Skip to main content
. 2016 Apr 13;36(15):4377–4388. doi: 10.1523/JNEUROSCI.3296-15.2016

Table 3.

Backward stepwise regressions to predict working-memory performance using different types of fMRI measures in healthy individuals

Task performance measure (dependent variable) Type of imaging measure Independent variables entered Statistics for best model
Predictors retained, standardized β values R2 Adj. R2 AICc AICca (n = 15) F (df)
2-back AHR Load-dependent connectivity (n = 39) 6 network pairs lFPN-rFPN, β = 0.55*** 0.30 0.28 −133 −61.3 15.7*** (1, 38)
Load-independent connectivity (n = 39) 6 network pairs CON-rFPN β = −0.22 0.05 0.02 −121 −44.5 1.8 (1, 38)
Load-dependent activation (n = 39) 4 networks CON, β = −0.47* lFPN, β = 0.52** 0.22 0.18 −125 −43.0 5.1* (2, 38)
PET dopamine (n = 15) DLPFC BPND, DLPFC ΔBPND ΔBPND, β = −0.34 0.11 0.05 −46.2 1.7 (1, 14)
Differential accuracy (2-back − 1-back) Load-dependent connectivity (n = 39) 6 network pairs lFPN-rFPN, β = 0.39* 0.15 0.13 −128 −40.9 6.7* (1, 38)
Load-independent connectivity (n = 39) 6 network pairs CON-lFPN β = 0.22 0.05 0.02 −124 −42.6 1.8 (1, 38)
Load-dependent activation (n = 39) 4 networks lFPN, β = 0.47* rFPN, β = −0.45 0.12 0.07 −123 −35.0 2.5 (2, 38)
PET dopamine (n = 15) DLPFC BPND, DLPFC ΔBPND BPND, β = 0.29 0.08 0.01 −38.8 1.14 (1, 14)

aAICc, Corrected AIC calculated to compare models on the subsample with PET dopamine measures (n = 15).

***p < 0.001,

**p < 0.01,

*p < 0.05.