05.
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considered distinct structures (Fanselow
and Dong, 2010). The observation that
the theta rhythm is more nonlinear in the
dorsal relative to intermediate hippocam-
pus supports the idea that information
may be processed differently along the
dorsoventral axis. It also leaves open the
question of whether different behavioral
parameters could more strongly modulate
theta nonlinearity in the intermediate and
ventral areas. Specifically, whereas spatial
cognitive behaviors are attributed to the
dorsal hippocampus, the ventral hip-
pocampus is often associated with emo-
tional processing, stress and affect (for
review, see Fanselow and Dong, 2010).
This presents the possibility that LFP non-
linearity in more ventral regions of the
hippocampus might be influenced by the
emotional valence of an experience rather
than by the animal’s movement.

The development of the theta har-
monic with faster running speeds was re-
flected in the spectrogram of principal cell
firing. Although the correlation between
theta nonlinearity and neuron spiking is
obvious, establishing causality is more
difficult. One can make the argument that
spiking activity contributes to the back-
ground field (Geisler et al., 2010) and,
therefore, that altered spiking dynamics
with velocity would change the LFP shape.
This argument, however, may be circular
in that the evolution of theta with velocity
alters the spike timing by mechanisms
such as ephatic coupling (Buzsáki et al.,
1991; Anastassiou et al., 2011). Perhaps
more importantly, theta is not carried by
the spiking of neurons, but rather is the
summed activity of excitatory and inhibi-
tory postsynaptic potentials (for review,
see Buzsáki, 2005). Because hippocampal
pyramidal neurons project to local in-
terneurons (Csicsvari et al., 1998), which
in turn provide dense feedback inhibition
to several hundred principal neurons (Sik
et al., 1995), local recurrent dynamics
have been proposed to support the local
generation of theta (Leung, 1998). In the
model of Leung (1998), two inputs are re-
sponsible for the theta dipole across the
CA1 layer: one onto the soma and proxi-
mal dendrites of pyramidal neurons car-
ried by rhythmic basket cells and the other
from input onto distal apical dendrites.
Moreover, the interneurons across these
regions exhibit differences in their phase
preference (Klausberger et al., 2003; So-
mogyi and Klausberger, 2005), providing
structured IPSPs along different pyrami-
dal neuron domains (Allen and Monyer,
2015). Therefore, the consequence of two
inhibitory rhythmic inputs at �8 Hz

Figure 9. Spike spectrogram versus velocity. a, b, Dorsal CA1: pyramidal cells (a) and interneurons (b). c, d, Intermediate
CA1: pyramidal cells (c) and interneurons (d). Because the analysis was conducted on binary spike trains, power units are
arbitrary, although the axes are constant across respective cell classes. Low-velocity epochs are 10 –20 cm/s and high-
velocity epochs are 60 –70 cm/s. Values are mean and SEM. Note the presence of a significant fundamental harmonic
frequency, �16 Hz, evident in the spectrogram of the spikes for the pyramidal cells at high velocities (arrows).

Figure 8. Theta nonlinearity of the three rats tested in the dorsal (left) and intermediate (right) CA1 regions and low
(green) and high (purple) running velocities. The nonlinearity measure � (Eq. 12) is defined only for bispectral values
exceeding the 95% confidence level of the zero modulus of the normalized bispectrum (Eq. 13): the missing low-speed bar
for rat 7805 for intermediate CA1 indicates that, at low speed, the normalized bispectrum is statistically zero. There was a
significant main effect of hippocampal region (F(1, 4) � 30.6, p 
 0.01; repeated measures) on the magnitude of the
nonlinearity such that the EEG in the dorsal hippocampus was more nonlinear than the intermediate. There was not a
significant main effect of velocity (low vs high) on nonlinearity (F(1, 4) � 5.9, p � 0.08; repeated measures), but the
interaction between hippocampal region and velocity was significant (F(1, 4) � 9.1, p 
 0.05; repeated measures). Post hoc
analysis indicated that this interaction effect was due to a significant difference in EEG nonlinearity across velocity condi-
tions in the dorsal hippocampus ( p 
 0.05), but not in the intermediate hippocampus ( p � 0.2).
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across distinct subcompartments of CA1 pyramidal neurons will
interact, providing the basis for the 16 Hz modulation seen in
Figure 9. Because there are fewer neurons active in the interme-
diate region of the hippocampus at any given moment in time
(Maurer et al., 2006a) and these cells are less sensitive to changes
in velocity (Maurer et al., 2005), fewer excitatory and inhibitory
events contribute to the theta rhythm and the harmonic. None-
theless, the intermediate pyramidal cells are still influenced by the
structured inhibition, yielding a harmonic in the firing patterns.

This brings to the forefront the question of the role of the theta
oscillation in the architecture of the brain. Although axons tend
to propagate in a hierarchical manner (Felleman and Van Essen,
1991), the brain’s architecture is more akin to a recurrent net-
work in which neurons generate, as well as add, their own infor-
mation to the activity propagating through the networks
(Buzsáki, 2006). Because the theta rhythm is theorized to play a
role in the coordination of brain activity, the nonlinear nature of
wave propagation may govern the organization of spike timing.
This idea is supported by the brain’s capacity for large-scale
integration of small components (Steriade, 2001; Buzsáki and
Draguhn, 2004) and self-organized dynamics (Ashby, 1947;
Kelso, 1997), as well as the simple observations that neurons fire
during sleep and quiescent periods, when integration is largely
disabled. The self-organized emergence of these oscillatory pat-
terns, which reflects the excitatory (or inhibitory) state of the
local groups of neurons (Haken, 1984), allows the firing patterns
among assemblies of neurons to be “constrained” or timed via
fluxes in the extracellular ionic concentration that modifies ionic
driving force (Anastassiou et al., 2011). Although there have
been significant theoretical advancements in describing self-
organized, nonlinear dynamics in the nervous system (Amari,
1982; Haken, 1984; Freeman, 1992; McKenna et al., 1994; Kelso,
1997), the majority of our knowledge has been gained via linear
methods, which ignore important elements of the complexity of
the brain (Buzsáki, 2006). Future research attempting to untangle
the dynamics of the nervous system should integrate nonlinear
methods to understand the interaction between anatomy and
activity.
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