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Merkel Cell-Driven BDNF Signaling Specifies SAI Neuron
Molecular and Electrophysiological Phenotypes

Erin G. Reed-Geaghan,' Margaret C. Wright,> Lauren A. See,! Peter C. Adelman,’ Kuan Hsien Lee,* H. Richard Koerber,’
and ©Stephen M. Maricich*

Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, >Center for Neurosciences, and *Department of Neurobiology,
University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and “Department of Pediatrics, Richard King Mellon Institute for Pediatric Research, University
of Pittsburgh and Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224

The extent to which the skin instructs peripheral somatosensory neuron maturation is unknown. We studied this question in Merkel
cell-neurite complexes, where slowly adapting type I (SAI) neurons innervate skin-derived Merkel cells. Transgenic mice lacking Merkel
cells had normal dorsal root ganglion (DRG) neuron numbers, but fewer DRG neurons expressed the SAI markers TrkB, TrkC, and Ret.
Merkel cell ablation also decreased downstream TrkB signaling in DRGs, and altered the expression of genes associated with SAI
development and function. Skin- and Merkel cell-specific deletion of Bdnf during embryogenesis, but not postnatal Bdnf deletion or Ntf3
deletion, reproduced these results. Furthermore, prototypical SAI electrophysiological signatures were absent from skin regions where
Bdnfwas deleted in embryonic Merkel cells. We conclude that BDNF produced by Merkel cells during a precise embryonic period guides
SAIneuron development, providing the first direct evidence that the skin instructs sensory neuron molecular and functional maturation.
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Peripheral sensory neurons show incredible phenotypic and functional diversity that is initiated early by cell-autonomous and
local environmental factors found within the DRG. However, the contribution of target tissues to subsequent sensory neuron
development remains unknown. We show that Merkel cells are required for the molecular and functional maturation of the
SAI neurons that innervate them. We also show that this process is controlled by BDNF signaling. These findings provide
new insights into the regulation of somatosensory neuron development and reveal a novel way in which Merkel cells
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participate in mechanosensation.
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Introduction

Peripheral sensory neurons detect a wide variety of pain, temper-
ature, proprioceptive, and touch stimuli. This functional hetero-
geneity is reflected in their phenotypic diversity in terms of size,
projection patterns, molecular marker expression, and electro-
physiological properties. Intrinsic transcription factor expression
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initially separates newly born sensory neurons into different neu-
ronal subtypes as they settle into nascent dorsal root ganglia
(DRGs; Marmigere and Ernfors, 2007; Reed-Geaghan and Mar-
icich, 2011). However, the factors that direct DRG neuron differ-
entiation and maturation following initial cell fate specification,
and the sources of these factors are poorly understood.

Neurotrophins (NTs) are a group of related molecules that
includes nerve growth factor, brain-derived neurotrophic factor
(BDNF), NT3, and glial cell line-derived neurotrophic factor
(GDNF). These neurotrophins promote DRG neuron survival by
acting through their cognate receptors TrkA, TrkB, TrkC, and
Ret, respectively. Neurotrophins are also implicated in mainte-
nance of neuronal identity, maintenance of neuronal subtype-
specific gene expression, and proper targeting/morphology of
central and peripheral projections (Marmigere and Carroll,
2014). However, given the limitations of overexpression and con-
stitutive knock-out studies, how target tissue-derived neurotro-
phins might influence sensory neuron maturation remains an
unanswered question.
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The Merkel cell-neurite complex, composed of slowly adapt-
ing type I (SAI) cutaneous sensory afferents and skin-derived
Merkel cells, is a tractable model system in which to study this
question. Merkel cells are not required for SAI targeting to the
skin, but SAI afferent morphology, electrophysiological re-
sponses, and texture discrimination tasks are all altered in the
absence of Merkel cells (Maricich et al., 2009, 2012; Maksimovic
et al., 2014). However, these data were generated in transgenic
mouse models that lacked Merkel cells or Merkel cell function
throughout life, raising the possibility that developmental inter-
actions between Merkel cells and SAI neurons might account
for some or all of the observed phenotypes. This is an impor-
tant consideration because the cell-autonomous and non-cell-
autonomous mechanisms that control SAI molecular phenotype,
peripheral projection morphology, and electrophysiological
function are unknown. Importantly, multiple lines of evidence
suggest that SAI neurons respond to BDNF and NT3 signaling,
presumably through the expression of TrkB and TrkC (Airaksi-
nen et al., 1996; Albers et al., 1996; Fundin et al., 1997; Carroll et
al., 1998; LeMaster et al., 1999; Cronk et al., 2002; Szeder et al.,
2003; Krimm et al., 2004). These observations raise the possibility
that Merkel cell-derived neurotrophins might play a role in di-
recting SAI neuron maturation.

Here, we investigated whether Merkel cells, and specifically
Merkel cell-derived neurotrophins, participate in SAI molecular
and electrophysiological phenotype acquisition. We show that
Merkel cell deletion alters the percentage of DRG neurons that
express TrkB, TrkC, and Ret without changing DRG neuron
numbers. These phenotypes are recapitulated by conditional
Bdnf deletion throughout embryonic skin cells or, specifically, in
Merkel cells. Moreover, SAI electrophysiological responses are
altered following embryonic Bdnf deletion, specifically in Merkel
cells. These findings identify a novel role for Merkel cells in SAI
neuron maturation.

Materials and Methods

Mice. K14 (Dassule et al., 2000; strain #004782, The Jackson Labora-
tory), Atohl1<"ER12 (Fujiyama et al., 2009), Atoh** (Shroyer et al.,
2007; strain #008681, The Jackson Laboratory), Atoh1" (Ben-Arie et
al., 20005 strain #005970, The Jackson Laboratory), Bdnfﬂ"x (Rios et al.,
2001; strain #004339, The Jackson Laboratory), Nthﬂ"x (Bates et al.,
1999; strain #003541, The Jackson Laboratory), and ROSA!Temato (N[5
disen et al., 2010; strain #00007914, The Jackson Laboratory) were main-
tained in accordance with institutional animal care and use committee
guidelines at Case Western Reserve University and Children’s Hospital of
Pittsburgh of UPMC. For embryonic ages, the plug date was designated
as embryonic day 0.5 (E0.5).

