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Overexpression of Protein Kinase M� in the Hippocampus
Enhances Long-Term Potentiation and Long-Term
Contextual But Not Cued Fear Memory in Rats
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The persistently active protein kinase M� (PKM�) has been found to be involved in the formation and maintenance of long-term memory.
Most of the studies investigating PKM�, however, have used either putatively unselective inhibitors or conventional knock-out animal
models in which compensatory mechanisms may occur. Here, we overexpressed an active form of PKM� in rat hippocampus, a structure
highly involved in memory formation, and embedded in several neural networks. We investigated PKM�’s influence on synaptic plasticity
using electrophysiological recordings of basal transmission, paired pulse facilitation, and LTP and combined this with behavioral
cognitive experiments addressing formation and retention of both contextual memory during aversive conditioning and spatial memory
during spontaneous exploration. We demonstrate that hippocampal slices overexpressing PKM� show enhanced basal transmission,
suggesting a potential role of PKM� in postsynaptic AMPAR trafficking. Moreover, the PKM�-overexpressing slices augmented LTP and
this effect was not abolished by protein-synthesis blockers, indicating that PKM� induces enhanced LTP formation in a protein-
synthesis-independent manner. In addition, we found selectively enhanced long-term memory for contextual but not cued fear memory,
underlining the theory of the hippocampus’ involvement in the contextual aspect of aversive reinforced tasks. Memory for spatial
orientation during spontaneous exploration remained unaltered, suggesting that PKM� may not affect the neural circuits underlying
spontaneous tasks that are different from aversive tasks. In this study, using an overexpression strategy as opposed to an inhibitor-based
approach, we demonstrate an important modulatory role of PKM� in synaptic plasticity and selective memory processing.
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Introduction
Protein kinase M� (PKM�) is an atypical PKC isoform and at-
tracted attention when Todd Sacktor’s group described an in-
crease of postsynaptic EPSCs using whole-cell recordings from
CA1 pyramidal cells perfused with PKM� (Ling et al., 2002).

PKM� is a brain-specific kinase highly expressed in neocortex
and hippocampus and independently transcribed from the
PRKCZ gene by its own internal promotor (Naik et al., 2000;
Hernandez et al., 2003; Oster et al., 2004). Interestingly, it lacks
the PKC� autoinhibitory regulatory domain and thus is thought

Received Sept. 29, 2015; revised Feb. 4, 2016; accepted Feb. 17, 2016.
Author contributions: S.R.M.S., H.R., and S.H. designed research; S.R.M.S. and D.F.-F. performed research; T.L.

contributed unpublished reagents/analytic tools; S.R.M.S. and D.F.-F. analyzed data; S.R.M.S., D.F.-F., T.L., H.R., and
S.H. wrote the paper.

We thank Anelise Marti and Stefan Jaeger for scientific discussion and ideas and Maria-Theresia Trinz, Jenny
Danner-Liskus, and Kai Zuckschwerdt for excellent technical assistance.

All authors are employees of Boehringer Ingelheim.
This article is freely available online through the J Neurosci Author Open Choice option.

Correspondence should be addressed to either Sven R.M. Schuette or Scott Hobson, Scott Hobson, Boehringer
Ingelheim Pharma GmBh and Co. KG, Birkendorfer Strasse 65, 88397 Biberach a.d. Riss, Germany, E-mail:
sven.schuette@boehringer-ingelheim.com or scott.hobson@boehringer-ingelheim.com.

DOI:10.1523/JNEUROSCI.3600-15.2016
Copyright © 2016 Schuette et al.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License
Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution and reproduction in any
medium provided that the original work is properly attributed.

Significance Statement

Most of the literature investigating protein kinase M� (PKM�) used inhibitors with selectivity that has been called into question or
conventional knock-out animal models in which compensatory mechanisms may occur. To avoid these issues, some studies have
been done using viral overexpression of PKM� in different brain structures to show cognitive enhancement. However, electro-
physiological experiments were exclusively done in knock-out models or inhibitory studies to show depletion of LTP. There was no
study showing the effect of PKM� overexpression in the hippocampus on behavior and LTP experiments. To our knowledge, this
is the first study to combine these aspects with the result of enhanced memory for contextual fear memory and to show enhanced
LTP in hippocampal slices overexpressing PKM�.
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to be persistently active once activated by phosphoinositide-
dependent protein kinase 1 (Kelly et al., 2007). Expression of
PKM� is increased postsynaptically after electrophysiological
stimulation of hippocampal slices (Kelly et al., 2007) or stimula-
tion of cortical primary neurons with mGluR1 agonist (Eom et
al., 2014). Many studies have been performed both in vivo and
in vitro to link PKM� with the maintenance phase of LTP (Ling
et al., 2006; Kelly et al., 2007) and its ability to modulate the
storage of episodic memories using aversive reinforced exper-
iments (Pastalkova et al., 2006; Madroñal et al., 2010; Dong et
al., 2015). However, most of this evidence was obtained using
the inhibitors chelerythrine or myristoylated � inhibitory
pseudosubstrate (ZIP), the selectivity of which has been ques-
tioned regarding additional kinases important for LTP, such
as CaMKII and other isoforms of PKC (Ling et al., 2002; Lee et
al., 2013; Ren et al., 2013). Moreover, a recent study found ZIP
to be excitotoxic in hippocampal primary neurons (Sadeh et
al., 2015). In fact, ZIP reversed established LTP in mice lacking
PKM�, further underscoring selectivity concerns (Volk et al.,
2013). In addition, LTP could be established in these KO mice,
raising questions about the integral role of PKM� in the main-
tenance of LTP, suggesting that it rather plays a modulatory
role to augment LTP.

The use of unselective inhibitors complicates assignment of a
specific protein function to observed results. For example, two
studies investigated the performance of spontaneous exploration
in the object location task (OLT) after stereotactic injection of
ZIP into the dorsal hippocampus of rats. Both studies showed
complete loss of memory to object location, suggesting that the
neural networks underlying OLT are influenced by PKM� (Hardt
et al., 2010; Migues et al., 2010). However, due to the unselective
nature of ZIP, it is unclear whether PKM� inhibition was respon-
sible for these deficits.

