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Abstract

The human microbiome has emerged as a major player in regulating human health and disease. 

Translation studies of the microbiome have the potential to indicate clinical applications such as 

fecal transplants and probiotics. However, one major issue is accurate identification of microbes 

constituting the microbiota. Studies of the microbiome have frequently utilized sequencing of the 

conserved 16S ribosomal RNA (rRNA) gene. We present a comparative study of an alternative 

approach using shotgun whole genome sequencing (WGS). In the present study, we analyzed the 

human fecal microbiome compiling a total of 194.1×106 reads from a single sample using multiple 

sequencing methods and platforms. Specifically, after establishing the reproducibility of our 

methods with extensive multiplexing, we compared: 1) The 16S rRNA amplicon versus the WGS 

method, 2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo 
assembled contigs, and 4) the effect of shorter versus longer reads. Our study demonstrates that 

shotgun whole genome sequencing has multiple advantages compared with the 16S amplicon 

method including enhanced detection of bacterial species, increased detection of diversity and 

increased prediction of genes. In addition, increased length, either due to longer reads or the 

assembly of contigs, improved the accuracy of species detection.
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INTRODUCTION

The human microbiome is important in maintaining health, whereas dysbiosis has been 

associated with various diseases (e.g., inflammatory bowel disease and coronary artery 

disease) and conditions (e.g. obesity) [1, 2]. These observations suggest that modulation of 

the fecal microbiome could become an important therapeutic modality for some diseases. 

For example, fecal transplants have been shown to alleviate diarrhea caused by Clostridium 
difficile infection and temporarily improve insulin sensitivity [3, 4]. However, a major 

concern when administering fecal transplants, or even probiotics, is the long-term biological 

effects of the inoculum on the recipient microbiota. It is essential to precisely identify and 

enumerate the bacterial species in the inoculum as well as in the recipient microbiome in 

order to understand the complex interactions among the microbes [5, 6]. The gut 

microbiome, which has been the most extensively studied of the human microbiomes, is 

highly diverse and has been shown to include thousands of different bacterial species [7, 8]. 

The diverse community of bacteria is composed of a small number of abundant species plus 

a large number of rare or low abundance species [9]. The differential functions of the 

abundant and rare species remain poorly understood. Thus, to effectively understand the 

ecology of the fecal microbiome, it is imperative to analyze both the rare and the abundant 

microbes.

The number of studies investigating the microbiome has exploded since the technological 

advances in high-throughput sequencing that facilitate culture- and cloning-independent 

analysis [10]. These technical advances have been paradigm shifting since the majority 

(>90%) of microbial species cannot be readily cultured using current laboratory culture 

techniques [11–13]. The most common sequencing approach to analyze the microbiome, 

which has been used to compile most of the data collated by the Human Microbiome Project 

(HMP), is amplicon analysis of the 16S ribosomal RNA (rRNA) gene [14, 15]. In this 

method, a 16S rRNA region is amplified by PCR with primers that recognize highly 

conserved regions of the gene and sequenced [16]. The limitations of this method are that 

the annotation is based on putative association of the 16S rRNA gene with a taxa defined as 

an operational taxonomic unit (OTU). In general, OTUs are analyzed at the phyla or genera 

level, and can be less precise at the species level. In addition, specific genes are not directly 

sequenced, but rather predicted based on the OTUs. Due to horizontal gene transfer and the 

existence of numerous bacterial strains [17–19], the lack of direct gene identification 

potentially limits understanding of a microbiome.

An alternative approach to the 16S rRNA amplicon sequencing method is whole genome 

shotgun sequencing (WGS) which uses sequencing with random primers to sequence 

overlapping regions of a genome. The major advantages of the WGS method are that the 

taxa can be more accurately defined at the species level. Another important consideration is 

Ranjan et al. Page 2

Biochem Biophys Res Commun. Author manuscript; available in PMC 2017 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that the 16S and WGS methods commonly utilize different databases for classification of 

taxa. However, WGS is more expensive and requires more extensive data analysis [10, 20–

22]. In addition, to identify and understand the bacterial genes in a taxa, it may be necessary 

to sequence a genome with high coverage [20].

In the present study, we analyzed a single human fecal microbiome with a total of 194.1×106 

reads using multiple methods and platforms. The high number of reads supported an 

analysis with multiple experimental methods. Specifically, we established the reproducibility 

of our methods with extensive multiplexing. Also, we investigated four factors of 

microbiome analysis. We compared: 1) The 16S rRNA amplicon versus the WGS method, 

2) the Illumina HiSeq versus MiSeq platforms, 3) the analysis of reads versus de novo 

assembled contigs, and 4) the effect of shorter versus longer reads. Our results demonstrate 

important advantages of the WGS sequencing method.

MATERIALS AND METHODS

Subject recruitment and sample collection

Informed consent was obtained from the subject. An adult subject provided self-collected 

stool. The study was approved by the Institutional Review Board of the University of Illinois 

at Chicago (Protocol # 2014-0528), and the experimental methods were carried out in 

accordance with the approved guidelines.