Tamoxifen administration. Tamoxifen (Sigma-Aldrich) was dissolved
9:1 in a corn oil/ethanol solution at a 5% concentration. Pregnant dams
were given a single dose of 250 mg/kg by oral gavage. Lactating females
were given one dose of 250 mg/kg by oral gavage on 3 consecutive days.

Tissue processing and sectioning. Adult mice [postnatal day 21 (>P21)]
were killed by cervical dislocation. Embryos were dissected from preg-
nant dams into cold PBS, and tails were collected from each embryo for
genotyping. Embryonic and young mice (<P21) were decapitated before
tissue dissection. Spinal columns were fixed in 4% paraformaldehyde
(PFA) overnight at 4°C, washed in PBS, and cryopreserved in 30% su-
crose/PBS overnight at 4°C. Spinal columns from P21 mice were decal-
cified in 0.5 M EDTA for 5 d following fixation prior to cryoprotection.
Skin for immunohistochemistry was fixed in 4% PFA for 30 min on ice,
washed in PBS, and visualized in whole mount or cryopreserved in 30%
sucrose/PBS. Cryopreserved tissue was embedded in OCT (Thermo-
Fisher Scientific), serially sectioned on a Leica 1950M cryostat at 10 um
(DRGs) or 25 um (skin), and collected on Superfrost Plus slides (Ther-
moFisher Scientific). Slides were dried at room temperature overnight.
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Immunohistochemistry. Slides were vacuum dried, rehydrated in PBS,
subjected to heat-induced epitope retrieval, washed three times in PBS,
and blocked with 5% normal donkey serum (NDS) in 0.3% PBS-T (PBS
with Triton X-100). Heat-induced epitope retrieval consisted of incubat-
ing slides in sub-boiling 10 mu citrate buffer for 10 min, followed by 30
min at room temperature. Slides were incubated overnight at 4°C in
blocking solution containing primary antibodies. Slides were washed in
PBS and incubated with the appropriate secondary antibodies diluted
in blocking solution for 30 min at room temperature. Slides were washed,
counterstained with DAPI (4',6'-diamidino-2-phenylindole dihydro-
chloride; 1:1000; ThermoFisher Scientific) to visualize nuclei, and
mounted in Invitrogen Prolong Gold (ThermoFisher Scientific). The
primary antibodies used were mouse anti-Islet1/2 (1:50; catalog #39.4D5,
Developmental Studies Hybridoma Bank), rabbit anti-NF200 (1:1000;
N4142, Sigma-Aldrich), goat anti-TrkB (1:200; AF1494, R&D Systems),
goat anti-TrkC [AF1404 (1:100) and BAF1404 (1:20), R&D Systems],
rabbit anti-Ret (1:50; catalog #18121, Immuno-Biological Laboratories),
rabbit anti-parvalbumin (PV; 1:1000; PV25, Swant), rabbit anti-CGRP
(1:1000; T-4032, Peninsula Laboratories), rabbit anti-phospho-SMAD1/
5/8 (1:250; catalog 9511, Cell Signaling Technology), goat anti-TBX3
(1:100; sc-31656, Santa Cruz Biotechnology), rat anti-Keratin8 (1:20,
TROMA-1, Developmental Studies Hybridoma Bank), guinea pig anti-
Asicl (1:250; Alomone Labs), rabbit anti-8 opioid receptor (DOR; 1:500;
Alomone Labs), and rabbit anti-yENaC (1:500; StressMarq Biosciences).
Secondary antibodies conjugated to various fluorophores (Jackson Im-
munochemicals) were all used at 1:250 except streptavidin, which was
used at a 1:2000 dilution.

Whole-mount immunostaining was performed by modifying previ-
ously published protocols (Li et al., 2011) on pelts of hairy skin. Fixed
skin was dissected into small pieces, and the underlying adipose tissue
was removed then washed for 5-8 h in 0.3% PBS-T. Tissue was incubated
with primary antibodies for 4 d, washed for 5-8 hin 0.3% PBS-T, then
incubated with secondary antibodies for 2 d, all at room temperature.
Antibodies were diluted in 20% dimethylsulfoxide/5% NDS/0.3%
PBS-T.

Cell counts. Neuronal counts and imaging were performed on a Leica
DM 5500B fluorescent microscope. Neurons were counted using a dual
red/green fluorescent filter. All neurons expressing a given marker with
identifiable nuclei were counted. Islet1/2 ™ neurons were counted in ev-
ery third section throughout the entire dorsal root ganglion, and the sum
was multiplied by three for the total neuron number. Merkel cell counts
in whole-mount skin preparations were performed as previously de-
scribed (Wright et al., 2015). Briefly, all K8 * cells in each touch dome
within a 0.5 cm? of back and belly skin were counted.