In general, even if selective inhibition of PKM� leads to mem-
ory deficits, it is unclear whether overexpression in the same
structure necessarily shows memory enhancement. To explore
the consequences of PKM� overexpression, studies exploring in-
creased levels of PKM� in the insular cortex or mPFC of rats have
been performed. These studies provided evidence that overex-
pression of PKM� enhances memory in aversive behavioral tasks
such as conditioned taste aversion or conditioned cued response
(Shema et al., 2011; Xue et al., 2015). To address the mechanism
of this modulatory effect, experiments using shRNA knock-down
linked PKM� to synaptic plasticity and memory and suggested a
role in AMPA receptor trafficking (Hara et al., 2012; Ron et al.,
2012; Dong et al., 2015).

To avoid off-target inhibition and to explore the consequences of
overexpression, we conducted experiments using adeno-associated
virus (AAV) to bilaterally overexpress PKM�-WT or a kinase-dead
(KD) mutant in the hippocampus of rats. Our goal was to combine
electrophysiological approaches to characterize the influence of
PKM� on synaptic plasticity with behavioral experiments for both
contextual and spatial memory. To address these two types of mem-
ory, we used reinforced cued and contextual fear conditioning
(CFC) and spontaneous exploration of relocated objects in the OLT,
both of which are known to be hippocampus dependent. Through
this combination of approaches, we demonstrate enhanced basal
transmission and LTP and memory for CFC in rats overexpressing
PKM�-WT. The enhancement, as opposed to occlusion, of LTP sug-
gests a modulatory, but not integral, role of PKM� in synaptic plas-
ticity and memory retention.

Materials and Methods
Animals
All animal procedures were performed according to the institutional and
European Union guideline (Directive 2010/63/EU) and were approved
by the Ethical Committee of the responsible regional council (Tübingen,
Germany).

Adult male Wistar rats of 250 –300 g were obtained from Janvier Labs.
The animals were housed 4 per cage with ad libitum access to food and
water, living under a 12/12 h light/dark cycle (lights on at 6:00 A.M.). All
experiments were conducted during the light phase of the cycle.

AAV
Molecular cloning of rAAV constructs. The CMV promoter from the
pAAV-MCS plasmid (Agilent Technologies, catalog #240071) was re-
placed by a human synapsin promoter to have neuronal specific trans-
gene expression. Therefore a synthetic piece of DNA harboring the
human synapsin promoter followed by a KpnI and HindIII restriction
site and the human growth hormone poly adenylation signal was cloned
via the NotI restriction sites into pAAV-MCS and termed pAAV_hSyn.
The two expression cassettes consisting of a Kozak sequence followed by
tdTomato, a 2A peptide from Thoseaasigna virus, either rat PKM� wild-
type or rat PKM� K98W KD (groups receiving this construct will be
referred to as “PKM�-WT” or “PKM�-KD,” respectively, in the follow-
ing) and finally a WPRE were cloned into the pAAV-hSyn via the KpnI
and HindIII restriction sites. These plasmids, which were used for pro-
duction of rAAV5, were termed pAAV_hSyn-tdTomato-2A-ratPKM�
and pAAV_hSyn-tdTomato-2A-ratPKM� K98W, respectively.

Packaging/helper plasmid used for rAAV production. A commercially
available packaging plasmid consisting of AAV2 rep, AAV5 cap, and Ad5
helper functions (plasmidFactory, catalog #pDP5rs) was used for pack-
aging the rAAV constructs containing AAV2-ITRs into an AAV5 capsid.

Production and purification of rAAV5 vectors. The rAAV5 vectors were
produced as described previously (Aschauer et al., 2013).

Stereotactic surgery
Rats were deeply anesthetized with a ketamine/xylazin mixture of 70/6
mg/kg intraperitoneally and fixed in a stereotactic frame (David Kopf
Instruments) in flat skull position. During surgery, the animals were
administered 0.5% isoflurane in air (3 L/min) provided by an inhalation
mask. After 60 min of surgery, the rats received an additional treatment
of ketamine/xylazin mixture of 35/3 mg/kg intramuscularly. Before the
skin was opened, lidocaine was administered subcutaneously. Five small
holes were drilled bilaterally into the skull and 200 nl of AAV (6.7 � 10 12

viral genome/ml PBS) or PBS was injected at the following coordinates
(relative to bregma in millimeters): (1) AP �2.0, ML �1.6, DV �3.6; (2)
AP �4.2, ML �2.6, DV �3.6; (3) AP �4.8, ML �4.8, DV �7.0; (4) AP
�5.3, ML �4.6, DV �5.2; (5) AP �5.3, ML �4.6, DV �7.0; and (6) AP
�5.8, ML �4.6, DV �5.2 with a flow rate of 2.3 nl/s. Glass pipettes were
mounted into the Nanoliter 2010 injector that was injection controlled
by SYS-Micro4-controller (World Precision Instruments). The glass pi-
pette was held in position for additional 120 s after the injection to allow
diffusion. To avoid possible tissue damage by overloading one hemi-
sphere with six consecutive injections, we alternated between the
hemispheres after each infusion until all 12 injections were done. The
rats experienced daily monitoring after surgery until the behavioral
tests began.

Behavioral tests
CFC and cued fear conditioning. Three weeks after AAV injection, the
animals were handled and habituated to the experimenter 2 d before the
experiment started. The rats were then placed into a sound-attenuated
chamber with a grid floor (Med Associates) for 9 min in total with house
lights on and white background noise (100 Hz, 65 db) provided by the
built-in fan. After 5 min of habituation, they received 3 consecutive tone
stimuli for 15 s (1000 Hz, 80 db, 50 ms rising time), followed by a mild
foot shock of 0.3 mA for 2 s after a delay of 2 s. The intervals between the
first and second tone and between second and third tone were 124 and
160 s, respectively. The boxes were cleaned with 70% ethanol. One week
later, the animals were tested for contextual fear retention memory in the
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boxes with same interior and odor but without the presentation of the
tone stimuli. The animals were placed in the boxes for 5 min and freezing
behavior was recorded and analyzed automatically during this period.
One day later, the animals were tested for cued fear retention memory in
the boxes with different interior and odor (1% acetic acid) but with the
presentation of the tone. The rats were placed in the boxes for 8 min.
After 2 min, the presentation of the tone were initiated for 6 min consec-
utively and freezing behavior was recorded and analyzed automatically
during this period. Data are shown as mean � SEM of the defensive
response (% of total time). For multiple comparisons, statistical signifi-
cance was assessed by one- or two-way ANOVA with Bonferroni’s post
hoc test. Values of p � 0.05 were considered to reflect statistically signif-
icant differences.