Fecal Metagenomic DNA isolation

A fresh voided stool specimen was processed for total DNA isolation. Approximately 100 

mg of stool was transferred to an Eppendorf safe lock tube and processed with a PowerSoil 

DNA isolation kit (Catalogue # 12888-100, MO BIO Laboratories, Inc) using the 

manufacture’s protocol with slight modifications. For efficient lysis of the microbes, glass 

beads in 200 µL bead solution plus 200 µL of Phenol/Chloroform/Isoamyl alcohol (25:24:1) 

pH 7.8–8.2 (Catalogue #327115000, Acros Organics) was added to the sample. The contents 

were vortexed for 1–2 min and homogenized at speed 10 for 5 min with air-cooling using 

the Bullet Blender Storm Homogenizer (Catalogue # BBY24M, Next Advance Inc). The 

contents were centrifuged at 14,000×g, and the lysate was transferred to a sterile tube. The 

DNA was eluted with 1×TE, pH 8.0, and stored at −80°C. The quality and quantity of the 

DNA was accessed using a spectrophotometer (NanoPhotometer Pearl, Denville Scientific, 

Inc), agarose gel electrophoresis, and fluorometer (Qubit® dsDNA High Sensitivity and 

dsDNA Broad Range assay, Life Technologies Corporation).

Metagenomic Library preparation

For preparation of the libraries for Illumina MiSeq and HiSeq 2000 DNA sequencers, the 

fecal metagenomic DNA libraries were prepared in two separate batches. For sequencing on 

MiSeq, approximately 5 µg metagenomic DNA was mechanically sheared to 300 – 600 bp 

fragments using a Covaris S220 instrument (Covaris, Inc) with the following parameters: 

temperature 7– 9°C, peak incident power 140 W, duty factor 10%, cycles per burst 200, time 

80 s, sample volume 130 µL, and shearing tubes Crimp-cap microTubes with AFA fiber. In 

total 20 µg of metagenomic DNA was sheared to prepare multiple libraries. The fragmented 

Ranjan et al. Page 3

Biochem Biophys Res Commun. Author manuscript; available in PMC 2017 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DNA was analyzed with an Agilent DNA 12000 Kit on the 2100 Bioanalyzer Instrument 

(Agilent Technologies, Inc). The sheared DNA was processed with a QIAquick PCR 

purification kit (Qiagen) and eluted in nuclease free water. One microgram fragmented 

metagenomic DNA was end-repaired and 3′-adenylated, ligated with Illumina adapters, and 

PCR enriched with Illumina sequencing indexes (barcodes) using the NEBNext Ultra DNA 

library prep kit for Illumina (Catalogue # E7370L,New England BioLabs Inc). In total, 11 

libraries were constructed with unique indexes using the NEBNext Multiplex Oligos for 

Illumina Set 1 (Catalogue # E7335L, NewEngland BioLabs Inc). For sequencing on a HiSeq 

2000 the library was prepared using the same fecal metagenomic DNA using the described 

procedures. The quality and quantity of all the DNA libraries were analyzed with an Agilent 

DNA 12000 Kit on the 2100 Bioanalyzer Instrument and Qubit.

Sequencing strategy

The DNA libraries were sequenced using the Illumina MiSeq and HiSeq 2000 platforms. 

The first batch of eleven DNA libraries was diluted and pooled with an equimolar 

concentration of each library. The pooled libraries were sequenced following manufacturer’s 

protocol by multiplexing on our MiSeq using the MiSeq® Reagent Kit v2 (300 cycle) and 

MiSeq® Reagent Kit v3 (600 cycle) for paired-end 151 bases and 301 bases, respectively. 

The second batch of DNA libraries was sequenced on a HiSeq 2000 using the TruSeq SBS 

v3 reagent for 100 base paired runs by BGI Americas. Sequencing runs on both platforms 

included an additional 6 cycles for the 6 base-index.

16S rRNA amplicon library preparation and sequencing

The amplicon libraries were prepared using the NEXTflex 16S V1–V3 Amplicon-Seq kit 

(Catalog # 4202-02, Bio Scientific Corp) following the manufactures protocol with slight 

modifications. Metagenomic DNA (50 ng) was used as template for the first PCR (PCR-I) 

amplification, which amplifies the 16S rRNA region, with the following conditions (initial 

denaturation at 95°C for 5 min, 10 cycles of denaturation at 95°C for 30 s, annealing at 55°C 

for 30 s, extension at 72°C for 30 s plus a final extension at 72°C for 5 min). The PCR 

product was processed using Agencourt AMPure XP Beads (Beckman Coulter, Inc.) and 

eluted with nuclease free water. Four µL was used as template for the second PCR (PCR-II), 

which adds the adapter sequences. PCR-II was performed using the following conditions 

(initial denaturation at 95°C for 5 min, 12 cycles of denaturation at 95°C for 30 s, annealing 

at 60°C for 30 s, annealing at 72°C at 30 s, plus a final extension at 72°C for 5 min). The 

final product was processed using the Agencourt AMPure XP Beads and library was 

analyzed using the Bioanalyzer DNA 1000 (Agilent Technologies). The final amplicon 

libraries were sequenced on a MiSeq using the v3–600 cycle kit with 301 base paired end 

chemistry. To check for possible exogenous DNA contamination, samples of TE and water 

used for the PCR-I and PCR-II step were analyzed on a Bioanalyzer DNA 1000 and Qubit 

(High Sensitivity Assay) with no detectable DNA. Also, the control libraries generated no 

detectable sequences.