RNA extraction, reverse transcription, and quantitative PCR. Thoracic
DRGs were dissected from PO and P21 mice in cold DEPC-treated PBS
and snap frozen on dry ice. Tissue was homogenized using a syringe with
a 28 ga needle followed by 10 s of sonication. RNA was isolated using the
RNeasy Mini Kit (Qiagen) according to the manufacturer instructions,
and analyzed for concentration and purity by a NanoDrop 2000 spectro-
photometer (ThermoFisher Scientific). Equal amounts of RNA were re-
verse transcribed using a QuantiTect Reverse Transcription kit (Qiagen)
per the manufacturer instructions. Dilutions of cDNA were made and
used for quantitative PCR (qPCR) using Applied Biosystems StepOne
Plus software (ThermoFisher Scientific) with Applied Biosystems FAM
(5-carboxylfluorescein)-labeled TagMan assays (ThermoFisher Scien-
tific) for Asicl (Mm01305997_m1), Asic2 (Mm00475691_m1), Asic3
(Mm00805460_m1), Calca (Mm00801463_gl), Cux2 (Mm00500377_m1l),
Egrl (MmO00656724_m1), Fos (Mm00487425_m1), Kcnal (MmO00439977_s1),
MafA (Mm00845206_s1), Nr4al (Mm01300401_m1), Oprdl (Mm00443063_
ml), Pvalb (Mm00443100_m1), Runxl (MmO0121344_m1), Runx3
(Mm00490666_m1), Salll (Mm00491266_m1), Scnnlb (Mm00441215_
ml), Sennl g (MmO00441228_ml), Shox2 (MmO00443183_ml), Slc17a6
(Mm00499876_m1), Skc17a7 (Mm00812886_m1), Slc17a8 (Mm00805413_
ml), Tbx3 (MmO01195726_ml), TrpCl (Mm00441975 ml), and TipV4
(Mm00499025_m1). Gene expression analysis was performed using the
comparative C, method (AAC,), where the threshold cycle for the target
genes was normalized to that of the endogenous controls Calca and Pvalb
(AC,), and the relative quotient (RQ) was calculated using the equation
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Figure 1.  SAIDRG neurons survive following Merkel cell deletion but lose the expression of TrkB, TrkC, and Ret. 4, B, Inmunostaining for K8 and NF200 in the skin of P21 control littermate and
K14; Atoh 1 mice demonstrates touch dome innervation. €, D, Inmunostaining for NF200 in T7 DRG sections from P21 control littermate and K74; Atoh1““ mice. E~J, N-Q, Inmunostaining for
TrkB and TrkC (E=J) or TrkC and Ret (N-Q) in T7 DRG sections from E13.5, PO and P21 control littermate, and K74; Atoh7™ mice. K-M, R, S, Percentages of (Figure legend continues.)
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2 7AACt where AAC, = (AC, test sample — AC, calibrator sample). All
data represent RQ values, while the statistical analyses were performed
on AC, = SEM values for each target gene, as previously described (Yuan
et al., 2006).

Skin—nerve preparations and recordings. Peripheral teased nerve prep-
arations were prepared as previously described (Mcllwrath et al., 2007).
Briefly, mice were anesthetized with a ketamine (90 mg/kg)/xylazine (10
mg/kg) mixture and perfused using chilled oxygenated (95% O,/5%
CO,) ACSF (127 mmM NaCl, 26 mm NaHCO3, 10 mm p-glucose, 2.4 mm
CaCl,, 1.9 mm KCl, 1.3 mm MgSO,, and 1.2 mm KH,PO,). The spinal
column and right hindlimb were then removed, and placed in a circulat-
ing bath of the same oxygenated ACSF. The hairy skin of the hindlimb
and hip with connected saphenous nerve was isolated and transferred to
a second recording chamber with circulating oxygenated ACSF, where it
was heated to 31°C. The saphenous nerve was pulled into an isolated
inner recording chamber, where the epineurium was removed and the
nerve was subdivided for recording, as previously described.

Mechanical fields were identified using a paintbrush and localized
using von Frey monofilaments. Controlled mechanical forces (square
waves) were presented using a force-modulating mechanical stimulator
(Aurora Scientific) with a 1-mm-diameter plastic foot. Cells were given
30 s to recover between stimuli. Peripheral conduction velocity (CV) was
calculated using spike latency and the distance between concentric stim-
ulating and recording electrodes. Responses were analyzed off-line
(Spike2 software, Cambridge Electronic Design). Somatosensory affer-
ents were first classified by CV (A fibers, CV =10; A8 fibers, CV <10
and =1; C-fibers, CV <1); C-fibers and cells with unclear CVs were not
analyzed further (n = 70). Rapidly adapting (RA) AB- and Ad-fibers
were separated qualitatively based on their response properties (single
onset/offset spiking, n = 69), and the AB population was then further
subdivided based on the coefficient of variance (CoV) during the last 3 s
of mechanical stimulation [SA1: CoV, >0.7; high-threshold mechanore-
ceptor (HTMR): CoV, <0.7]; this classification agrees with previous
publications (MclIlwrath et al., 2007; Wellnitz et al., 2010).

Statistics. All data are expressed as the mean = SEM. Independent-
sample two-tailed £ tests were performed between genotypes at each age
for normally distributed data (Excel, Microsoft). The Mann—Whitney U
test (Prism, GraphPad Software) was used for nonparametric data.

Results

DRG neuron numbers are normal in mice that lack

Merkel cells

To study the role of Merkel cells in SAI neuron development, we
used Keratin14°"%; Atoh1™“/M°* (K14; Atoh1°%°) mice, where
epidermal deletion of Atohl prevents Merkel cell production
(Maricich et al., 2012). Adult K14; Atoh1%° mice retain touch
dome innervation, have normal numbers of total Islet1/2 * tho-
racic level 7 (T7) DRG neurons, and have normal numbers of
large NF200 * T7 DRG neurons at four important stages of SAI
neuron development, as follows: before touch dome innervation
(E13.5); shortly after Merkel cell innervation (E16.5); when
Merkel cell innervation is complete (P0); and when prototypical
SAl responses can be recorded (P21; Pasche et al., 1990; Casserly
et al., 1994; Koltzenburg et al., 1997; Maricich et al., 2009; Fig.
1A—D; Table 1). Total DRG neuron numbers are also normal at
the L2 and L4/5 DRG levels in PO K14; Atoh1“%° mice (Fig. 2E).
These data suggest that SAI neurons survive and innervate touch
domes in K14; Atoh1“%° mice.

<«

(Figure legend continued.) lslet1/2™ T7 DRG neurons that were TrkB * (K), TrkC* (L),
TrkC " TrkB ™ (M), NF200 *Ret ™ (R), and TrkC *Ret * (§)in E13.5,E16.5, PO and P21 control,
and K14; Atoh 7% mice (n = 3 mice/genotype/age). In photographs, asterisks indicate double-
labeled cells. In graphs, error bars represent the SEM, and asterisks indicate statistically signif-
icant differences between control and K74; Atoh7™” mice. *p << 0.05; **p << 0.01; ***p <
0.001. Scale bar, 100 m.
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Table 1. Marker expression for T7 DRG neurons in the absence of Merkel cells