Object location task. Four weeks after AAV injection, the animals were
handled by the experimenter for 2 d before the experiment started. On
days 3 and 4, the rats were placed into an empty circular arena of 85 cm
diameter for 15 min to habituate with the arena. Outside of the arena,
different landmarks were placed to allow allocentric orientation. Be-
tween each appearance of an animal in the arena, the whole arena was
wiped clean with 70% ethanol to destroy all olfactory traces and to pre-
vent the animals from orientating olfactorily. The OLT experiment took
place on day 5. Rats were placed into the empty arena for 10 min. After-
ward, two identical objects (white pyramids) were presented in the arena
for 5 min (T1). After an intertrial interval (ITI) of 30 or 45 min, the
animals again explored the arena for 5 min with 1 of the 2 objects placed
at another location (T2). On day 8, the rats again underwent the habitu-
ation, T1, and T2 procedures but with an ITI of 8 min to ensure the
discrimination as a positive control. Exploration of both objects was
measured at T1 and T2 and the location index for T2 was calculated using
the following:

Location Index �
T2sec reloc � 100

T2sec reloc � T2sec unmov

Where reloc is the relocated object and unmov the unmoved one. Data are
shown as mean � SEM of the location index. For multiple comparisons,
statistical significance was assessed by one- or two-way ANOVA with the
Bonferroni’s post hoc test. Values of p � 0.05 were considered to reflect
statistically significant differences.

Electrophysiology
Preparation of brain slices. The animals were anesthetized with isoflurane
and, after decapitation, the brains were quickly removed and immersed
in ice-cold (4°C) sucrose-containing cutting ACSF containing the fol-
lowing (in mM): 185 sucrose, 2.45 KCl, 8.8 MgSO4, 1.2 KH2PO4, 25.6
NaHCO3, and 10 D-glucose, pH 7.4, saturated with 95% O2 and 5% CO2.
Transversal hippocampal slices of 400 �M were cut using a Vibratome.
The slices were left to rest at room temperature (22–24°C) for at least 90
min before recording in a holding chamber containing the same ACSF
but with 2.25 mM CaCl2 and sucrose replaced by 124 mM NaCl.

Electrophysiological measurements. The slices were transferred to inte-
grated brain slice chambers (Kroker et al., 2011b) and continuously su-
perfused (2.5 ml/min, room temperature) with the same ACSF used for
the recovering phase except for 1.2 mM MgSO4 (regular ACSF). Field
EPSPs (fEPSPs) were recorded in the stratum radiatum of area CA1 in
response to Schaffer collateral pathway stimulation by a monopolar glass
electrode. The stimulation and field recording electrodes (2– 6 M�) were
filled with regular ACSF. The slopes of the fEPSPs were used as parameter
of interest and were determined by linear regression over the maximum
initial slope points. At the beginning of each experiment, an input– out-
put curve was obtained using a procedure similar to that described pre-
viously (Taqatqeh et al., 2009). Briefly, with a stimulus duration of 200
�s, the intensity was adjusted to evoke a maximal fEPSP response. Once
this intensity was achieved, it was held constant while the duration of
the stimulation was changed from 20 to 200 �s in increasing 20 �s steps
every 30 s. Because basal transmission was enhanced in the PKM�-
overexpressing slices, all subsequent experiments [paired-pulse facilita-
tion (PPF) and LTP] were performed using a stimulus intensity that
evoked 30% of the maximal fEPSP response that was determined for each

individual slice, thereby normalizing the slices from the different groups
to each other. PPF was studied by the application of pairs of stimuli (50
ms interstimulus interval) every 30 s. The PPF ratio was calculated by
dividing the slope of the second synaptic response by the slope of the first
response. LTP was induced by repeated HFS consisting of 100 pulses at
the frequency of 100 Hz applied 4 times in 5 min intervals (Lu et al., 1999;
Kroker et al., 2011b) unless otherwise stated. Changes in the fEPSP slope
were calculated in relation to the baseline fEPSP responses during the last
10 min before drug administration (100%). Long-term synaptic changes
were evaluated by comparing the last 10 min of recording 1, 2, and 3 h
after HFS. A modular electrophysiology system, supplied by npi elec-
tronic, conducted the low-noise recordings of extracellular signals. Sig-
nals were 1000� amplified and subsequently filtered with a low-pass (5
kHz) and a high-pass (3 Hz) filter. For data acquisition and analysis, the
software NOTOCORD-hem was used. Data are shown as mean � SEM
of the PPF ratio or the percentage to the baseline fEPSP slope. In each
experiment, N represents the number of animals whereas n represents
the number of slices. The significance of the differences between the
mean values obtained in two different conditions was evaluated by the
paired Student’s t test. For multiple comparisons, statistical significance
was assessed by either one- or two-way ANOVA with the Tukey’s post hoc
test. Values of p � 0.05 were considered to reflect statistically significant
differences.

Drug application to slices. (2R,3S,4S)-2-(4-Methoxybenzyl)-3,4-pyrroli-
dinediol-3-acetate (anisomycin), 3-[2-(3,5-Dimethyl-2-oxocyclohexyl)-2-
hydroxyethyl]glutarimide (cycloheximide, CHX), and 6-Chloro-3,
4-dihydro-3-(2-norbornen-5-yl)-2H-1,2-4-benzothiadiazine-7-sulfon-
amide 1,1-dioxide (cyclothiazide, CTZ) were obtained from Sigma-Aldrich.
All drugs were initially dissolved in a small amount of dimethyl sulfoxide
(DMSO) and diluted further by regular ACSF to a final DMSO concentra-
tion of 0.05%.