Data analysis

The sequence reads generated by the 16S rRNA and WGS sequencing methods on MiSeq 

and HiSeq 2000 sequencers were processed on CLC Genomics workbench (CLC bio). For 
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the 16S rRNA amplicon analysis the individual library read files were paired. In addition all 

the eleven read files for the l6S libraries were combined in silico (16S–total) and analyzed 

for taxonomic annotation using the RDP tool on MG-RAST [23]. For the WGS libraries 

individual library reads sequenced by v2–300, v3–600 and HiSeq 2000 were paired. In 

addition, all the reads from v2–300, v3–600, and HiSeq 2000 were combined in silico using 

CLC Genomics workbench, and designated as v2-total, v3-total, v2+v3-total, v2+v3+HiSeq-

total. All the files were analyzed for species identification using MG-RAST. For the contig 

based analysis, the reads of individual libraries (v2, v3, HiSeq) were paired and de novo 
assembled into contigs using de-novo assembly algorithm (CLC Genomics workbench). 

Additionally, the read files of v2-total, v3-total, v2+v3-total, v2+v3+HiSeq-total were 

combined and de novo assembled into contigs. The contigs of the individual libraries and 

combined reads were annotated for phylogenetic and functional analysis using the 

automated annotation pipeline at MG-RAST.

Analysis of genome coverage of high, low and rare abundant species

Based on the percentage relative abundance of species, we classified abundance as common 

(>1.00%), high (>0.50–0.99%), moderate (0.05–0.49%), low (0.01 – 0.49%) and rare 

(<0.01%). The genome sequences of representative species were downloaded from the 

NCBI Genome browser. The reads were aligned to the reference genomes using the CLC 

Genomics workbench, and the percentage of genome coverage was calculated using the 

formula [total number of bases aligned/genome size (bases) × 100].

Data analysis pipeline

We created a bioinformatics framework pipeline to classify metagenomic sequences at the 

phylogenetic and functional levels (Fig. S1). The input to the pipeline was raw sequencing 

reads in fastq format. First, the reads were filtered using the FastX tool (to remove the reads 

that have a length less than 75 nt for MiSeq v2–300, 151 PE; 150 nt for MiSeq v3–600, 301 

PE; and 40 nt for HiSeq 100 PE) or quality for Phred score less than 20. All reads that 

aligned to the human genome were filtered. Next, reads that had less than 90% identity or e-

value of 1e−3 were removed. The filtered high quality reads were assembled into contigs 

using the MetaVelvet assembler [24]. All parameters were set to default except the minimum 

contig length of 500 bp and k-mer size of 31. A similarity method was utilized to assign 

each contig to a species, and the assembled contigs were then queried against NCBI NT 

database. A stringent threshold of 90% identity and e-value of 1e−3 was used to evaluate the 

alignments, and the best hit was selected. Using blast output, the implemented pipeline 

returned the relative abundance at each taxonomic level, i.e. kingdom, phylum, class, order, 

family, genus and species.

Analysis of unique genes

The assembled contigs from the combined reads (v2-total, v3-total, v2+v3-total, 

v2+v3+HiSeq-total), were used to predict putative genes using the MetaGeneMark [25] tool 

(Fig. S1). The predicted ORFs were in two formats: nucleotide and amino acid. To identify 

the unique genes, we utilized the CD-HIT tool to remove shorter ORFs that aligned with 

another ORF with more than 95% identity and had query coverage of greater than 90 bp of 

the shorter ORF. This criteria is the same as the parameters used in the MetaHIT project. We 
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aligned the predicted unique ORFs to the current updated gut microbial gene catalog which 

includes 9.8×106 genes [26].

Determining the number of reads to identify abundant species

The v3-total read file (containing ~59 million reads) was randomly sampled for 250, 500, 

750, 1,000, 2,000, 3,000, 5,000 and 10,000 reads. Each sample read file was then matched 

against the NCBI-nt database using our pipeline (Fig. S1).

Sequence Datasets

The datasets supporting the results of this article are available in the MG-RAST repository 

(http://metagenomics.anl.gov/). The accession numbers are listed in Table S10.

RESULTS

Analysis of amplicon (16S rRNA) versus whole genome shotgun sequencing

In this study, we performed extremely deep sequencing of a fecal sample using different 

sequencing methods (16S and WGS metagenomic sequencing), sequencing platforms 

(HiSeq and MiSeq), analysis strategies (reads and de novo assembled contigs) and read 

length (100, 150 and 300 bp) to rigorously determine the optimal methods for microbiome 

analysis (Fig. 1). A freshly voided sample was processed and high quality (greater than 5 kb) 

metagenomic DNA was isolated (Fig. S2a,b). To evaluate reproducibility of our methods, 

the libraries were constructed with 11 fold multiplexing. We prepared 16S rRNA amplicon 

libraries from the metagenomic DNA using 16S rRNA gene V1–V3 region primers listed by 

the Human Microbiome Project [27]. The Bioanalyzer tracings of the 11 libraries showed a 

peak at 650–700 bp without any primer-dimers or detectable adapter contamination 

confirming high quality of the amplicon libraries (Fig. S2c). To exclude the possibility of 

contamination of reagents, a control library without metagenomic DNA inserts was prepared 

following the same methods and no PCR product or DNA inserts were detected (S3a,b). To 

prepare WGS libraries for the v2–300 and v3–600 MiSeq sequencing, the fecal 

metagenomic DNA (Fig. S2a,b) was sheared to 300 – 600 bp fragments using Covaris S220 

(Fig. S4a). Eleven high quality libraries (S1 – S11) with unique indexes for multiplexed 

sequencing were prepared (Fig. S4b). Next, to prepare a library for sequencing on HiSeq, the 

same fecal metagenomic DNA was sheared (Fig. S5a) and a library was prepared. The 

Bioanalyzer tracing of the library showed a peak at 280–300 bp also without primer-dimers 

or detectable adapter contamination (Fig. S5b). Taken together, our quality control 

assessments indicate high quality DNA and metagenomic libraries.

