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Abstract

An intriguing question in cell biology is “how do cells regulate their shape?” It is commonly 

believed that the observed cellular morphologies are a result of the complex interaction among the 

lipid molecules (constituting the cell membrane), and with a number of other macromolecules, 

such as proteins. It is also believed that the common biophysical processes essential for the 

functioning of a cell also play an important role in cellular morphogenesis. At the cellular scale—

where typical dimensions are in the order of micrometers—the effects arising from the molecular 

scale can either be modeled as equilibrium or non-equilibrium processes. In this chapter, we 

discuss the dynamically triangulated Monte Carlo technique to model and simulate membrane 

morphologies at the cellular scale, which in turn can be used to investigate several questions 

related to shape regulation in cells. In particular, we focus on two specific problems within the 

framework of isotropic and anisotropic elasticity theories: namely, (i) the origin of complex, 

physiologically relevant, membrane shapes due to the interaction of the membrane with curvature 

remodeling proteins, and (ii) the genesis of steady state cellular shapes due to the action of non-

equilibrium forces that are generated by the fission and fusion of transport vesicles and by the 

binding and unbinding of proteins from the parent membrane.
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1. Introduction

The cell membrane defines the physical boundary of a cell and its organelles. The major 

constituent of a cell membrane are lipids, which are amphipathic molecules that have a 

hydrophilic head part and a hydrophobic tail part. A cell membrane can contain one or many 

types of lipid molecules, with each being different from the other, either through the 

moieties that constitute the head group or due to differences in the length and saturation of 

the hydrocarbon chain or both. Eukaryotic and prokaryotic organisms have over 1000 types 
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of lipid molecules [1], and these molecules can be broadly divided into three major classes

—namely, glycerol-based lipids, cholesterol, and ceramide based sphingolipids 1. In 

addition to the lipid molecules, the cell membrane is also home to a number of other 

macromolecules such as proteins and sugars. While the concentration of membrane 

associated proteins (both transmembrane and peripheral proteins) can vary between 18% and 

75% of the mass of the membrane, depending on the cell type, poly-saccharide molecules 

are found in lower concentrations, typically in the range of 3% – 10% [2]. These diverse 

components self assemble into a two dimensional sheet like structure called a membrane 

bilayer. By virtue of its dimensions (lateral dimensions are in microns while the thickness is 

approximately 5 – 10 nm), a membrane can effectively be thought of as a two dimensional 

surface embedded in three dimensional space. From a thermodynamic point of view, the 

lateral organization of the individual components in such heterogeneous mixtures can be 

quite complex [3]. The generally accepted model for the lateral organization of the 

constituents of a multi-component functional membrane is the fluid mosaic model [4], which 

describes cell membranes as “two-dimensional solutions of lipids and other 

macromolecules”.

A membrane is selectively permeable to various molecules and ions. As a result, the region 

encapsulated by the membrane sustains a chemical environment that is expressly different 

from the bulk. For instance, the extracellular region has a different chemical composition 

compared to the intracellular region, while the interior of a cell organelle is different from 

that of the cytoplasm. In spite of being a self assembled structure, the cell membrane is a 

strong and highly flexible material. It deforms in response to the various stresses caused by 

the biochemical and biomechanical activities of its constituents and also due to its 

interactions with other macromolecules in the cell 2. The attributes of semi permeability and 

flexibility are the key factors that make the cell membrane to effectively function as a 

barrier. In addition to its primary role as a barrier it is also known to play active roles in 

mediating a number of biological processes that include endocytosis, exocytosis, cell 

motility and cell signaling.

Though cell membranes define the boundary of all cells and also of their organelles, the 

shapes of these interfaces differ from cell to cell and also between organelles within the 

same cell. These variations can be as diverse as the simple quasi-spherical shape of the 

plasma membrane to the complex cisternae structure of the golgi. An long standing question 

in cell biology is “how the morphogenesis of cellular shapes is determined by the molecular 

organization of the membrane constituents and by the various biophysical processes 

impacting the membrane? [5, 6]” Purely, from a physical point of view, one may ask a 

related but perhaps simpler question: “what are the minimal set of parameters required to 

explain the shapes of cell and cell organelles?” In this chapter, we describe a 

thermodynamics based computational model for cell membranes and discuss two specific 

1Even lipids that belong to the same class exhibit large chemical diversity due to variations in the hydrophilic head groups and 
differences in the number, length and saturation of the hydrocarbon chain (tail). Phospholipids for instance can have a variety of head 
groups, like phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), and phospatidylglycerol (PG), and 
these groups can be uncharged, anionic, cationic, or zwitterionic.
2Specifically, these include forces due to molecular binding, cytoskeletal interactions with the cell membrane and long range 
hydrodynamic interactions mediated by the surrounding fluid
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biophysical processes which possibly impact cellular morphogenesis. Specifically, we 

evaluate (a) the role of protein induced membrane remodeling, and (b) the role of curvature 

fluctuations caused by the binding-unbinding kinetics of membrane associated proteins and 

the fission-fusion dynamics of transport vesicles, in regulating cell membrane shapes. While 

the former is treated as an equilibrium process, where the energetics of the individual 

components and their cooperativity determine the membrane structure, the latter is treated to 

be a non-equilibrium phenomenon, in which the observed steady state membrane shapes 

also depend on the forcing statistics of the active processes.