Histology
Rats were anesthetized with ketamine/xylazine (140/12 mg/kg) and sub-
jected to perfusion–fixation via cardiac puncture with PBS followed by
4% paraformaldehyde in PBS solution. Afterward, the brains were con-
tinuously fixed in the fixative for 48 h and frozen sectioned in 25 �m
coronal slices. Each slice was dried in a 12-well plate with high perfor-
mance German cover glass (In Vitro Scientific) and finally covered with
Flouroshield histology mounting medium (with DAPI; Sigma-Aldrich).
Images were acquired on a PerkinElmer OperaQEHS system at a 20�
magnification, with 1404 fields/well. The images were transferred to
PerkinElmer’s Columbus image storage and analysis system. The fields
were stitched in Columbus using a magnification correction of 0.95.
Images show cell nuclei in the 450 nm and tdTomato Red in the 650 nm
fluorescence channel, respectively.

Immunoblotting
Rats were anesthetized with 3% isoflurane in air and immediately decap-
itated using a guillotine. Brains were removed and further processed on
ice on a filter paper soaked with PBS. Both hippocampi were removed,
weighed, and shock frozen in nitrogen until further processing. The hip-
pocampi were thawed in 500 �l of cell lysis buffer (Cell Signaling Tech-
nology) with additional 0.1% SDS, and protease and phosphatase
inhibitor compounds (cOmplete mini EDTA-free tablet; Roche Diag-
nostics; Phosphatase Inhibitor Cocktail 2 and 3 and 1 mM PMSF (Sigma-
Aldrich) and immediately homogenized by sonification for 9 bursts at
10% intensity. Homogenates were left on ice for 15 min, stirred, and then
centrifuged at 14,000 � g for 10 min to remove nuclei and cell debris. The
supernatant was used for blotting experiments. Total protein concentra-
tion was measured using the Pierce BCA protein assay kit and protein
content was balanced by diluting high content samples with lysis buffer.
Gel electrophoresis was performed using NuPAGE 4 –12% Bis-Tris Gel
and MOPS SDS Running buffer (Thermo Fisher Scientific), followed by
blotting on Immobilion-FL membrane (Millipore) with NuPAGE
Transfer buffer (Thermo Fisher Scientific). Immunostaining was per-
formed using antibodies against catalytic domain of PKC� (Santa Cruz
Biotechnology) and �-actin (Sigma-Aldrich), followed by IRDye sec-
ondary antibodies, and visualized with the Odyssey Imaging system and
analyzed with Image Studio Software (LI-COR Biosciences).
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Results
Imaging and immunoblotting
To investigate the extent and selectivity of viral vector overex-
pression in hippocampus, we first inspected coronal slices of the
rat’s brain and measured the signal of tdTomato red fluorescence
protein throughout the whole slice. Figure 1 shows representative
coronal images suggesting a viral expression that extends
throughout but is limited to the hippocampus. To quantify the
level of exogenous PKM�-WT or PKM�-KD compared with en-
dogenous PKM� of PBS-injected rats, we lysed hippocampi and
performed immunoblots using antibodies against the catalytic
domain of PKC� and against �-actin. Figure 2A shows immuno-
blots of the hippocampi of the three groups in a representative
manner. A plot of all experiments is shown in Figure 2B, demon-
strating an increase of PKM� levels to �150% of endogenous
level in the PBS group (one-way ANOVA F(2,17) � 7.937, n �
6 –7, p � 0.0037, followed by Bonferroni’s post hoc test).

Basal transmission and short-term plasticity properties of
PKM�-overexpressing hippocampal slices
We compared input– output relationships of extracellular re-
corded fEPSPs in hippocampal slices from the different groups
of animals. Although both control rats (PBS and PKM�-KD)
showed comparable input– output curves upon Schaffer-
collateral stimulation, fEPSP evoked in slices obtained from
PKM�-WT showed a significant increase in basal fEPSP re-
sponses, with stimulation durations of 50 –200 �s (Fig. 3; two-
way ANOVA, F(2,250) � 88.79, n � 8 –12, p � 0.0001, followed by
Tukey’s post hoc test). Importantly, the stimulation strength giv-
ing 30% of the maximal response did not differ significantly
among the different groups (one-way ANOVA F(2,41) � 2.56, n �
12–16, p � 0.0900) and this stimulation was exclusively used for
the following PPF and LTP experiments unless otherwise stated.

To elucidate whether a presynaptic mechanism could ac-
count for the enhanced basal transmission of the PKM�-WT
slices, PPF was studied by the application of pairs of stimula-
tions with 50 ms interstimulus intervals. Under our standard
conditions of stimulation (30% of maximal response), we
found no significant differences in the PPF ratio obtained in
the different groups (Fig. 4; PBS, 1.21 � 0.04; PKM�-KD,
1.18 � 0.04; PKM�-WT, 1.22 � 0.04, one-way ANOVA
F(2,12) � 0.38, n � 5, p � 0.6892).

Slices from PKM�-WT-overexpressing rats show a protein-
synthesis-independent LTP enhancement
To study long-term plasticity, we attempted to induce LTP in the
Schaffer collateral to CA1 pathway in hippocampal slices from
our different groups of rats. After 1 h of baseline recordings to
verify stability, 4 trains of high-frequency stimulation (100 Hz,
1 s) were applied to potentiate synaptic transmission. Although
LTP could be induced reliably in all the groups tested, its duration
was different among groups. Therefore, in slices from PBS rats,
this potentiation lasted for �2 h and fEPSP responses returned to
baseline levels 3 h after HFS (LTP 1 h post-HFS, 126.4 � 4.8%;
LTP 3 h post-HFS, 107.9 � 5.0%; n � 6). Similarly, hippocampal
slices from KD rats showed consistent potentiation 1 h after HFS,
which dropped to baseline levels 3 h after HFS (LTP 1 h post-
HFS, 126.4 � 3.9%; LTP 3 h post-HFS, 101.5 � 3.2%; n � 5). On
the contrary, hippocampal slices from PKM�-WT rats still
showed LTP 3 h after HFS (LTP 1 h post-HFS, 143.7 � 8.6%; LTP
3 h post-HFS, 121.6 � 5.3%; n � 4). This increase in LTP was
significantly different from the PBS and PKM�-KD groups 2 h

Figure 1. PKM�-WT-coexpressed tdTomato fluorescent protein is expressed selectively in the hippocampus of rats. Representative images of rat’s brain slices from (left) posterior to (right)
anterior are shown. Cell nuclei are represented by blue staining, tdTomato fluorescent protein is represented by red signal. Scale bar, 1 mm.