To compare sequencing protocols, we performed 4 sequencing reactions of the libraries 

utilizing different methods (16S versus WGS), different platforms (HiSeq versus MiSeq), 

different read lengths (100, 150 and 300 bp paired-end reads) and different data analysis 

strategies [amplicon, read or contig based analysis] (Table 1). First, with the 16S approach 

we identified 30.4×106 reads totaling 9.1 Gb of sequence. Second, with the HiSeq 2000 

using a WGS library sequenced with a TruSeq SBS v3 reagent we generated 67.2×106 reads 

that comprised 6.7 Gb of sequence. Third, with the MiSeq using a library sequenced with a 

v2–300 kit, we generated a total of 37.5×106 reads with 151 read length that totaled 5.8 Gb 
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of sequence. And fourth, with the MiSeq using a library sequenced with a v3–600 we 

generated a total of 59.0 × 106 reads that totaled 15.6 Gb of sequence. In total we identified 

194.1×106 reads comprising 39.6 Gb of sequence (Table 1).

We analyzed the multiplexed results of a single fecal sample to establish the technical 

reproducibility of our methods, which included our analyses of abundance, taxonomy and 

diversity (Tables S1 and S2). After establishing the reproducibility of our methods, we 

combined the multiplexed indexes in silico to construct the v2-total (37.5×106 reads) and v3-

total (59.0×106 reads) data sets. Next, we combined the v2-total plus v3-total read sequence 

data sets to form the v2+v3-total (96.5×106 reads) data file. And finally, we combined the 

v2+v3-total with the HiSeq data to construct the v2+v3+HiSeq-total (163.7×106 reads) 

dataset (Table S2). Overall, the combination of the multiplexed data plus the high number of 

sequence reads facilitated an in depth comparative analysis of the sequencing platforms and 

methods with our data analysis pipeline (Fig. S1).

Analysis of species abundance

To evaluate the capacity of the different platforms and methods to detect bacterial species, 

we constructed rarefaction curves for the reads of the 16S, HiSeq, v2-total, v3-total, v2+v3-

total and v2+v3+HiSeq-total datasets (Fig. 2a). The striking result was that the species 

abundance detected by the 16S method was markedly lower than by all of the WGS 

protocols. At 32.8 million reads, 16S detected 1,800 compared to more than 3,000 species 

by the WGS method. The different libraries and platforms analyzed with the WGS methods 

detected similar numbers of species per sequence read; however, the slope of the abundance 

curve remained positive indicating that additional species were being detected even at 

163.7×106 total WGS reads. In the combined data in the v2+v3+HiSeq-total dataset, a total 

of 5,870 unique species were detected. Interestingly, the 21 common species (defined as 

relative abundance >1%) comprised 34.0% of the cumulative abundance, whereas the 1,222 

rare species (defined as relative abundance <0.01%) comprised only 3.3% of the cumulative 

abundance (Table 2). Thus, we detected a large number of unique species in a single fecal 

microbiome. In parallel, we asked what is the minimum number of reads necessary to 

identify abundant species in the sample. We randomly sampled low numbers of reads from 

the v3-total dataset and constructed an abundance table (Table 3). Interestingly, 100% of the 

abundant species can be detected with as few as 500 sequence reads. The rarefaction curves 

for the multiplexed samples showed similar and reproducible results for the individual 

indexes (Fig. S6a–e and Tables S3, S4, S5). Thus, our data shows that the microbiome 

contains a small number of abundant species, but a large number of low abundance and rare 

species.

After performing de novo assembly of the WGS metagenome datasets with the CLC 

Genomics Workbench, we reanalyzed the rarefaction curves for the WGS datasets (Fig. 2b). 

Interestingly, in this analysis of contigs both the v2-total and v3-total datasets generated with 

the MiSeq outperformed the HiSeq dataset, In our study both the MiSeq and HiSeq data 

were paired end reads, but the MiSeq data generated longer reads (150 and 300 versus 100 

bp) which may have improved the efficiency of the de novo assembly of the contigs, and 

thus, increased species detection in the MiSeq data.
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Analysis of bacterial taxonomy

To investigate the complexity of the microbial community, we determined the relative 

abundance at the phyla level in our datasets based on the analysis of 16S rRNA amplicons, 

reads and contigs (Fig. 3a–c). The relative abundance of the major phyla (Firmicutes, 

Bacteroidetes, Actinobacteria and Proteobacteria) was similar in all datasets sequenced with 

the WGS methods. However, we did detect significant differences between the 16S rRNA 

amplicon and WGS results. Specifically, in the 16S analysis we detected an increase in 

Bacteroidetes to 34% from 14–21% and a decrease in Actinobacteria to 0.4% from 4–7%. 