Protein Age Control K14; Atoh 10 n pValue
Islet 1/2 E13.5 5025 = 168 5170 = 97 23 0.45
E16.5 4974 *+ 165 5344 = 201 36, 32 0.16
PO 4639 * 124 4618 + 128 43 091
P21 5060 = 183 5028 = 171 26,24 0.90
NF200 E13.5 742 =90 823 £ 4 4 0.44
E16.5 762 = 16 793 = 42 4 0.51
PO 719 =22 747 £ 42 12 0.56
P21 1105 = 89 1002 =19 3 0.32
TrkB E13.5 4.5+ 0.48% 4.1 % 0.26% 3 0.49
E16.5 8.5 = 0.59% 6.3 + 0.41% 7,6 0.02
PO 8.6 = 0.63% 7.0 = 0.42% 13 0.05
P21 10.7 £ 1.33% 10.4 £ 0.20% 3 0.83
TrkC E13.5 4.7 +0.27% 4.7 +0.27% 12 0.95
E16.5 6.1 = 0.43% 5.2 = 0.40% 21,18 0.12
PO 8.6 = 0.34% 6.7 = 0.42% 16 0.002
P21 11.0 = 0.98% 7.2 = 0.50% 12 0.003
TrkB/TrkC E13.5 0.1 =0.01% 0.1 =0.01% 3 0.46
E16.5 1.2 £0.24% 1.1£0.23% 7,6 0.59
PO 4.2 = 0.52% 1.6 £ 0.62% 6 0.01
P21 3.7 =0.51% 4.1 % 0.14% 3 0.51
NF200/Ret E13.5 2.9 = 0.52% 2.7 =0.30% 4 0.71
E16.5 3.5 = 0.48% 3.1 %=0.15% 4 0.45
PO 2.0 = 0.07% 23 *+0.19% 6 0.17
P21 9.8 =0.33% 6.6 = 0.41% 3 0.004
TrkC/Ret E13.5 0.6 = 0.05% 0.6 = 0.03% 3 0.68
E16.5 24+ 0.57% 24+ 0.72% 4 0.97
PO 2.0 =0.18% 2.2 = 0.34% 4 0.70
P21 5.9 = 0.52% 2.9 = 0.32% 6 0.0006
PV E13.5 1.3 £0.15% 1.4 £0.12% 6 0.81
E16.5 29 *=037% 2.5 +0.29% 10,8 0.41
PO 2.8 = 0.25% 2.2 = 0.18% 6 0.10
P21 25+021% 23 = 0.42% 6 0.63
PV/TrkC E13.5 1.3 £0.15% 1.4 £0.12% 6 0.81
E16.5 2.9 *=0.37% 2.50 = 0.29% 10,8 0.41
PO 2.8 = 0.25% 2.2+ 0.18% 6 0.10
P21 25+021% 23 = 042% 6 0.63
NF200/-yENaC P21 1.1+ 0.17% 7.0 = 037% 3 0.0006
NF200/ASICT P21 129 £ 1.61% 12.7 £ 0.73% 3 0.88
NF200/DOR P21 13.1 £ 0.80% 1.7 £ 0.48% 3 0.20

Values are given as 7 DRG neuron counts and the percentages of total neuron numbers expressing different markers
in K14; Atoh1*° and control littermate mice, and are reported as the mean = SEM, unless otherwised indicated.

DRG neuron expression of neurotrophin receptors and
transcription factors associated with mechanoreception
decreases in K14; Atoh1°%° mice

No one specific marker separates SAI neurons from other
DRG neurons. However, BDNF-TrkB signaling plays a role in
SAI afferent morphology and function (Ernfors et al., 1994;
Minichiello et al., 1995; Fundin et al., 1997; Liebl et al., 1997;
Carroll et al., 1998; LeMaster et al., 1999; Liebl et al., 2000; Perez-
Pinera et al., 2008), so we examined TrkB expression. Before
touch dome innervation at E13.5, the percentages of TrkB * DRG
neurons were equivalent in K14; Atoh1*° mice and control lit-
termates (Fig. 1 E, F,K; Table 1). In contrast, at E16.5 and at PO the
percentages of TrkB ™ DRG neurons were 2.2% and 1.6% lower,
respectively, in K14; Atohl1“*° mice versus control littermates
(Fig. 1G, H,K; Table 1). The percentages of TrkB * DRG neurons
were again similar in K14; Atoh1““° and control littermates at
P21 (Fig. 1I-K; Table 1). These data suggest that TrkB protein
expression is dynamically regulated in DRG neurons, that TrkB
expression in SAI neurons at late embryonic and early postnatal
ages requires Merkel cells, and that SAI neurons normally down-
regulate TrkB protein expression while other neuronal popula-
tions upregulate TrkB protein expression at postnatal ages.
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We next examined the neurotrophin A
receptor TrkC, as it is expressed by SAls 201
and other DRG neurons, including pro- *
prioceptors (Airaksinen et al., 1996). Be- 1.5 —
fore touch dome innervation at E13.5 and
shortly after innervation at E16.5, the per- < 1.0
centages of TrkC™* and TrkB "TrkC™
DRG neurons were equivalent in K14; 0.5-
Atoh1“%© mice and control littermates
(Fig. 1E,F,L,M; Table 1). At PO, the per- 0.04
centages of TrkC* and TrkB *TrkC™* Cux2
DRG neurons were 1.9% and 2.6% lower,
respectively, in K14; Atohl CKO mice ver- B 20-
sus control littermates (Fig. 1G,H,L,M;
Table 1), decreases of similar magnitude 15
to those seen in the TrkB ™ population. At '
P21, there were 3.8% fewer TrkC* DRG o
neurons in K14; Atoh1°%° mice compared & 101
with control littermates, while the percentages
of TrkB " TrkC * neurons were compara- 0.51
ble (Fig. 11,],L,M; Table 1). Similar de-
creases in TrkC expression were found in 0.0- P
DRGs at the L2 and L4/5 levels of PO K14;
Atoh1%° mice compared with control Figure3.

littermates, suggesting that this is a
generalized phenotype (Fig. 2A-D,F).
Furthermore, coimmunostaining for the
proprioceptive neuron marker PV (Honda,
1995; de Nooij et al., 2013) and TrkC demonstrated equivalent
percentages of PV "TrkC " DRG neurons in Ki4; Atohl*°
mice and control littermates at all ages examined (Table 1). These
data suggest that Merkel cell deletion affects TrkC expression in a
specific population of nonproprioceptor DRG neurons after the
onset of touch dome innervation.