Figure 2. Quantitative analysis of protein expression in hippocampal tissue 5 weeks after
AAV-mediated PKM�-WT and PKM KD overexpression in rats. A, Representative Western blot
image. PKM� is blotted at 51 kDa and �-actin at 37 kDa was loaded as a normalizing protein.
Hippocampal PKM�-WT and PKM�-KD are 1.5-fold increased compared with PBS-injected an-
imals. B, Plot of six to seven hippocampi per group, normalized to endogenous PKM� level in
PBS-treated rats. �⁄��p � 0.05/0.01 compared with PBS.

4316 • J. Neurosci., April 13, 2016 • 36(15):4313– 4324 Schuette et al. • Hippocampal-Overexpressed PKM� Enhances LTP and Memory



after HFS (Fig. 5A; LTP 2 h post-HFS: PBS, 109.7 � 5.5%; PKM�-
WT, 130.4 � 7.8%; PKM�-KD, 108.7 � 4.9%; two-way ANOVA
F(2,48) � 12.10, n � 4 – 6, p � 0.0001, followed by Tukey’s post hoc
test).

Late LTP is considered to hold two main criteria: potentiation
lasting longer than 3 h and protein synthesis dependency (Lu et
al., 1999). Having in mind that synaptic transmission was still
potentiated 3 h after HFS in the PKM�-WT group, we wanted to
confirm the second of these criteria by the acute application of the
protein synthesis inhibitor anisomycin in the PKM�-WT slices.
The slices were preincubated in anisomycin during the resting
period for at least 2 h and again 30 min before and after HFS.
Intriguingly, LTP was not changed upon treatment with 30 �M

anisomycin, a concentration shown previously to be sufficient to
abolish protein-synthesis-dependent LTP (Frey et al., 1988; Fon-
seca et al., 2006; Kroker et al., 2011a). New controls in the pres-
ence of the same amount of DMSO (0.05%) used with
anisomycin were performed simultaneously, showing no differ-
ences with respect to the earlier experiments; for this reason, this
DMSO data were pooled together with the previous data (Fig. 5B;
LTP 3 h post-HFS: DMSO 0.05%, 119.8 � 3.7%; 30 �M aniso-
mycin, 123.5 � 7.3%; Student’s t test; n � 5–7; p � 0.3186). To
confirm the results with anisomycin, we performed similar ex-
periments, this time in the presence of a different protein synthe-
sis inhibitor, CHX (Aoto et al., 2008; Martin et al., 2009). Again,
100 �M CHX (2 h preincubation during resting period and bath

application during the whole experiment) did not affect LTP in-
duction or maintenance in the PKM�-WT slices (Fig. 5B; LTP 3 h
post-HFS: 100 �M CHX, 131.9 � 8.7%; Student’s t test; n � 4;
p 	 0.3853). To confirm that protein synthesis blockage can be
demonstrated, we induced protein-synthesis-dependent late LTP
in slices from our PBS-treated animals. For this purpose, we ap-
plied a stronger protocol of HFS consisting of four trains at a
frequency of 200 Hz (instead of 100 Hz). This protocol reliably
induced late LTP, which was potentiated 3 h after HFS to levels
comparable to those achieved previously in the PKM�-WT slices
upon 100 Hz HFS. Moreover, this 200 Hz-induced LTP in the
PBS group was completely abolished in the ubiquitous presence
of 100 �M CHX 2 h after tetanization, suggesting its dependence
on protein synthesis (Fig. 5C; LTP 3 h post-HFS: DMSO 0.05%,
119.2 � 7.6%; 100 �M CHX, 101.9 � 5.2%; Student’s t test; n �
5; p � 0.0486). Altogether, these experiments suggest that the
mechanisms behind the late form of LTP in the PKM�-WT slices
appear to be protein-synthesis independent even though protein-
synthesis-dependent late LTP can be reliably induced in our
setup.

Blockade of AMPA receptor desensitization mimics and
occludes the PKM�-WT-induced LTP enhancement
As a next step, we wanted to know whether intrinsic changes in
the surface AMPAR properties can account for the enhancement
of potentiation seen in the PKM�-WT group. To address this

Figure 3. PKM� overexpression induces an increase of basal synaptic transmission compared with the PBS and KD groups. A, Basal transmission was measured by giving pulses of increasing
duration at the stimulation intensity necessary to induce a maximal fEPSP response at 200 �s in hippocampal slices from the different groups of rats. ��⁄���p � 0.01/0.001 compared with PBS and
PKM�-KD. Group sizes: PBS and PKM�-WT, N � 3, n � 8; PKM�-KD, N � 3, n � 12. B, Example of traces elicited in each animal type for increasing pulse durations (20 –200 �s) (calibration:
horizontal, 20 ms; vertical, 0.5 mV).