This chapter is organized as follows. We introduce the elasticity based Canham-Helfrich 

framework for cellular membranes in Sec. 2, following which in Sec. 3 we give a brief 

description of the two biophysical processes of interest, namely protein induced membrane 

curvature and curvature fluctuations due to active binding/unbinding kinetics of proteins and 

vesicles. We incorporate the biological details in Sec. 4 where we first present the nematic 

membrane model from a purely equilibrium perspective and discuss its conformational 

space as a function of protein curvature, concentration and organization. In this section, we 

also present a thermodynamic integration based method to computationally delineate the 

free energy landscape of the nematic membrane. The active membrane model, that 

incorporates non-equilibrium curvature fluctuations, is discussed in Sec. 5, where we show 

how steady state membrane structures similar to that of the endoplasmic reticulum (ER) and 

the golgi emerge naturally from our model.

2. Phenomenological theories for membranes

Similar to the length scales in a membrane, the time scales associated with various 

membrane related biochemical and biophysical processes also extend over a wide range. The 

presence of such disparate scales provides a major challenge in the experimental 

investigations of cell membranes. Based on the spatial and temporal resolution of the 

observed problems, experimental observations can be classified into two broad classes, 

namely (i) biochemical and (ii) biophysical. In case of the former the focus is to elucidate 

the chemical details of the system using biochemical tools while the latter aims to generalize 

the observed phenomenon in terms a minimal number of parameters using a framework 

drawn mostly from mechanics and thermodynamics. Multiscale approaches are required to 

establish how the chemistry of the membrane, given in terms of say the lipid and protein 

compositions, is linked to the various thermodynamic observables that describes it in 

biophysical experiments. Development of specialized techniques to rigorously bridge the 

information obtained at various length and time scales is still an ongoing area of research 

[7–13]. Such bridging techniques are not only useful in the study of membranes but have a 

wider range of applications in a number of other systems that are categorized as soft matter.

Theoretical and computational modeling can be used as alternative tools to study cell 

membranes under controlled conditions. They provide a framework to validate experimental 

findings and can also predict new paradigms that can be verified in future experiments. 

Owing to the multiscale nature of the problem, as in the case of experiments, theoretical 

models can also span multiple scales with varying resolutions. All atom and coarse-grained 

models have atomic resolution and are faithful to the underlying chemistry but are limited by 
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the size of the system that can be investigated. In spite of the advent of faster computer 

processors and efficient algorithms, membrane system sizes amenable for molecular 

simulations at present can only go upto a few hundred nm [14]. A simple estimate shows 

that the total number of atoms, inclusive of both lipids and water, involved in a molecular 

simulation of a micron sized vesicular membrane is of the order of 1011, which makes the 

use of molecular models as an all purpose tool computationally infeasible at the present 

time. The involved number of degrees of freedom is an over representation of the membrane 

if one is only interested in studying its physical properties at length and time scales 

separated from and larger than the atomistic scales. To overcome this limitation, coarse 

grained and thermodynamics based phenomenological models can be used. These models 

are more suited to study the physical aspects of biological membranes and do not retain the 

chemical specificity of the underlying membrane constituents —instead, the chemistry is 

reflected in the choice of the parameters used to characterize the model. Details of the 

various coarse-grained methods can be found in a number of reviews on this topic [15–21]. 

In this chapter, we will focus on the elasticity based thermodynamic model for the 

membrane.

Consider the flat lipid bilayer membrane shown in Fig. 1(a). It can be characterized using 

three distinct surfaces: (a) the upper monolayer, (b) the lower monolayer, and (c) the mid 

plane of the bilayer. When the membrane is in its undeformed state all the three surfaces 

have the same surface area, say A0 for the membrane in Fig. 1(a). Upon bending, the upper 

monolayer is compressed (with area A < A0) and the inner monolayer is stretched (with area 