Adult SAIs, other mechanoreceptors, and nonpeptidergic
nociceptors express the GDNF family receptor Ret (Bourane et

Runx3 Shox2

Expression of some transcription factors involved in mechanosensitive DRG neuron development and function are altered by
Merkel cell deletion. 4, B, Expression (qPCR) analysis of mechanoreceptor transcription factors in PO thoracic DRGs whose expression was
decreased (4) or unchanged (B) in K74; Atoh1 mice compared with littermate controls (1 = 8 mice/genotype at each age). Error bars
represent the SEM, and asterisks indicate statistically significant differences between genotypes. *p << 0.05; **p << 0.01.

al., 2009; Luo et al., 2009). Percentages of NF200 "Ret* and
TrkC "Ret ™ DRG neurons were similar in E13.5, E16.5, and PO
K14; Atoh1“*© mice and control littermates, but P21 Ki4;
Atoh1%° mice had decreases of 3.2% and 3%, respectively, in
these populations compared with littermate controls (Fig.
IN-S; Table 1). These data suggest that SAI neurons require
Merkel cells for the initiation of Ret expression during the first
3 weeks of postnatal development.
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To determine whether the absence of Merkel cells affected
expression of transcription factors associated with mechanore-
ceptor development, we performed qPCR on reverse-transcribed
total RNA from thoracic DRGs of PO K14; Atoh1“%? and control
littermates. We found significant decreases in the expression of
Cux2, MafA, and Salll at PO (Fig. 3A). Several other genes encod-
ing transcription factors important for DRG neuron maturation
(Runx1, Runx3, Shox2) were not affected by Merkel cell deletion
(Fig. 3B). These results suggest that the absence of Merkel cells
disrupts SAI differentiation/maturation through the dysregula-
tion of transcription factors implicated in mechanoreceptor
development.

Merkel cell-derived BDNF is required for neurotrophin
receptor expression and BDNF-stimulated signaling in a
subset of DRG neurons

Given that decreases in TrkB ¥ DRG neuron numbers preceded
decreases in the numbers of TrkC ™ and Ret ™ DRG neurons in
K14; Atoh1“%° mice, we wondered whether disrupted Merkel
cell-derived BDNF signaling might underlie these changes in SAI
molecular phenotype. To assess this possibility, we conditionally
deleted BDNF, the cognate neurotrophin for TrkB, throughout
the skin using the K14 allele. PO K14; Bdnf“*° mice had equiv-
alent total and large-diameter neuron numbers but 1.4%, 2.3%,
and 1.6%, respectively, fewer TrkB *, TrkC * and TrkB "TrkC™*
DRG neurons compared with littermate controls (Fig. 4A-F;
Table 2). These changes recapitulate those seen after Merkel cell
deletion in K14; Atoh1“¥© mice. Importantly, Merkel cell num-
bers and touch dome innervation were not adversely affected in
K14; Bdnf“%° mice (Fig. 4G-I). In contrast, PO K14°; Ntf3ﬂ‘”‘/ﬂ‘”‘
(K14; le3CKO) mice had an ~20% decrease in total Islet1/2 "
DRG neuron numbers but no decreases in the numbers of
NF200 ¥, TrkB*, TrkC™, or TrkB *TrkC ™ neurons compared
with littermate controls (Fig. 5), suggesting that the loss of TrkB
and TrkC expression in SAI neurons of K14; Bdnf“*° mice is
secondary to disrupted BDNF-TrkB signaling, but not to NT3—
TrkC signaling.

To confirm that Merkel cell-derived BDNF influenced SAI
molecular phenotype, we next conditionally deleted Bdnf in
Merkel cells using a tamoxifen-inducible Atoh1<"*** ™ allele that
faithfully recapitulates endogenous Atohl expression and drives
recombination in >95% of Merkel cells (Fujiyama et al., 2009;
Wright et al., 2015). We administered tamoxifen (250 mg/kg) to
pregnant dams at E14.5 and harvested T7 DRGs from Atohl <12,
Bdnf""* (Atoh1; Bdnf“*°) embryos at E18.5, a date chosen to
avoid birthing complications secondary to tamoxifen adminis-
tration. Atohl; Bdnf®° mice had 1.3%, 2.4% and 2.2%, respec-
tively, fewer TrkB™*, TrkC™, and TrkB "TrkC * DRG neurons

<«

(Figure legend continued.) Islet1/2* and NF200 ™ neurons (C; n = 10 mice/genotype) and
the percentages of Islet1/2 * T7 DRG neurons expressing TrkB and TrkC (F; n = 6 mice/geno-
type) in T7 DRG sections from PO control and K74; Bdnf™® mice. I, Numbers of K8 ™ cells/touch
dome (TD) and the density of touch domes/cm * of skin (n = 3 mice/genotype). J~L, Inmuno-
staining for TrkB and TrkC (J, K) and the percentage of Islet1/2 ™ T7 DRG neurons expressing
TrkB and/or TrkC (L) in T7 DRG sections from E18.5 control and Atoh1; Bdnf™*” mice treated with
tamoxifen at E14.5 (n = 6 mice/genotype). M—0, Immunostaining for TrkCand Ret (M, N) and
the percentage of Islet1/2 * T7 DRG neurons expressing TrkC and Ret (0) in T7 DRG sections
from P23 control and Atoh1; Bdnf® mice treated with tamoxifen from PO to P2 (n = 3 mice/
genotype). Tamoxifen dosing regimens are shown above J, K, M, and N. In photographs, aster-
isks indicate double-labeled cells. In graphs, error bars represent the SEM, and asterisks indicate
statistically significant differences between genotypes. *p << 0.05; **p << 0.01. Scale bars: 4, B,
D,E J, K,M,N,100 .tm; G, H, 120 pem; insets, 40 m.
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Table 2. Marker expression for T7 DRG neurons in the absence of BDNF