Figure 4. PKM� overexpression does not affect PPF. (A) The PPF ratio values for each animal group were comparable, indicating that presynaptic function is not affected by PKM� overexpression.
Group sizes: PBS and PKM�-KD, N � 2, n � 5; PKM�-WT, N � 3, n � 5. B, Example of paired pulses induced in the different animal types (calibration: horizontal, 20 ms; vertical, 0.3 mV).
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question we used CTZ, which functions as a desensitization
blocker (Traynelis et al., 2010). Strikingly, bath application of
CTZ at a concentration shown previously to block receptor de-
sensitization (Constals et al., 2015) significantly enhanced LTP
3 h after HFS in slices from PBS-treated rats (Fig. 6A; LTP 3 h
post-HFS: DMSO 0.05%, 100.5 � 6.7%; 20 �M CTZ, 125.6 �
6.9%; Student’s t test, n � 5–9; p � 0.0374), an effect that was also
confirmed in the slices from PKM�-KD rats (Fig. 6B; LTP 3 h
post-HFS: DMSO 0.05%, 101.5 � 2.6%; 20 �M CTZ, 135.6 �
10.1%; Student’s t test; n � 5– 6; p � 0.0063). Interestingly, LTP
magnitude in PKM�-WT slices was not further increased upon
treatment with CTZ (Fig. 6C; LTP 3 h post-HFS: DMSO 0.05%,

119.8 � 3.7%; 20 �M CTZ, 131.9 � 8.7%; Student’s t test, n �
4 –7; p � 0.1692), suggesting that blocking AMPAR desensitiza-
tion mimics and occludes the PKM�-WT-induced LTP enhance-
ment. As before, new controls in the presence of the same amount
of DMSO used with CTZ (0.05%) were performed simultane-
ously, showing no differences with respect to the earlier experi-
ments, so these DMSO data were pooled together with the
previous data. Importantly, CTZ did not affect basal transmis-
sion in any experimental group. Moreover, we tested PPF before
and after application of 20 �M CTZ, which did not induce any
significant change in the PPF ratio. The fEPSP duration was like-
wise unaffected by CTZ treatment (data not shown).

Figure 5. PKM� overexpression induces a protein-synthesis-independent form of late LTP. A, LTP was induced by application of 4 100 Hz (1 s) trains every 5 min in the different groups of slices.
PKM�-WT slices express an LTP enhancement 3 h post-HFS, whereas both the PBS and KD groups show no potentiation at this point. Group sizes: PBS, N � 2, n � 6; PKM�-WT, N � 2, n � 4;
PKM�-KD, N � 2, n � 5. B, Both protein synthesis inhibitors anisomycin (30 �M, applied 30 min before and after HFS) and CHX (100 �M, applied during the whole experiment) were unable to block
the PKM�-induced late LTP. Group sizes: DMSO, N � 5, n � 7; anisomycin, N � 3, n � 5; CHX, N � 2, n � 6. C, In the PBS group, 4 200 Hz (1 s) trains every 5 min induced LTP, which was still
enhanced 3 h after HFS and was completely abolished by the application of CHX (100 �M, applied during the whole experiment). *p � 0.05. Group sizes: DMSO and CHX, N � 3, n � 5.
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Behavioral experiments

CFC
To address associative memory formation and retention, we
measured the expression of freezing response in the CFC task.
Figure 7A shows increasing freezing responses over time to con-
secutive presentations of the conditioned stimulus (CS) paired
with a foot shock, serving as an unconditioned stimulus (US)
in all groups during the acquisition phase (two-way ANOVA
F(2,46) � 85.01, n � 6 –10, p � 0.0001). No significant differences

in the level of freezing after each foot shock between the three
groups were observed (F(2,23) � 0.359, n � 6 –10, p � 0.702).
Testing contextual memory in the absence of auditory stimuli 1
week later, a significantly increased freezing behavior was found
only in PKM�-WT-overexpressing rats (Fig. 7B; one-way
ANOVA F(2,23) � 5.212, n � 6 –10, p � 0.014, followed by Bon-
ferroni’s post hoc test). Interestingly, no differences were detected
between the groups tested for freezing response to tone recogni-
tion in a new context (Fig. 7C; one-way ANOVA F(2,23) � 0.866,

Figure 6. Blockade of AMPAR desensitization mimics and occludes PKM�-induced LTP enhancement. LTP was induced by application of 4 100 Hz (1 s) trains every 5 min in hippocampal slices from
the PBS (A), PKM�-KD (B), and PKM�-WT (C) animals in the presence and in the absence of the AMPAR desensitization blocker CTZ (20 �M, applied 30 min before and after HFS). In the PBS and
PKM�-KD groups, CTZ induced and enhanced LTP 3 h after HFS. On the contrary, LTP in the PKM�-WT group was unaffected by CTZ. �⁄���p � 0.05/0.001. Group sizes: A, DMSO, N � 4, n � 9; CTZ,
N � 2, n � 5; B, DMSO, N � 3, n � 6; CTZ, N � 2, n � 5; C, DMSO, N � 5, n � 7; CTZ, N � 3, n � 4.
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n � 6 –10, p � 0.434). Next, we conducted open-field experi-
ments to exclude potential behavioral implications of PKM�-WT
and PKM �-KD overexpression, such as effects on anxiety-related
behavior (center habitation) or locomotor activity that could in-
fluence the measured outcomes of the CFC paradigm. These ex-
periments demonstrated no alterations between the groups in
either center habitation or locomotor activity (Fig. 7D; one-way
ANOVA F(2,27) � 0.003, n � 10, p � 0.9966 and F(2,27) � 0.83,
n � 10, p � 0.4469, respectively).

OLT
To investigate spontaneous exploration combined with retention of
spatial memory, we additionally performed an OLT behavioral task.
To demonstrate the influence of both spatial cues and ITI in naive
rats, different ITIs (8, 30, and 45 min) in the presence of spatial cues
and an 8 min ITI in the absence of spatial cues were tested initially.
Figure 8A shows that the naive animals were able to discriminate the
relocated object with an ITI of 8 min compared with the unbiased
T1. Next, we measured the OLT at the same ITI of 8 min but without
the spatial cues, demonstrating no significant differences in explora-
tion time compared with the unbiased T1 measurement and thus
underscoring the role of the hippocampus in this task (one-way
ANOVA F(2,45) � 9.876, n � 12–24, p � 0.0003, followed by Bon-
ferroni’s post hoc test). Furthermore, we could show that the naive
rats at longer ITIs of 30 min or 45 min were no longer able to dis-
criminate the relocated object (Fig. 8B), showing a statistically sig-
nificant difference to 8 min ITI but not to unbiased T1 (shown as a