A > A0) while the area of the mid-plane, or in general a neutral surface, remains unchanged, 

as shown in Fig. 1(b). That is the surface whose area remains constant even in the deformed 

state is called the neutral surface. Due to the poor solubility of lipids in the surrounding 

solvent and the slow rate of its flip flop between the monolayers, the number of lipids in a 

given monolayer of a membrane is nearly constant. Furthermore, the lateral extent of the 

membrane—for instance the diameter of a vesicle—is large  compared to the 

bilayer thickness . In this limit, a lipid bilayer can be represented as a thin, 

flexible sheet of constant area; here the sheet is representative of the neutral surface of the 

bilayer and its shape is governed by the elastic energy given by:

(1)

Here S denotes the surface of the membrane, and H and G are respectively the mean and 

Gaussian curvature of the membrane. κ is the bending modulus and κG is the deviatoric 

bending modulus. Various methods to derive this equation can be found in some recent 

review articles [21, 22]. Since the membrane is a self-assembled system, i.e the relevant 

energies are comparable to thermal energy , the conformations of a membrane is 

also governed by thermal fluctuations. Experimental measurements on a wide class of lipid 

membranes estimate the value of κ to be in the range of 10 – 100kBT, which is roughly three 

order of magnitude smaller than that for conventional solids. In general, any material with 

smaller energy density is susceptible to thermal fluctuations and falls into the category of 
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soft matter. The energy functional in eqn. (1) can only capture the bending modes of the 

surface since it assumes the neutral surface to be incompressible.

However, the morphology of a cell membrane can also be affected by in-plane strains that 

alter its surface area. These modes can be captured within the thermodynamic framework by 

coupling the membrane area to its thermodynamic conjugates namely the surface tension, σ, 

and the area elasticity modulus, . Furthermore, in the case of closed vesicles, an osmotic 

pressure difference (Δp) between the inside and outside of a vesicle can also drive shape 

changes. Taking these various contributions into account, eqn. (1) can be written in a more 

general form, as given by Canham [23] and Helfrich [24] as,

(2)

Here, A0 denotes the equilibrium area of the membrane. The geometry of the lipids can 

impose a preferred equilibrium curvature on the membrane, which is also captured by this 

energy functional through the local spontaneous curvature H0; more details on the exact 

form of the spontaneous curvature is given in the next section. The integral in the first term 

is performed over the entire surface of the membrane1, and the integration in the second 

term is carried out over the volume (V) enclosed by the surface. The membrane model given 

in eqn. (2) has been extensively studied in a number of contexts. Details of the various 

theoretical methods has been described in a number of reviews on this topic [21, 22, 25]. 

While the analytical methods based on eqn. (2) can be used to study smooth, symmetric 

membrane shapes they have limited applicability in the study of arbitrary membrane 

morphologies. Computational methods derived from eqn. (2), on the other hand, can 

overcome this limitation and hence can be used as generic tools to model cell membranes in 

the macroscopic scale. Here, we introduce one such computational technique based on the 

triangulated surface model for two dimensional surfaces and the energy of the triangulated 

mesh is given by a discretized form of eqn. (2).

Triangulated surfaces as models for membranes

A two dimensional surface like that of a membrane can be discretized into a triangulated 

surface, which is constituted of T interconnected triangles (faces) intersecting at N vertices 

(nodes). The position vectors of the N vertices are  and 

 denotes the triangulation map. The triangles further define L independent 

links (edges). The topology of any surface is defined by its Euler characteristics, χ = 2(1 – g) 

– h [26], where g and h are the number of handles and holes in the surface. For instance, g = 

0 for a sphere and g = 1 for a torus, with corresponding Euler characteristic χ = 2 and χ = 0 

respectively. In the triangulated surface model, the number of faces, nodes and edges 

together define the topology of the surface as χ = N + T – L. We limit our discussion to 

membranes of spherical topology (χ = 2), which is highly relevant to membranes in cells and 

cell organelles. For fixed topologies, by virtue of the Gauss-Bonnett theorem [26], the 

deviatoric energy (∫ dS κGG) is a constant and hence will be ignored for the rest of the 

1For a parameterization x, the surface area , where  is the metric tensor
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chapter. The discrete form of the elastic Hamiltonian is thus a sum over the curvature 

energies at every vertex in the triangulated surface given by,

(3)

In the above discretization, the index v denotes a vertex on the triangulated surface and c1,v 

and c2,v are respectively its principal curvatures, H0,v is the local spontaneous curvature, and 

Av denotes the surface area associated with the vertex. We follow the method described in 

Ramakrishnan et. al. [27] to compute surface quantifiers on the triangulated surface. In 

general, the value of the spontaneous curvature at a vertex is determined as,

(4)

where C0 denotes the magnitude of the induced curvature and  denotes the 

functional form of the contribution of the curvature contribution at vertex v′ due to a 

curvature field at vertex v; see references [21, 28–31] for various forms of  in 

different contexts.