The relative abundance of Firmicutes and Proteobacteria was similar. When we analyzed the 

abundance of phyla in the multiplexed data, we obtained similar and reproducible results for 

the individual indexes (Fig. S7a–c). To compare the detection of phyla by the 16S rRNA 

amplicon versus WGS reads, we determined the number of species in each phyla identified 

by both methods or by only one of the methods (Fig. 4a and Table S6). In summary, both 

methods detected 70.8% of the Actinobacteria species, but only 8.9% of the Proteobacteria 

species. Among the Proteobacteria, 1,056 species were detected only by WGS showing 

increased sensitivity of species detection by WGS.

To drill down on the differences observed at the phyla level, we next analyzed the detection 

of individual bacterial species by the different methods. First, we analyzed the common 

species (>1% abundance) detected by 16S rRNA amplicon and by BLAST analysis of reads 

and contigs (Table 4 and Table S6). The Pearson’s correlation coefficient between the 

abundance determined by 16S rRNA amplicon analysis versus WGS (the v2+v3+HiSeq-

total dataset) was 0.6, whereas the correlation among the WGS datasets was >0.9 for all 

comparisons (Table S7a,b). These results illustrate the similarity among the WGS 

approaches, and the differences between the 16S and WGS methods.

Similar correlations were detected in an analysis of either reads or contigs of the WGS data. 

The lower correlation between the 16S and WGS methods was in part due to differences 

between the classifications of OTUs in the RDP database and species in the NCBI-nt 

database. First, we suggest that the 16S rRNA method is less sensitive for species detection 

as shown in the rarefaction plots. Second, the NCBI-nt database includes a greater number 

of bacterial species. Although some species showed comparable abundance between the 16S 

and WGS methods, other species (e.g., Faecalibacterium prausnitzii) were more abundant in 

the WGS results (17.0–23.5 versus 7.1), whereas other species were more abundant in the 

16S results [e.g., Bacteroides uniformis (1.0 versus 3.9) and Bacteroides stercoris (1.0 versus 

3.8)]. For some sequences, we detected different nomenclature in the RDP versus the 3 

NCBI databases (nt, representative genome database and 16S rRNA databases). For 

example, several species (e.g., Subdoligranulum variabile, Clostridium saccharolyticum, 
Bacteroides sp. 1_1_6, Ruminococcus sp. SR1/5, Clostridium phytofermentans and 

Bacteroides sp. 4_3_47FAA) were detected by M5NR database but not by 16S analysis of 

the RDP and NCBI-nt database. In addition, we identified Blautia sp. Ser8 in the RDP 

database; however the same sequence was assigned to uncultured bacterium clone (99%) in 

NCBI-nt, Clostridium saccharolyticum WM1 (93%) in NCBI representative genome 

database and Blautia producta strain JCM (98%) in NCBI 16S ribosomal RNA database. 

Comparison of a complete list of the unique species identified by the 16S versus WGS 
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methods also showed differences in a read-based versus contig-based analysis (Fig. 4b). 

First, the read-based analysis detected substantially more unique species (3,875) than the 

contig-based analysis (2,769). Furthermore, 63% of the species detected by the read-based 

method, compared with only 48% in the contig-based method, were not detected by the 16S 

approach.

We also detected substantial quantitative differences in abundance for some species 

determined by analysis of reads versus contigs. The most striking difference was for 

Faecalibacterium prausnitzii which showed 17.0–23.5% for our WGS read analysis (Table 

4), but only 3.6–5.3% for WGS contig analysis (Table S6). Smaller differences were 

observed for other species. We observed similar results in the multiplexed data (Tables S3, 

S4, S5). Overall, among the unique bacterial species detected, 43% were detected only in the 

analysis of reads, whereas 2% were detected only in the analysis of contigs (Fig. 4b). These 

results could be due to decreased specificity in the read analysis or decreased sensitivity in 

the contig analysis. Our analysis underscores the importance of understanding the 

differences among the databases and using the same database for all comparative 

metagenomic analyses. Thus, both the sequencing and analytical methods showed 

differences in both detection and abundance of some species. Some of these discrepancies 

were because the RDP classifier gave a genus-level assignment, whereas NCBI gave only 

uncultured bacteria-level assignment for the same sequence.

Analysis of diversity

Next, we analyzed the effects of the different sequencing methods on diversity as measured 

by Shannon diversity, Simpson index and evenness (Fig. 5 and Table S8). All 3 measures of 

diversity were lower for the 16S than the WGS analyses. Similar results were observed for 

the individual multiplexed libraries (Figs. S8a,b). Among the datasets prepared by WGS, the 

contig-based analysis showed increased diversity measured by Shannon diversity, Simpson 

index and evenness in all datasets compared with the read-based analyses.

Depth of coverage of bacterial genomes

Due to horizontal gene transfer, bacterial genomes of strains even within the same species 

are potentially diverse. To investigate if the BLAST hits to a reference species mapped to 

short homologous sequences or with broad regions of a genome, we analyzed the depth and 

breadth of sequencing coverage for 10 reference genomes with abundance classified as 

common, high, moderate, low and rare (Table 5). The depth of coverage by sequencing reads 

ranged from 452 fold in the common abundance to 1.8 fold in the rare abundance species. A 

representative graphical representation of genome coverage for Faecalibacterium prausnitzii 
shows diffuse coverage for both strands of the genome for both mapped reads and contigs 

(Fig. 6). For this genome, the mapped reads covered 3,337 features (95.5% of total) and the 

contigs covered 2,460 features (70.4% of total). To determine if genomes with lower depth 

of sequencing also had diffuse coverage, we plotted the depth of sequencing on the genomes 

of the 10 reference species (Figs. S9a–j). These results showed diffuse coverage that, 

although gaps and spikes were present, was broadly distributed across the genome. For 

example, the coverage of Faecalibacterium prausnitzii L2–6 shows broadly dispersed 

coverage with few gaps (Fig. 9a). Interestingly, coverage of Aggregatibacter aphrophilus 
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NJ8700, which is a rare species with 1.8 fold coverage, also had diffuse coverage with 

intermittent spikes (Fig. S9j). We also documented genome size for the abundant species 

which ranged from 2.1–6.8 Mb (Table S9). These results indicate that sequencing coverage 

of the bacterial genomes was variable but diffuse.