Mice
Atoh](reER—TZ,, p

Protein Control K14:Bdnf™®  Bdnf™® n Value
PO

Islet 1/2 5278 = 144 5623 *+ 122 28,29 0.07

TrkB 106 = 043% 9.2+ 0.39% 12 0.02

TrkC M1+047% 8.8 = 0.48% 12 0.003

TrkB/TrkC 36 £049% 2.0 £ 0.36% 6,5 0.04

NF200/Ret 22*20.14% 2.6 = 0.28% 6 0.21

PV 43+0.23 3.9*0.29 6 0.31
E14.5Tam —E18.5

Islet 1/2 6050 = 199 5968 * 215 7 0.78

TrkB 10.6 £ 0.11% 93*£027% 4 0.004

TrkC 11.1 = 0.34% 87+039% 6 0.001

TrkB/TrkC 7.1 £ 0.47% 49+036% 6 0.005
P0—P2 Tam — P23

Islet 1/2 4776 £ 213 4928 + 350 3 0.73

TrkC 12.0 £ 1.85% 126 £2.22% 3 0.84

TrkC/Ret 49 +0.27% 54+079% 3 0.59

Values are given as T7 DRG neuron counts and the percentages of total neuron numbers expressing different markers
in PO K74; Bdnf© and E18.5 Atoh19*F-T2; Bdnf™® mice given tamoxifen at E14.5; P23 Atoh17*%72; Bdnf™® mice
given tamoxifen from PO to P2; and control littermate mice; and are reported as the mean == SEM, unless otherwised
indicated.

compared with littermate controls, reproducing the phenotypes
seen in K14; Atoh1%© and K14; BdnjCKO mice (Fig. 4J-L; Table
2). Significantly, tamoxifen administration from PO to P3 did not
alter the percentages of TrkC™ or TrkC *Ret ™ neurons at P23
(Fig. 4M-O; Table 2). These data demonstrate that Merkel cell-
derived BDNF is necessary for SAI neuron molecular differenti-
ation/maturation during a specific embryonic critical period.

BDNF binding to TrkB induces intra-axonal translation of
SMAD1/5/8, which is then phosphorylated to an active form that
translocates to the neuronal cell body, where it subsequently me-
diates transcription of the transcriptional repressor Tbx3 (Ji and
Jaffrey, 2012). Percentages of NF200 pSMADI1/5/8* and
NF200 *Tbx3 " DRG neurons were comparable in E13.5 K14;
Atoh1“%© mice and littermate controls, but those percentages
were decreased by 4.8% and 3.3%, respectively, in E16.5 K14;
Atoh1“%° mice compared with littermate controls (Fig. 6A-K).
Furthermore, quantitative PCR on thoracic DRGs of PO K14;
Atoh1°%© mice and littermate controls demonstrated reductions
in the expression of the BDNF-responsive genes Egrl, Fos, Nr4al,
and Tbx3 (Fig. 6L). These data suggest that Merkel cell deletion
causes a failure to activate downstream BDNF signaling in SAI
neurons.

Bdnf deletion in embryonic Merkel cells causes abnormal

SAI responses

Constitutive Bdnf deletion affects slowly adapting peripheral
mechanoreceptor electrophysiological responses (Carroll et al.,
1998), so we wondered whether embryonic loss of Merkel cell-
derived BDNF would lead to changes in SAI electrophysiological
phenotype. To test this, we characterized SAI responses in dorsal
foot skin-saphenous nerve preparations from adult Atohl;
Bdnf“<%; ROSA™Tomato| Atoh1; Bdnf™'*; ROSA™T°™% and con-
trol littermate mice that received tamoxifen at E14.5. In Atohl;
Bdnf“<; ROSA"T™ma0 and Atoh1; Bdnf™'*; ROSA™ ™" mice,
tamoxifen administration deleted Bdnf"* from AtohI-expressing
cells while simultaneously activating tdTomato expression from
the ROSA locus (Madisen et al., 2010). Using tdTomato reporter
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expression as a readout of Cre-mediated recombination, we un-
expectedly found that tdTomato © Merkel cells were present
proximally but absent distally (Fig. 7A). This suggested that
Cre-mediated recombination occurred only proximally, likely
due to differences in the birth dates of and, hence, Atohl ex-
pression by Merkel cells in these regions (our unpublished
observations). This unexpected finding gave us the opportu-
nity to compare electrophysiological responses in the presence
and absence of Merkel cell-derived BDNF in Atohl; Bdnf<*°;
ROSA"Tomato mice,

We first classified recorded cells into groups based on conduc-
tion velocity (AB, A8, and C) and response properties (rapidly vs
slowly adapting; Fig. 7B; for a detailed description, see Materials
and Methods). Thresholds and firing rates in response to con-
stant force were not significantly different among control, Atohl;
Bdnf™*; ROSA™™™ % and Atohl; Bdnf“*?; ROSA™*™° mice
for high threshold, RA, or slowly adapting type I fibers (Table 3).
Subsequent analyses were limited to slowly adapting A fibers,
which were divided into the following two groups: (1) classic SA1
AP fibers with an irregular discharge pattern (CoV, >0.7) and
narrow dynamic range (1-10 mN), consistent with insensitivity
to stimulus intensity; and (2) regularly firing (CoV, =0.7) HTMR
fibers that encode intensity over a wide dynamic range (5-50 mN;
Brown and Iggo, 1967; Horch et al., 1974; Mcllwrath et al., 2007).
No differences in these groups were observed between control
and Atohl; Bdnjﬂw *. ROSAMTomat mice so their results were
combined for all analyses. We found that both types of responses
were elicited by distal foot hairy skin mechanical stimulation of
Atohl; Bdnf“*©; ROSA™ ™™ mice (Fig. 7 B, C). In contrast, 75%
of fibers (six of eight fibers) recorded in the proximal foot skin of
Atohl; Bdnf“*©; ROSA"T°™a° mice exhibited a narrow dynamic
range coupled with a regular firing pattern (Fig. 7B-D). This
hybrid group combined features of SAl and HTMR afferents and
was never seen in control mice. These data suggest that the dele-

tion of Bdnfin embryonic Merkel cells affects the electrophysio-
logical characteristics of SAI neurons.