In order to simulate self-avoiding membranes all the vertices on the triangulated surface are 

subjected to additional self intersecting constraints. If each vertex is treated as a hard core 

bead of diameter a0 the interaction between any two beads, whose centers are away by r, is 

hard sphere like and has the form,

(5)

This form of the potential defines a lower cutoff for r while the maximum separation of the 

beads is unconstrained, which can lead to violation of self avoidance. Taking cue from 

polymer simulations, we solve this problem by treating the edge as a tether whose maximum 

length is . Hence the condition for self avoidance, in terms of the edge (tether) length 

, is given by  1. It should be kept in mind that this choice of the self 

avoidance cutoff endows the system with an implicit area compressibility modulus .

The equilibrium properties of the triangulated surface, i.e of the membrane, is computed by 

analyzing the total partition function,

1The bounds on the edge length  can be easily determined by considering the scenario where three interconnected spherical beads of 
diameter a0 are arranged such that their center of masses are on the vertices of an equilateral triangle of length . Any two beads will 
interpenetrate when the distance between their centers is less than their diameter and this constraint sets the lower bound for the 

triangle length to be . Similarly when the triangle length  the distance between the centroid of the triangle and 
any of its vertices is exactly a0. This implies that a fourth bead of diameter a0 placed at the centroid of the triangle can freely move in 

and out the triangular face leading to the violation of self avoidance and this sets the upper bound on the value of  to be .
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(6)

The temperature of the system is expressed in units of β = 1/kBT and the integral is carried 

over all vertex positions and summed over all possible triangulations. A tuple, 

, represents one particular state of the membrane in its conformational 

space and the equilibrium state of the system is determined by sampling the various states 

{η} using Monte Carlo techniques. In our Monte Carlo (MC) studies, a change in state, η → 

η′, is effected by means of Monte Carlo moves, the rules of which corresponds to 

importance sampling [32]. The time, in MC simulations, is expressed in units of Monte 

Carlo steps(MCS).

A membrane quenched to a particular thermodynamic state (η) relaxes to its equilibrium 

conformation, defined by eqn. (3), mainly through thermal fluctuations and in-plane 

diffusion. A Monte Carlo step captures these modes by performing N attempts to displace a 

randomly chosen vertex and L attempts to flip a randomly chosen link, as in Fig. 2. N and L 
are, respectively, the number of vertices and links that constitutes the triangulated surface. 

The rules of importance sampling and details of each move are as follows:

(a) Vertex move—The vertex positions of the surface are updated, , by 

displacing a randomly chosen vertex within a cube of side 2ν around it, with fixed 

triangulation . As a result, the old configuration of the membrane  is 

updated to a new configuration . The total probability of this MC move 

obeys the detailed balance condition given by,

(7)

Here, P(η) denotes the probability of being in state η. Choosing the attempt probability for 

forward ω(η → η′) and backward ω(η′ → η) to be equal, i.e., ω(η → η′) = ω(η′ → η) = (8ν3 

N)–1, we get the probability of acceptance as

(8)

which is the well known Metropolis scheme [33]. The value of ν is chosen appropriately so 

that the acceptance of vertex moves is close to 50%; this choice results in ν = 0.1 for a 

system with a0 = 1. It should also be noted that the value of ν depends on bounds on the 

edge length  and it can also modified during runtime by analyzing the acceptance rates at 

pre-defined intervals.

(b) Link flips—An edge shared between two triangles is flipped to link the previously 

unconnected vertices of the triangles. Such a move changes the triangulation map from 
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, in the process of which it changes the neighborhood of some vertices, which 

is effectively a diffusion move. With fixed vertex positions, the old and new configurations 

in this case are  and , respectively. The attempt 

probability for flipping a link is given by ω(η → η′) = ω(η′ → η) = (L)–1 and the acceptance 

probability is given by eqn. (8).

3. Membrane remodeling events as equilibrium and non-equilibrium 

processes

The cell membrane is a dynamic entity. Its surface is continuously remodeled in order to 

generate ancillary membrane structures, like vesicles1, tubules, and invaginations, that are 

vital to the functioning of the cell. These ancillary structures are known to drive and also 

mediate a number of biological processes. For example, vesicular structures are commonly 

seen as the agents of membrane trafficking since the processes of endocytosis and exocytosis 

involve the formation and release of cargo loaded transport vesicles, with typical sizes in the 

range 50-100 nm. The formation of one such vesicle requires approximately 500kBT of 

energy: this is the bending contribution computed using eqn. (2) for a membrane with 

bending stiffness κ = 20kBT. Despite being a soft material (see section 2) a membrane 

cannot spontaneously form such structures merely through thermal fluctuations because the 

large activation energy will result in very long timescales for spontaneous events. Hence, 

specialized mechanisms should be invoked to explain how the cell overcomes these large 

energy barriers and remodel their surface.