Comparing databases to assign taxonomy to metagenome sequences

In our analyses we used four different databases to assign taxonomy to the sequences. When 

discrepancies among the databases occurred, discrepant sequences were compared among 

the databases. For example, we observed that Blautia sp. Ser8 was only detected in the 16S 

amplicon library, whereas Clostridium saccharolyticum WM1 was absent in the 16S 

amplicon library. To analyze a discrepancy we submitted the reference query sequences, for 

example Blautia sp. Ser8 (S001745585; GU124472, reference sequence obtained from 

RDP), and Clostridium saccharolyticum WM1 (S002287206; CP002109) to the online RDP 

classifier at http://rdp.cme.msu.edu/classifier/classifier.jsp [28]. We parsed the detailed RDP 

match results using taxon assignments with ≥95% bootstrap support and saved the 

assignment detail for each RDP match. Also, we submitted the reference query sequence 

Blautia sp. Ser8 and Clostridium saccharolyticum WM1 to the online NCBI databases at 

(http://www.ncbi.nlm.nih.gov). NCBI BLAST computed a pairwise alignment between the 

query and the database sequences using default parameters. BLAST results for each 

sequence from each database were saved for comparison (Fig. S10). In general, comparison 

at the phylum level using the MG-RAST M5NR and NCBI-nt database revealed no 

differences in relative abundance of major phyla, however detection of unclassified bacteria 

was higher (~ 4 %) in NCBI-nt database (Fig. S11).

Gene detection

To determine the putative number of genes encoded by fecal metagenome, we predicted the 

number of genes in the de novo assembled contigs in each dataset with the MetaGeneMark 

algorithm (Table 6). After identifying the predicted genes, we selected all unique genes with 

the CD-HIT algorithm. Next, we aligned the putative genes with tblastx to the amino acid 

sequences in the NCBI database. Alignment with the amino acid sequences increased the 

confidence that the predicted genes could be translated and functional. The v2+v3+HiSeq-

total dataset had the largest number of unique predicted genes (811,933), followed by the 

v3-total (783,887), HiSeq dataset (733,705) and the v2-total dataset (422,174). Thus, the 

HiSeq dataset detected the lowest number of genes. Although the HiSeq data generated the 

most identified reads (67.2×106 versus 59.0×106), the MiSeq v3-total dataset generated the 

largest number of total bases (15.6 Gb versus 6.7 Gb) due to the longer reads produced by 

the v3 technology. Interestingly, the longer MiSeq reads actually resulted in fewer total 

contigs, but the N50 length was substantially longer. These results suggest that longer reads 

can improve the efficiency of the assembly process resulting in the identification of a larger 

number of predicted genes.

DISCUSSION

In this study we performed extremely deep sequencing (194.1×106 reads) of a single sample 

using multiple approaches to evaluate parameters that can affect sequencing results and 
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analytical interpretation to determine optimal methods. First, we compared the results of 16S 

versus WGS sequencing. The 16S amplicon approach has been the most commonly 

employed method to analyze bacterial microbiomes and has several important advantages: 1) 

it is cost effective, 2) data analysis can be performed by established pipelines, and 3) there is 

a large body of archived data for reference. However, our work demonstrated multiple 

substantial advantages of the WGS approach. As shown in a rarefaction plot, WGS 

identified significantly more bacterial species per read than the 16S method (Fig. 2a). For 

example, with >32×106 reads, the WGS method identified approximately twice as many 

species as the 16S method (4100 versus 2050 species). It is noteworthy that studies using the 

16S method commonly generate approximately 10,000 reads[29]. Since the slope of the 16S 

rarefaction curve remains positive at 32×106 reads, it is likely that the lower number of reads 

commonly used does not fully detect the richness of a microbiome. In terms of diversity, 3 

different metrics (Shannon diversity, Simpson index and evenness) all showed greater 

diversity with the WGS approach (see Fig. 6 and Table S8). In addition, the WGS, but not 

the 16S, approach can identify organisms in additional kingdoms including viruses, fungi 

and protozoa.

Another consideration is the role of the reference database in the interpretation of the 16S 

versus WGS approaches. The 16S method assigns OTUs based on the 16S amplicon which 

is used to predict classification of taxa. The classifications are most effective at the phyla 

and, to a lesser extent, genera levels, but often lack accuracy at the species level. Due to this 

limitation, the RDP classifier frequently assigns a 16S amplicon sequence to a genus without 

specifying a species. In contrast, the WGS approach can confidently assign classifications 

for many sequences at the species level. Thus, our analyses were occasionally qualitatively 

and quantitatively divergent. For example, 2,441 species detected by the WGS reads were 

not detected by the 16S method. Also, identical reference genomes occasionally had 

different classifications. For example, the Blautia sp. Ser8 genome in the RDP database was 

annotated as an uncultured bacterium clone (99%) in NCBI-nt, Clostridium saccharolyticum 
WM1 (93%) in NCBI representative genome database and Blautia producta strain JCM 

(98%) in NCBI-16S ribosomal RNA database (Fig. S10). Thus, the development of more 

complete and universal reference databases will be essential to enhance the accuracy of 

species classifications.