We next sought to correlate these electrophysiological
changes with changes in the expression of ion channels and neu-
rotransmitter receptors implicated in mechanosensation. Quan-
titative PCR on cDNA from thoracic DRGs of P21 K14; Atoh1¥©
mice and littermate controls demonstrated decreased expression
of Scnnlg, which encodes the YENaC subunit; increased expres-
sion of Asicl, which encodes a proton-gated sodium channel; and
increased expression of Oprd1, which encodes the 8 opioid recep-
tor (Fig. 8A). The expression levels of several other ion channels
and transporters (Asic2, Asic3, Kv1.1, Piezo2, Scnnlb, Slcl7a6,
Slc17a7, Slc17a8, TrpCl, and TrpV4) were comparable in K14;
Atoh1%° mice and littermate controls (data not shown). To con-
firm that these changes were specific to SAI neurons, we immu-
nostained DRG tissue sections for yENaC, Asicl, or DOR. The
percentage of NF200 “yENaC * DRG neurons was reduced by
3.6% in P21 K14; Atoh1°%° mice compared with littermate con-
trols (Fig. 8 B, C,H; Table 1), which is a change that is consis-
tent with the magnitude of the qPCR results. There were
no differences in the percentages of NF200 *Asicl™ or
NF200 "DOR " DRG neurons between genotypes (Fig. 8D-H;
Table 1), suggesting that increased ASICI and Oprd]l expres-
sion occurs in SAI neurons rather than through the recruit-
ment of additional DRG neurons following Merkel cell
deletion. These data identify potential molecular mechanisms
that might underlie the novel electrophysiological responses
seen in K14; Atoh1°%° mice.

Discussion

We used the Merkel cell-neurite complex as a model to study
how skin targets influence somatosensory neuron maturation.
Our data suggest that the developmental regulation of SAI mo-
lecular phenotype by Merkel cell-derived BDNF is similar to the
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100 m.

role of target-derived factors that instruct the phenotypes of sym-
pathetic and motor neurons (Luther and Birren, 2009; Stifani,
2014). One limitation of our study is that there are no specific
markers for SAI neurons, which forced us to examine the entire
DRG population for our molecular analyses. However, several
factors suggest that the changes in protein and mRNA expression

that we observed in the DRGs were limited to SAI neurons. First,
SAI neurons are the only DRG neurons that target Merkel cells,
making it unlikely that other DRG neuron populations would
be affected by Merkel cell loss or loss of Merkel cell-derived
BDNF. Second, we observed expression changes only after
Merkel cell innervation commences at E14.5, which links the
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difference from control SAI. D, Representative spike traces from proximal control SAl and AtohT; Bdnf™®; ROSA“™™@ hybrid neurons.

changes with Merkel cell contact. Third, ~3% of the DRG
neuron population lost TrkB, TrkC, and/or Ret expression
following Merkel cell or Bdnf deletion, a fraction similar to the
~3% of mouse cutaneous sensory neurons that are SAI in

electrophysiological phenotype (Lawson et al., 2008). Fourth,
the magnitude of the observed expression changes was consis-
tent across a variety of different markers, including double-
immunostaining for TrkB/TrkC and TrkC/Ret. This again
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Table 3. Mechanoreceptor thresholds for littermate control and Atoh 1% 72;

Bdnf™® mice given tamoxifen at E14.5

Mice (mN)
Fiber type Control Atoh77¢ERT2. pgnf0 n
Slowly adapting HTMR 9.0 10.0 25,16
Rapidly adapting LTMR 6.15 6.26 25,26
Slowly adapting type | 4.42 45 12,8

LTMR, Low-threshold mechanoreceptor.

suggests that the same group of neurons is involved. Finally,
the loss of SAI but not other cutaneous mechanoreceptor re-
sponses in Atohl; Bdnf“*9; ROSA"T°™4° mice suggests a spe-
cific functional effect. Together, these observations strongly
suggest that our molecular marker studies identify a single
population of DRG neurons that is affected by Merkel cell loss
or deletion of Merkel cell-derived BDNE.

Expression patterns of TrkB, TrkC, and Ret change dramati-
cally during DRG neuron maturation (for review, see Ernsberger,
2009). Our findings suggest that SAI neurons are TrkB " TrkC ™
embryonically and neonatally, but switch to TrkC *Ret * post-
natally (Fig. 1). This observation illuminates a previously un-
appreciated dynamic, developmentally regulated expression of
these receptors in SAI neurons. Surprisingly, our data also sug-
gest that maintained TrkC expression and the initiation of Ret
expression is driven by BDNF-TrkB signaling. We propose a
model where BDNF produced by embryonic Merkel cells binds
TrkB on SAI neurons to activate a number of different signaling
pathways, including the phospho-SMAD/Tbx3 signaling axis
(Fig. 9). These various cascades then initiate expression of the
transcription factors Egrl, Fos, Nr4al, Tbx3, Cux2, MafA, and
Salll; maintain TrkC expression; and initiate Ret expression
(Hughes and Dragunow, 1995; Andrew et al., 2002; Nishida et al.,
2008; Bourane et al., 2009; Davis and Puhl, 2011; Ji and Jaffrey,
2012). Conversely, the loss of BDNF signaling fails to induce the
expression of these transcription factors, which in turn leads to
failures to maintain TrkC and initiate Ret expression (Fig. 9).
This interpretation is consistent with the observations that TrkC
is downstream of Fos (Hughes and Dragunow, 1995), and that
Ret is downstream of Egrl and requires MafA for maintained
expression (Andrew et al., 2002; Bourane et al., 2009). Further-
more, our data show that these effects are specific for the BDNF—
TrkB pathway, as TrkC expression in SAI neurons is maintained
following skin-specific NT3 deletion. The developmental win-
dow during which SAI neuron maturation requires Merkel cell-
derived BDNF is short, as the deletion at PO—P2 does not affect
TrkC or Ret expression (Fig. 4M-0). This is also consistent with
the observation that postnatal Merkel cells do not express Bdnf
(Haeberle et al., 2004).

Our results also provide insights into transcriptional regu-
lation of SAI neuron identity. We found changes in mRNA
expression levels of three transcription factors (Cux2, MafA,
Salll) that have been implicated in mechanoreceptor develop-
ment (Bourane et al., 2009; de Celis and Barrio, 2009; Bachy et al.,
2011). Cux2 is a homeodomain protein involved in Ad neuron
mechanosensitivity that is also expressed by embryonic TrkB ™
and TrkC™ DRG neurons, although its function in these latter
groups is unknown (Bachy etal., 2011). MafA positively regulates
Ret expression and is expressed by several mechanoreceptors in-
cluding SAI neurons (Bourane et al., 2009; Wende et al., 2012).
Salll, a zinc finger transcription factor that is a transcriptional
activator, is required for the specification and terminal differ-
entiation of sensory neurons (Hu et al., 2006; de Celis and
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Barrio, 2009). Our results suggest that all of these genes are
downstream of BDNF-TrkB signaling in SAI neurons. Fur-
thermore, the fact that expression levels of several other tran-
scription factors important for DRG neuron maturation were
not affected by Merkel cell deletion suggests that changes in
Cux2, MafA, and Sall1 are all specific to SAI neurons. To what
extent the decreased expression of these genes mediates the
aberrant SAI molecular and electrophysiological phenotypes
observed following Merkel cell ablation or loss of Merkel cell-
derived BDNF remains to be studied.