Many of these mechanisms can be understood from a purely equilibrium perspective, in that 

the conformational properties of the cell membrane can be explained by balancing and 

minimizing the various energy contributions. On the other hand, a number of others are 

driven processes, in that they consume energy normally through the hydrolysis of ATP or 

GTP, and hence a non-equilibrium framework is required to discern such systems. The 

observed properties of the cell membrane is a result of the interplay between the various 

equilibrium and non-equilibrium forces acting simultaneously on its surface. On the 

modeling front, these additional membrane reshaping contributions can be represented either 

explicitly or implicitly. In this chapter, we follow an implicit approach wherein these 

contributions are recast as spontaneous curvature fields, which were defined in the elastic 

energy formalism for the membrane given in eqn. (2). Before we proceed to the description 

of the model it is important to understand that the framework presented here is generic and 

can be used in a wide range of scenarios. We have chosen to present two class of membrane 

remodeling problems: (i) protein-induced membrane remodeling as an example for 

equilibrium processes and (ii) active curvature fluctuations due to fission/fusion of vesicles 

and binding/unbinding kinetics of proteins as an example for non equilibrium processes.

It has been known [34–47] that membrane associated proteins—BAR domains [48–51], 

ENTH domains [35, 52–54], Exo70 domains [55] and dynamin [56] to name a few—are 

1A vesicle is a closed bilayer structure of spherical topology
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primary drivers of cellular remodeling. In addition to the various in vivo assays that establish 

the role of these proteins, the hypotheses of protein-induced remodeling has also been 

backed by in vitro observations: an otherwise spherical liposome spontaneously tubulates or 

vesiculates or invaginates when large concentrations of these protein(s) are introduced into 

the system [52, 55, 56]. The curvature remodeling aspect of these proteins has also been 

established using all atom and coarse grained computer simulations [55, 57–63].

It has been shown that the membrane proteins1 induce curvature either by virtue of their 

intrinsic geometry or by virtue of their affinity for the membrane microenvironment. The 

former, called the scaffolding mechanism, is depicted in Fig. 3(a)(i) for the case of a 

classical Bin/Amphiphysin/Rvs (BAR) domain in which most of the positively charged 

residues are found on the concave, membrane facing domain [48]. These charged residues 

have a high affinity for anionic lipids like phosphatidylserine, phosphatidylglycerol, 

phosphatidic acid and phosphatidylinositol and hence the protein prefers to bind to 

membrane regions with high concentrations of negatively charged lipids. It is believed that 

the binding energy of a BAR domain bound to the surface of a membrane is a function of the 

anionic lipid concentration, protein concentration and membrane stiffness1. The strong 

electrostatic interactions between the charged residues and lipids deforms the membrane in 

the vicinity of the protein leading to the formation of a spontaneous curvature as shown in 

Fig. 3(a)(i). An alternate mechanism by which proteins can induce spontaneous curvature is 

shown in Fig. 3(a)(ii) wherein a protein asymmetrically buries some of its hydrophobic 

residues into a monolayer in the membrane. Such an insertion imposes a stress on the 

monolayer and as a result the whole membrane spontaneously curves at the site of insertion 

(see [21] for details).

In order to model how protein induced deformations at the molecular scale affect the 

conformations of the cell membrane at the cellular scale, it is essential to measure the 

spontaneous curvature induced by a protein, i.e to measure H0(X), where X denotes the 

parameterization of the membrane. Experimentally, spontaneous curvature of a protein can 

be back calculated from the geometry of the remodeled shape, if the protein concentration is 

known. As an alternate, all atom and coarse grained model can be used to probe the 

curvature profile at the level of single proteins [13, 20, 55, 57–60, 64]. In general, the 

curvature profile of most proteins falls under two classes: (a) isotropic and (b) anisotropic. 

The details of the various formulations can be found in a recent review on this topic [21].

There are a number of cases where the equilibrium framework cannot explain the origin and 

stability of cell organelle shapes. A case in point being the highly curved cisternae shape of 

the golgi complex. It is known that a number of curvature remodeling/sensing proteins like 

Amphiphysins, Endophilins, ARFaptins and ENTH and ANTH domain containing proteins 

are associated with the membrane of the golgi [65]. Hence it is logical to assume that the sac 

like structures in the golgi are a result of the membrane sculpting action of these proteins. 