Using the WGS method, we performed a direct comparison of the Illumina HiSeq 2000 

using the TruSeq SBS v3 reagent with the MiSeq v2–300 and v3–600 reagents. As expected, 

the HiSeq run generated the most identified reads (67.2×106) compared with 59.0×106 and 

37.5×106 for the v3–600 and v2–300 MiSeq runs, respectively (Table 1). However, due to 

longer reads, the v3–600 MiSeq run generated the highest yield of 18.0 Gb. In the analysis 

of the rarefaction curves based on the number of sequencing reads, all of the WGS curves 

were approximately overlaid (Fig. 2a). However, when we performed the same analysis 

using contigs rather than reads, both the v2–300 and v3–600 MiSeq results outperformed the 

HiSeq data on a per read basis and also an absolute basis (Fig. 2b). All reads were paired-

end, however, the v2–300 and v3–600 reads were longer, a factor that likely improved the 

efficiency of the de novo assembly. Interestingly, the v2–300 reads were only 50 bp longer 

than the HiSeq reads (151 versus 100 bp, respectively). Since the rarefaction curves using 

contigs from the v2–300 (read length 151) and v3–600 (read length 301) dataset were 
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similar, it is possible that increases from 100 to 150 supports critical increases in 

effectiveness of de novo assembly. Length also may be a critical factor in the differences 

between the read and contig comparisons with the 16S amplicons (Fig. 2). In this 

comparison, the read analysis of the v2+v3+HiSeq-total dataset identified 2,459 species not 

detected by the 16S amplicon analysis, whereas the contig analysis of the same 

v2+v3+HiSeq-total dataset identified only 1,353 species not detected by the 16S amplicon 

analysis. One interpretation of these results is that the shorter reads generate more false 

positives than the longer contigs. In summary, based on the v2–300 versus v3–600 and the 

read versus contig comparisons, it is apparent that read length exerts a major effect on data 

analysis.

A major limitation of the 16S amplicon method is that it sequences only a single region of 

the bacterial genome, whereas the WGS method can sequence broad regions of the genome. 

To directly assess the breadth and depth of genome coverage with the WGS method, we 

analyzed coverage of 10 reference genomes with common, high, moderate, low and rare 

abundance. Average coverage ranged from 452.3 fold for the high abundance 

Faecalibacterium prausnitzii L2–6 to 1.8 fold for the rare Aggregatibacter aphrophilus 
NJ8700 (Table 5). For all species analyzed, we observed occasional spikes and gaps, but 

overall diffuse coverage throughout the genomes (Figs. S9a–j). Thus, with adequate 

sequencing depth the WGS method can generate both depth and breadth of coverage of the 

bacterial genomes even including bacteria of rare abundance. A major strength of the WGS 

method is the capacity to identify specific genes in the microbiota. In this study, we used the 

MetaGeneMark algorithm to identify predicted genes in our contig data and then used 

tblastx against the NCBI database to confirm that the predicted genes encoded amino acid 

sequences. In this analysis, the v2+v3+HiSeq-total identified 811,933 genes, whereas the 

HiSeq and v2-total identified 733,705 and 422,174, respectively (Table 6). These results 

support the conclusion that longer reads enhance gene prediction possibly due to more 

efficient de novo assembly of contigs. Although the HiSeq has been reported to generate 

fewer errors, this advantage was apparently neutralized in our analysis by the longer reads 

produced by the MiSeq. In summary, our study demonstrates that WGS has multiple 

advantages compared with the 16S rRNA amplicon method including enhanced detection of 

bacterial species, increased detection of diversity and increased prediction of genes. In 

addition, increased length, either due to longer reads or the assembly of contigs, improved 

the accuracy of species detection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• The human microbiome has emerged as a major player in regulating human 

health and disease.

• Accurate identification of microbes constituting the microbiota is a major 

challenge.

• We report a comparative study of an alternative approach using shotgun whole 

genome sequencing (WGS) compared to 16S ribosomal RNA amplicon 

sequencing.

• WGS have multiple advantages with enhanced detection of bacterial species 

with high accuracy, increased detection of diversity and prediction of genes.
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Figure 1. Experimental strategy to compare sequencing methods, platforms and data analysis
Experimental design for 16S rRNA amplicon and WGS sequencing for a single fecal sample 

multiplexed in 11 libraries is shown. 16S amplicon sequencing was performed using MiSeq 

v3–600 and WGS sequencing was performed using MiSeq v2–300, MiSeq v3–600 and 

HiSeq 2000. The 16S data was analyzed using OTU based amplicon approach and the WGS 

read and contig data were analyzed using the MG-RAST M5NR and NCBI nt database.
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Figure 2. Rarefaction curves of combined reads and contigs
Rarefaction curve for 16S amplicon, HiSeq, v2, v3, v2+v3 and v2+v3+HiSeq data using a 

read-based analysis (a) and for HiSeq, v2-total, v3-total, v2+v3-total and v2+v3+HiSeq-total 

data using a contig-based analysis (b). Graph shows total number reads or contigs (x-axis) 

and total number of species identified (y-axis). Vertical dashed lines mark the number of 

reads or contigs detected for each dataset.
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Figure 3. Relative abundance of bacterial phyla
Stacked bar graph of relative abundance of bacterial phyla identified in 16S amplicon based 

analysis (a), read-based analysis of WGS data (b) and contig-based analysis of WGS data (c) 

in the v2-total, v3-total, v2+v3-total and v2+v3+HiSeq-total datasets. Relative abundance 