line), suggesting a time window to investigate memory enhance-
ment at those ITIs (one-way ANOVA F(3,55) �7.183, n�11–24, p�
0.0004, followed by Bonferroni’s post hoc test). To assess whether
overexpression of PKM�-WT or KD improved performance in the
spatial memory, animals were tested at ITIs of both 30 and 45 min,
and naive animals showed no difference between T1 and T2 explo-
ration. Furthermore, to confirm that overexpression of PKM� has
no confounding effect in this task, the animals were also tested at an
ITI of 8 min, when naive animals showed differences between T1 and
T2 exploration. Figure 8C illustrates a retention of object location
memory when tested 8 min after T1 (two-way ANOVA F(2,79) �
60.89, n � 9–10, p � 0.0001) in all three groups, serving as a positive
control and indicating that the treated animals were able to perform
OLT comparable to naive rats. However, no statistically significant
differences were detected in the PKM�-overexpressing animals
when tested at ITIs of 30 or 45 min (two-way ANOVA F(2,79) �
0.011, n � 9–10, p � 0.98), suggesting that PKM� does not mediate
memory enhancement in this spatial memory task.

Discussion
In this study, we tested the effect of AAV-mediated bilateral
hippocampal PKM� overexpression on fear memory, sponta-
neous behavior, and electrophysiological recordings in rats.
The selective hippocampal overexpression of PKM� was con-
firmed to be �1.5-fold over endogenous PKM�. Slice fEPSP
recordings revealed that both basal transmission and LTP are

Figure 7. Effects of different treatments on performance of CFC in rats. Shown is the mean percentage of freezing in response to presentation of consecutive tone stimuli paired with a foot shock
during acquisition (A), in response to known context 7 d after acquisition without tone or foot shock (B), and in response to tone 8 d after acquisition in new context without foot shock (C). Group
sizes: A–C, PBS and PKM�-WT, N � 10; PKM�-KD, N � 6. D, Open-field analysis showing no difference between groups in time spent in center (top) and distance moved (bottom). *p � 0.05
compared with PBS. Group sizes: N � 10.
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augmented in the PKM�-WT slices, suggesting that PKM�
functions as an important modulator of synaptic plasticity.
Moreover, in the CFC paradigm, PKM�-WT rats showed en-
hanced contextual, but not cued, memory. However, no spa-
tial memory enhancement was observed in the OLT. To
exclude potential confounding effects for these cognitive
tasks, both locomotor activity and anxiety-related behavior
were assessed in an open-field test and were not influenced by
PKM� overexpression.

Classically, LTP is subdivided into early and late LTP. Late
LTP is believed to be protein-synthesis dependent and to last 	3

h (Lu et al., 1999; Raymond, 2007). Historically, PKM� has been
associated with late LTP maintenance (Ling et al., 2002; Serrano
et al., 2005; Yao et al., 2008; Mei et al., 2011; Monti et al., 2012),
yet the exact mechanisms behind this phenomenon remain un-
clear. Here, we combined a compilation of electrophysiological
data in hippocampal PKM�-WT-overexpressing rats to further
clarify the contribution of PKM� to LTP maintenance.

Basal synaptic transmission was significantly increased in our
PKM�-WT slices. In our setup, basal fEPSPs are composed
mainly by AMPAR currents (Fernández-Fernández et al., 2015),
so this PKM�-WT effect is putatively due to an increase in the
number of functional synaptic AMPARs or to a modification of
their intrinsic properties, as described previously (Ling et al.,
2006; Migues et al., 2010; Hara et al., 2012; Dong et al., 2015).
Therefore, the increased basal transmission detected from
PKM�-WT overexpression may be due to modulated AMPAR
trafficking, increasing the number of receptors ready to respond
to the evoked presynaptic release of glutamate under basal con-
ditions and resulting in an augmented synaptic potentiation.

Because LTP is saturable (Malenka et al., 1986), mechanisms
that induce synaptic potentiation via LTP-associated signaling
cascades such as CaMKII occlude subsequent LTP after tetaniza-
tion (Pettit et al., 1994; Lledo et al., 1995). Here, we demonstrate
that LTP is augmented as opposed to occluded in the PKM�-WT
slices, suggesting that our results likely reflect a modulatory role
of PKM� on synaptic plasticity rather than an integral role in LTP
maintenance. However, it needs to be considered that our nor-
malization protocol may have masked any potential occlusion
effects.

It is important to emphasize that most of the data supporting
PKM� as the maintenance molecule are based on experiments
using ZIP. However, the selectivity of ZIP has been questioned
(Kwapis and Helmstetter, 2014). In fact, it was demonstrated
recently that ZIP is able to reduce LTP to an equivalent extent
when comparing WT mice with transgenic mice lacking both
PKC� and PKM� (Volk et al., 2013), underscoring the lack of
ZIP’s specificity. Interestingly, those investigators could induce
late LTP in these transgenic animals, suggesting that PKM�
may not be required for hippocampal LTP maintenance. To-
gether with our enhancement but not occlusion of LTP, we
interpret our electrophysiological data to reflect the modula-
tory role of PKM� on synaptic plasticity rather than an integral
role in LTP maintenance.

In addition, we found that the augmented LTP in the PKM�-
WT-overexpressing slices after tetanization is protein-synthesis
independent. This is in agreement with a previous report describ-
ing a protein-synthesis-independent interaction between PKM�
and BDNF associated with LTP (Mei et al., 2011). It should be
noted that PKM�-WT microinjection took place 4 weeks before
LTP measurements. Therefore, the extended presence of exoge-
nous PKM� may have altered Pin1 phosphorylation (Westmark
et al., 2010), making additional protein synthesis induced by the
LTP augmentation less pronounced and thereby occluding an
effect of the protein synthesis blocker.