However, it should be remembered that the golgi is subjected to a continuous flux of 

1Most of these proteins do not span the entire bilayer and hence fall under the class of peripheral proteins
1For example, in order to remodel a planar membrane into a cylinder a single BAR domain adhering to a 9 nm square membrane 
patch, with 20% phosphatidylserine and with a bending rigidity of κ = 20kBT, should have a binding energy of at least 12kBT [49]
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transport vesicles due to the retrograde and anterograde trafficking of vesicles from and to 

the endoplasmic reticulum(ER). The cisternae structure shows an instability on inhibition of 

this flux: it fragments into spherical and tubular vesicles when the trafficking events are 

inhibited by addition of Brefeldin A [66] or depletion of ATP [67, 68] or removal of coat 

protein COPI in the ER [69] or drug induced disruption of microtubules [66, 70] or depletion 

of PC lipids [71]. Such an instability has also been observed in the telophase of the cell 

cycle, where normal cellular functions including vesicular traffic are absent [72]. These 

observations pose two very interesting questions: (i) how does a membrane mediated event, 

like the vesicular transport, control the morphogenesis of cell organelles and (ii) do the 

curvature remodeling proteins induce curvature or merely sense and stabilize the curvature 

generated by other biophysical events? [5, 6] Hence, it is very important to built a 

framework where the influence of dynamical remodeling processes on membrane 

morphology can also be assessed.

Spontaneous membrane deformation induced by a dynamical process is in turn coupled to 

the rates of the process and hence should be treated as a fluctuating quantity, i.e H0 = H0(X, 

t). This is expressly different from the case of protein induced remodeling where the number 

of curvactants is held constant during the analysis. The presence of curvature fluctuations 

can significantly alter the morphology of the cell membrane. In order to construct a physical 

model for dynamic remodeling, within the framework described in Sec. 2, it is important to 

recast the problem in terms of spontaneous curvatures. A simplified view of vesicular 

trafficking is shown in Fig. 3(b)(i). An inbound transport vesicle binds to a cell/organelle 

membrane through the interactions of the vesicle bound V-SNAREs with the target 

membrane bound T-SNAREs, with the Rab proteins as an intermediary [73]. Following this 

docking event, the vesicle fuses into the target membrane and generates a high curvature 

region, as shown in the right panel of Fig. 3(b)(i). Similarly, the formation of outbound 

vesicles can be seen as the reverse of vesicle fusion, where a high curvature region, formed 

by the assembly of coat proteins, fissions off from the parent vesicle leading to a reduction 

in the membrane curvature. At the cellular scale, the fusion and fission of transport vesicles 

can be viewed as spontaneous curvature fluctuations on the surface of the parent membrane. 

Since the curvature is generated and removed with the aid of additional protein machineries 

these curvature fluctuations should be treated as non-equilibrium processes. In addition to 

vesicular trafficking, dynamic membrane remodeling is also observed in a number of other 

cellular processes. Fig. 3(b)(ii) shows how the membrane curvature fluctuates between a 

planar and curved state when a curvature remodeling protein alternates between the 

cytoplasm and the membrane microenvironment. The recruitment of membrane bound 

proteins can be biophysically regulated by curvature [74] or biochemically regulated by 

specialized lipids such as phosphoinositides [75]. These phosphoinositides themselves are 

regulated spatiotemporally through kinetic mechanisms in the cell via phosphoinositide 

metabolism [76]. Membrane embedded ion channels are yet another source of fluctuating 

curvatures and indeed to complicate the scenario, some of the channel proteins also have 

curvature sensing abilities [77]. As shown in Fig. 3(b)(iii), for the case of sodium channels, a 

conformational change of the channel protein from a closed to open state leads to a 

spontaneous deformation in the membrane. The three examples used here exemplifies the 

Ramakrishnan and Radhakrishnan Page 10

Adv Planar Lipid Bilayers Liposomes. Author manuscript; available in PMC 2016 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



underlying idea of dynamic membrane remodeling but there can be a number of other such 

contributions that should be considered depending on the problem.

In this section, we have described in detail two key classes of membrane remodeling factors 

that should be considered when studying membrane morphological transitions. In Sec. 4, we 

describe the nematic membrane model where the protein induced curvature is treated as an 

in-plane nematic field and show how the cooperative behaviour of these fields can sculpt 

complex membrane geometries. Appropriate models to study dynamic remodeling and 

curvature fluctuations are introduced in Sec. 5 and we demonstrate how flattened sacs and 

tubules are steady state structures in this model.

4. Nematic membrane model for protein driven membrane remodeling

In a membrane model at the meso- and macroscopic length scales (> 100 nm), the curvature 

induced by an inclusion on the membrane, like a protein or a nanoparticle, can be captured 

either through the explicit representation of the inclusion [78–81] or through an implicit 

representation in terms of its spontaneous curvature field, as done in this chapter. Such an 

approach requires apriori knowledge of the curvature profile induced by a single protein or 

by a cluster of proteins, depending upon the characteristic length scales used in the model. 