(y-axis) of the dominant bacterial phyla includes Firmicutes, Bacteroidetes, Actinobacteria 

and Proteobacteria. The “other phyla” for 16S amplicon analysis contains 19 non-abundant 

phyla and unclassified bacteria representing <5% of total abundance. The “other phyla” for 

the WGS analysis contains 27 non-abundant phyla and unclassified bacteria representing 

<2% of total abundance.
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Figure 4. Comparison of taxa identified by different sequencing and analysis methods
Number of species identified in the four predominant phyla identified in the 16S rRNA 

amplicon (grey) and in the WGS v2+v3+HiSeq-total read (green) datasets (a). The union of 

species for the Firmicutes (37%), Bacteroidetes (37%), Actinobacteria (32%) and 

Proteobacteria (9%) is shown in the overlap. A comparison of total species detection using a 

contig-based analysis ( blue) versus a read-based analysis ( orange) shows overlap in species 

detection of 54% (b).
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Figure 5. Greater diversity detected with the WGS than 16S method
Bar chart of Shannon diversity index calculated at species level from 16S, HiSeq, v2-total, 

v3-total, v2+v3-total and v2+v3+HiSeq-total datasets. The diversity of the WGS datasets 

was analyzed on de novo assembled contigs. Read based and contig based methods showed 

consistent and reproducible diversity index values among the samples.
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Figure 6. Comparison of coverage of a representative genome using read-based versus contig-
based analysis
Genome recruitment plots of a representative reference genome, Faecalibacterium 
prausnitzii, using a read-based (left) versus a contig-based (right) analysis of the 

v2+v3+HiSeq-total dataset. Circular plots were created using the MG-RAST genome 

recruitment tool using a maximum e-value of 1e−3 and a log2 abundance scale. The leading 

and lagging strands are represented by the outer and inner most rings, separated by the blue 

ring, which indicates the position within the genome. Metagenomic features are depicted as 

bar graphs inside the genome. The greater height represent more mapped features and the e-

value exponent is color-coded as blue (−3 to −5), green (−5 to −10), yellow (−10 to −20), 

orange (−20 to −30) and red (less than −30).
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Table 1

Sequencing statistics.

Method Cycles Reads identified Yield (Gb)

16S amplicon 2×301 30,378,368 9.1

HiSeq 2000 2×100 67,229,282 6.7

MiSeq v2–300 2×151 37,482,018 5.8

MiSeq v3–600 2×301 59,018,428 18.0

Total 194,108,096 39.6

Sequencing data for the 16S rRNA amplicon, HiSeq 2000, MiSeq v2–300 and MiSeq v3–600 methods. Sequencing method, number of cycles per 
run, sequence length, total number of reads identified and total yield (Gb) is shown from each run. A total of ~194 million reads with ~ 40 Gb 
sequence data were generated. Gb (Giga bases), 2×(Paired-end sequencing chemistry).
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Table 2

Cumulative abundance of high, low and rare abundance species.

Abundance
category

Relative
abundance (%)

Number of
species

Total abundance
(%)

Common >1.00 21 34.0

High 0.50 to 0.99 35 23.1

Moderate 0.05 – 0.49 213 31.7

Low 0.01 to 0.05 397 7.8

Rare <0.01 1222 3.3

Number of species identified in v2+v3+HiSeq-total (contig based) were binned into common, high, moderate, low and rare abundance based on 
their percent relative abundance.
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Table 5

Genome coverage of representative genomes of high, low and rare abundance detected in the v2+v3+HiSeq-

total dataset.

Abundance
category Reference species Genome

length
Number of bases

mapped Coverage

Common Faecalibacterium prausnitzii L2–6 3,321,367 1,502,163,364 452.3

Common Eubacterium rectale M104/1 3,698,419 847,530,632 229.2

High Ethanoligenens harbinense YUAN-3 3,008,576 295,813,386 98.3

High Parabacteroides distasonis ATCC 8503 4,811,379 340,577,118 70.8

Moderate Atopobium parvulum DSM 20469 1,543,805 29,714,000 19.2

Moderate Caldanaerobacter subterraneus subsp.
tengcongensis MB4 2,689,445 41,320,021 15.4

Low Listeria innocua FSL J1–023 2,914,007 15,862,353 5.4

Low Geobacter sulfurreducens PCA 3,814,128 28,127,049 7.4

Rare Acidiphilium cryptum JF-5 3,389,227 21,305,814 6.3

Rare Aggregatibacter aphrophilus NJ8700 2,313,035 4,118,299 1.8
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Table 6

Putative genes predicted by the MetaGeneMark algorithm.

Library Contigs Predicted genes Tblastx hits

HiSeq-total 270,227 435,828 422,174

v2-total 551,174 822,724 783,887

v3-total 774,445 782,181 733,705

v2+v3-total 535,729 820,535 783,773

v2+v3+HiSeq-total 556,831 857,426 811,933
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