Glutamate stimulation increases AMPAR mobility by induc-
ing its desensitization (Constals et al., 2015). We show that block-
ing AMPAR desensitization by CTZ mimics (in the control
groups) and occludes (in the PKM�-WT group) the PKM�-
induced increase in LTP. Therefore, PKM� function may favor
retaining the receptor in the PSD, thereby preserving the postsyn-
aptic response to glutamate and modulating synaptic plasticity.
Supporting this, blocking AMPAR endocytosis rescued LTP in
PKM� knock-down rats (Dong et al., 2015). In contrast to a pre-

Figure 8. Effects of different ITI and treatments on object location memory in rats. A,
Naive rats in OLT performing T2 of OLT 8 min after T1 with or without (w/o) spatial cues.
Group sizes: T1, N � 24; 8 min, N � 12; 8 min w/o cues, N � 12. B, Naive rats in OLT
performing T2 OLT in different ITI after T1 and with spatial cues. �⁄��p � 0.05/0.01. Group
sizes: 8 min, N � 12; 30 min, N � 11; 45 min, N � 12. C, PBS, PKM�-KD, and PKM�-WT
treated rats in OLT performing T2 in different ITI after T1 with spatial cues 3 weeks after
hippocampal AAV-mediated PKM� overexpression. ****p � 0.0001 compared with ITI of
30 and 45 min. Group sizes: 8 min, N � 10; 30 min, N � 9 –10; 45 min, N � 10.

Schuette et al. • Hippocampal-Overexpressed PKM� Enhances LTP and Memory J. Neurosci., April 13, 2016 • 36(15):4313– 4324 • 4321



vious study in which 100 �M CTZ treatment altered basal trans-
mission (Mainen et al., 1998), we observed neither an increase in
basal transmission upon CTZ treatment in any of the groups nor
an increase of the mean channel open time, as reflected by a
significant change of the fEPSP shape in the presence of CTZ.
CTZ has been demonstrated to block GABAA receptors, which
are widely expressed throughout the hippocampus with an IC50

of 60 �M (Deng and Chen, 2003), �3-fold higher than the EC50

on AMPARs (Bertolino et al., 1993). To avoid this issue, we tested
CTZ at 20 �M. Another explanation is that, in our experiments,
integrated fEPSPs were studied in the absence of GABAergic
transmission blockers, implying that the inhibitory currents (the
onset of which coincides with the end of the fEPSP) may mask the
putative enhancement of the time course of recovery from desen-
sitization of AMPARs (Rozov et al., 2001).

The hippocampus plays a significant role in spatial orientation
as well as in encoding and retrieving spatial memory (Morris et
al., 1982; Nadel, 1991; Moser and Moser, 1998; Rolls, 1999). Le-
sion studies showed that the hippocampus also acts as the pro-
cessing component of CFC (Kim and Fanselow, 1992; Phillips
and LeDoux, 1992; Maren et al., 1998) and plays a role in spatial
recognition memory during OLT (Barker and Warburton, 2011).
In this study, we present evidence for memory enhancement of
contextual, but not cued, fear in the PKM�-WT group. In con-
trast to previous results (Shema et al., 2011), memory formation
in the PKM�-KD group was unaffected and therefore did not act
as a dominant-negative mutant. Here, we overexpressed
PKM�-KD 1.5-fold, whereas Shema et al. (2011) overexpressed
6-fold above endogenous levels. Moreover, we tested for memory
and synaptic plasticity 4 weeks after surgery instead of 6 d, per-
haps allowing compensatory mechanisms to occlude negative ef-
fects of PKM�-KD, for example, by enhancing PKM� synthesis.
Interestingly, we detected no enhanced object location memory
in OLT. This could be due to an absence of emotional significance
in this task because it does not provide aversive or reinforced
motivation or may reflect that PKM� function is not linked with
short-term memory.

The hippocampus projects into several cortical and noncorti-
cal brain regions, including the amygdala (Canteras and Swan-
son, 1992; Maren and Fanselow, 1995) and the mPFC (Jay et al.,
1995; Parent et al., 2010). Both structures are involved in provid-
ing emotional significance to an aversive situation (LeDoux,
2000; Banks et al., 2007; Meloni et al., 2008), as measured in CFC.
In contrast, we are unaware of any studies that connect the
amygdala with the OLT. Furthermore, Barker and Warburton
(2011) found that the mPFC is not involved in OLT performance.

The role of these structures in fear acquisition and expression
after conditioning is complex and distinct. Both context-US and
auditory CS–US pairing are thought to be processed in the basal
nuclei and CeA to generate the freezing response (Maren and
Quirk, 2004; Herry et al., 2008; Biedenkapp and Rudy, 2009).
Lesion of the BLA disrupted both acquisition and defensive re-
sponse (Phillips and LeDoux, 1992; Maren et al., 1996; Cousens
and Otto, 1998). Here, we demonstrate enhanced response to
contextual conditioning, supporting the role of the hippocampus
in memory of contextual fear. Interestingly, no effect was de-
tected in the cued conditioning paradigm, which has been shown
to be hippocampus independent (Phillips and LeDoux, 1992).
However, it should be acknowledged that the high freezing levels
in the PBS-treated animals may represent a ceiling effect, occlud-
ing PKM�-WT enhancement.

In addition to the amygdala, the mPFC plays an important
role in the acquisition and expression of conditioned fear for both

context and auditory stimuli (Morgan and LeDoux, 1995; Quirk
and Beer, 2006; Gilmartin et al., 2014). Interestingly, two of the
main projections from the prelimbic cortex of the ventral mPFC
innervate the BLA and CeA (Vertes, 2004), perhaps suggesting an
important role of a neural circuit involving hippocampus, mPFC,
and amygdala in the processing of aversive stimuli. Therefore, it is
possible that supporting any of these structures leads to enhanced
response in aversive behavioral tasks. This is supported by a study
reporting enhanced freezing to cued conditioning after PKM�
overexpression in the prelimbic cortex (Xue et al., 2015). Al-
though no data for contextual response were shown, the mPFC
may also be involved in contextual fear memory.

In conclusion, to our knowledge, this study is the first to com-
bine electrophysiological measurements with behavioral experi-
ments in animals overexpressing PKM� in the hippocampus and
therefore constitutes an experimental approach different from
previous inhibitor-based strategies. As opposed to previous stud-
ies linking PKM� with LTP maintenance, our results confirm and
expand upon the modulatory role of PKM� in memory processes
and synaptic plasticity and provide a novel link to AMPAR de-
sensitization, bringing new insights for the selective role of PKM�
in different neural circuits.
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