Our data demonstrate that Merkel cells are important for the
maturation of SAI electrophysiological properties, as Merkel cell-
specific Bdnf deletion led to the appearance of cutaneous somato-
sensory afferents with properties intermediate to SAI afferents
and AB HTMRs. These hybrid responses were found only in the
proximal foot skin of Atoh1; Bdnf“*® mice, where >95% recom-
bination occurred, and were never seen in control mice or in
distal foot regions of Atoh1;Bdnf“*® foot skin where Merkel cells
did not undergo recombination. Some normal SAI responses
persisted in the proximal foot skin of Atohl; Bdnf“° mice, likely
due to those neurons innervating the small fraction of non-
recombined Merkel cells. The presence of these hybrid fibers
raises the interesting possibility that these neurons might arise
from a common progenitor that gives rise to neurons with a
slowly adapting, regularly firing phenotype, and that embryonic
Merkel cell-derived BDNF signaling subsequently alters the SAI
phenotype from this default pattern. In support of this theory all
non-SAI, myelinated, slowly adapting somatosensory afferents,
including proprioceptors, exhibit regular firing rates, and many
of these neurons (including a population of A-fiber HTMRs) are
TrkC* (Horch et al., 1974; Mcllwrath et al., 2007; de Nooijj et al.,
2013). Furthermore, our data suggest three candidate genes
(Asicl, Scnngl, and Oprdl), all of which are normally expressed
by SAI neurons (Drummond et al., 2000; Bardoni et al., 2014;
P.C. Adelman and H.R. Koerber, unpublished data), that might
shape SAI firing properties. AsicI encodes a proton-gated sodium
channel that mediates glutamate-independent calcium entry into
neurons (Waldmann et al., 1997). Scnnlgis an Asicl paralog that
encodes YENaC, a sodium channel that functions in action po-
tential propagation (Raouf et al., 2012). Oprdl encodes the 6
opioid receptor, which is a G-protein-coupled receptor that reg-
ulates neurotransmission (Williams et al., 2001; Bardoni et al.,
2014). We speculate that increased expression of Asicl and Oprd1
accompanied by decreased expression of Scnnlg contributes to
the aberrant firing properties of SAI afferents seen in Atohl;
BDNF“ mice. Additional experiments are necessary to verify
this hypothesis.

A previous study (Carroll et al., 1998) concluded that slowly
adapting cutaneous mechanoreceptors had decreased mechani-
cal sensitivity in Bdnf"/~ and Bdnf /" mice, and that “normal”
electrophysiological responses in adult animals could be rescued
by intraperitoneal BDNF administration. However, we did not
see differences in the mechanical thresholds of slowly adapting
fibers in control versus Atohl; BdnfCKo; ROSA™Tomato ice.
There are several potential reasons for the differing results be-
tween the two studies. One possibility is that non-Merkel cell-
derived BDNF sources, such as local production within the
DRG (De Biasi and Rustioni, 1988; Apfel et al., 1996; Zhou and
Rush, 1996; Conner et al., 1997; Michael et al., 1997), might
also influence SAI function. These sources are retained in our
Merkel cell-specific Bdnf knockouts but are lost in Bdnf /™~
mice. This interpretation is supported by the observation by
Carroll et al. (1998) of differing mechanical thresholds be-
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Merkel cells binds TrkB expressed on SAl neuron peripheral terminals, initiating signaling cascades that induce expression of the transcription factors Egr1, Fos, Nr4a1, Tbx3, Cux2, MafA,
and Sall1. Fos maintains TrkC expression (Hughes and Dragunow, 1995), Egr1 initiates and MafA maintains Ret expression (Andrew et al., 2002; Bourane et al., 2009), and transcription
factors like Cux2 coordinate ion channel expression (Bachy et al., 2011), all of which contribute to SAl neuron excitability and mature electrophysiological properties. In contrast, BDNF
deletion during the embryonic period (right side) prevents the activation of these signaling cascades, which in turn leads to failed expression of TrkC and Ret along with misexpression

of ion channels.

tween control and Bdnf"/~ mice, while we did not see differ-
ences between control and Atohl; Bdnf“*©; ROSA™Temate
mice. Methodological differences are another possibility, as
we stimulate on the epidermal surface while Carroll et al.
(1998) used an inverted preparation. The Carroll et al. (1998)
study also did not subdivide the slowly adapting mechanore-
ceptor population into SAI and HTMR subtypes based on the
regularity of firing, and they could have therefore missed the
appearance of regularly firing afferents with low-dynamic in-
tensity coding. This might also explain why exogenous BDNF
in their system was sufficient to improve slowly adapting
mechanoreceptor thresholds, as BDNF from other sources
might be necessary for HTMR function. Whether SAI neuron
maturation can be rescued following embryonic Bdnf deletion
in our system has not been tested.

Previous studies concluded that Merkel cell function is neces-
sary for canonical SAI electrophysiological responses (Maricich
et al., 2009; Maksimovic et al., 2014; Woo et al., 2014). In those
studies, dynamic and static phases of SAI firing were altered by
Merkel cell deletion, but only the static phase was altered by
Piezo2 deletion or optogenetic Merkel cell silencing. Our data
are consistent with these studies and provide a possible expla-
nation for the differing results seen in the presence and ab-
sence of Merkel cells; namely, that Merkel cell-derived BDNF
is important for the development of normal SAI dynamic
phase responses. In summary, our findings provide new in-
sights into the regulation of somatosensory neuron develop-

ment and reveal a novel way in which Merkel cells participate
in mechanosensation.
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