The curvature profile can either be determined from experiments, as was described in Sec. 3, 

or can be estimated using high resolution all atom or coarse grained molecular simulations 

[20]. In general, the spontaneous curvature profile given by H0(X) can either be isotropic or 

anisotropic. Examples for the former include curvature fields induced by ENTH domains 

and a spherical nanoparticle adhering to the membrane surface while curvatures induced by 

proteins like BAR domains and Exo70 fall into the latter class. The cooperative behavior of 

isotropic curvactants at the macroscopic scale can be studied within the confines of isotropic 

elasticity, i.e. using eqn. (2). Details of the formulation and the simulation techniques, 

including methods to characterize the isotropic curvature field for ENTH domains, can be 

found in references [13, 21, 30, 31, 82], and these methods are equally applicable to non-

isotropic curvactants. In this section, we present an alternative treatment for anisotropic-

curvature inducing proteins by treating the spontaneous curvature as an in-plane nematic 

field. In other words, we set H0,v = 0, ∀v, in eqn. (3) and capture the effect of the protein-

membrane interactions through an additional anisotropic elastic Hamiltonian.

It has been recognized for long that cell membranes are inherently anisotropic due to the 

presence of a number of intrinsic and extrinsic factors like lipid tilt, chirality, anisotropy in 

the lipid head groups and membrane inclusions [83–89]. Anisotropic elasticity based 

theoretical models could explain the emergence of complex membrane geometries like 

tubules [85, 90–94], sponges and egg-cartons [85, 95, 96]. It was first recognized by Iglic ̆ 

and coworkers [97] that the anisotropic elasticity framework can be used to model the 

curvature modulating effects of membrane associated proteins. Based on this model, they 

were able to demonstrate that cell membranes can spontaneously tubulate when rod like 

protein inclusions, which preferentially curve the membrane along the direction of their long 

axes, are attached to the outer surface of the membrane. Here, we adopt the anisotropic 

elasticity model proposed by Frank and Kardar [89] to model the cooperative behaviour of 

membrane proteins and investigate their role in sculpting membranes.
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The nematic membrane model starts with the definition of the in-plane nematic field m̂: it is 

the average orientation of all curvature remodeling proteins on a patch of the membrane. In 

the case of the triangulated surface model, introduced in Sec. 2, the size of this patch is 

determined from the area associated with a vertex v, i.e. it depends on the value of a0 in eqn. 

(5). For computational purposes, a nematic field at vertex v of the triangulated membrane 

surface is represented as

(9)

Here, we have used the Darboux gauge [26] which consists of the two principal directions 

t̂1,v and t̂2,v and the normal direction n̂v —methods to compute the Darboux frame on 

triangulated surfaces can be found in reference [27]. The nematic field is confined to the 

tangent plane by setting cv = 0 and unit magnitude is imposed by setting . The 

coefficient av = cosφv, where φv is the angle between the nematic field m̂v and the 

maximally curved direction t̂1,v. An illustration of the in-plane nematic field at a vertex 

along with a snapshot of a membrane surface with nematic field at all vertices is shown in 

Fig. 4(a). The Monte Carlo moves for a membrane in the presence of a nematic field is 

shown in Fig. 4(b). Moves (i) and (ii) in Fig. 4(b) are similar to the Monte Carlo moves 

shown in Fig. 2. In the course of these moves the additional degree of freedom due to the 

orientations of the in-plane nematic field {φ} is held fixed relative to the principal direction 

t̂1. The third type of Monte Carlo move (move (iii) in Fig. 4(b)) is designed to sample the 

conformational space defined by the nematic orientational order: the angle subtended by the 

nematic field {φ} is randomly perturbed to a new orientation {φ′} and the move is accepted 

using the Metropolis scheme.

We define the protein concentration through an additional variable ϕv which is defined at 

every vertex v of the triangulated surface, and it takes a value of ±1; a site with a protein 

corresponds to +1 and one without the protein corresponds to –1. The total number of 

proteins on the membrane is defined as,

(10)

For example, a membrane with proteins at every site has a value of ϕA = N, where N is the 

number of vertices on the triangulated surface. The nematic in-plane field, which is 

representative of a curvature inducing protein, interacts with the membrane in an anisotropic 

manner and in our model this interaction is given by,

(11)

In eqn. (11), we define the elastic parameters on each vertex v as , 

,  and . Here,  and  are the 

spontaneous curvatures induced by the nematic field m̂v (i.e. the protein) along the 

directions parallel and perpendicular to its orientation. While, the gauge invariant measures 
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 and  are respectively the directional curvatures on the membrane parallel and 

perpendicular to m̂v. Using the Euler's theorem for directional curvatures [21, 26] and the 

definition of the principal curvatures given in eqn. (3) it can be shown that 

 and . Furthermore, the presence of 

the protein also modulates the elasticity of the membrane-protein system [97] and this effect 

is included into eqn. (11) through the directional bending stiffnesses κ∥ and κ⊥ with their 

values ≥ 0. For simplicity, we have set κ⊥ = 0 in all the studies presented here.

The simultaneous expression of multiple proteins on the membrane can lead to explicit 

interactions between the proteins. In the nematic membrane, we model this self interaction 

as a nematic ordering potential and an aggregation potential, where an in-plane field m̂v 

interacts with all its neighbours m̂v′ through

(12)

The first term represents an orientational interaction and denotes the one constant 

approximation of the Frank's free energy for liquid crystals [98] and is known the Lebwohl-

Lasher potential [99] with εLL being the interaction strength. The second term is the familiar 

Ising potential which can be tuned to promote the explicit aggregation of the proteins, with J 
being the exchange interaction strength. The first summation is carried over all the vertices 

of the surface while the second summation is over all neighbours of v. θvv′ is the difference 

in the orientations of fields m̂v and m̂v′ with respect to the geodesic that connects them—see 

Ramakrishnan et. al. [27] for details. In the remainder of this section, we will explore the the 

role of the various model parameters that contribute to the onset and stability of membrane 

shapes. The total energy that governs the equilibrium behavior of the nematic-membrane 

system is then given by

(13)

We discuss the phenomenon of how proteins collectively remodel a membrane from two 

viewpoints: (a) as a result of variations in the elastic moduli that characterize the protein and 

the membrane, and (b) as a result of the lateral organization and patterning of the nematic 

field on the membrane.

4.1. Role of the various elastic moduli

The interactions between the lipids and proteins at the molecular scale is a key determinant 

of the strength of the elastic moduli. The nematic membrane model displays a diverse 

spectrum of conformations in response to variations in the values of these elastic moduli.

Fig. 5 shows the equilibrium shapes of a fully decorated nematic membrane (ϕA = N) when 

the anisotropic stiffness (κ∥) is varied from 0 to 5 kBT, with the rest of the parameters fixed 

to be εLL = 3kBT, J = 0,  and κ = 10kBT. When κ∥ = 0 (Fig. 5(a)) the membrane does 

not respond to the spontaneous curvature induced by the nematic field, i.e. , and as 

a result its conformation remains quasi-spherical. However, at non-zero values of κ∥ the 
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nematic-membrane interactions collectively remodel the membrane into long tubules as in 

Fig. 5(b) for κ∥ = 2.5 kBT. With further increase in κ∥, the tubular membrane branches out 

into a number of short, narrow structures that are connected through a neck like region as 

can be seen from the snapshot in Fig. 5(c) for κ∥ = 5kBT. While the spontaneous curvature 

 is a measure of the binding affinity of the protein-membrane system, the parameter κ∥ is 

measure of the fluctuations in : it is small when κ∥ is large and vice versa. The transition 

from spherical to tubular structures as a function of κ∥ indicates that in order to achieve 

effective remodeling the spontaneous curvature induced by a protein should be minimally 

susceptible to fluctuations in its microenvironment.

The equilibrium state of the nematic membrane is also influenced by the orientational order 

in the texture of the in-plane field which is determined by εLL introduced in eqn. (12). The 

nematic field in our model undergoes an isotropic to nematic transition when εLL ~ 0.89 

[99]. In Fig. 6, we have shown the equilibrium configurations of a nematic membrane, with 

ϕA = N, J = 0, , κ∥ = 5kBT and κ = 10kBT, at three different states of the nematic 

field. These states correspond to (i) the isotropic phase for εLL = 0 (Fig. 6(a)), (ii) in the 

vicinity of the transition for εLL = 0.9kBT (Fig. 6(b)) and (iii) the nematic phase for εLL = 

3kBT (Fig. 6(c)). Though the underlying membrane conformations for all the three cases are 

tubular and branched, there are some characteristic features that differentiate these shapes. 

The first being the orientational order in the in-plane field: the nematics are in an isotropic 

phase when εLL = 0, i.e. they have random orientations, while they are aligned along a 

common director when εLL >= 0.89. Another major difference is in the number of neck like 

structures which is the branching point for the tubules—in Fig. 6 an arrow points to the 

location of a neck. We observe that the number of necks decreases with an increase in the 

value of εLL, pointing to the fact that branching is unfavourable when the protein-protein 

orientational interactions are strong. In case of a fully decorated membrane the nematic 

texture at the neck region consists of two disclinations, each with a defect charge of –1/2, 

while the spherical cap at the end of a tubule consists of two +1/2 disclinations. The 

observed reduction in the number of branches with increase in εLL can be explained based 

on the energy cost to generate these defects. We refer the interested reader to the relevant 

discussions on this topic in references [100–105]. The presence of orientational order and 

the emergence of branched tubules has been recently demonstrated for the case of N-BAR 

domain proteins [63].

The spontaneous curvature induced by various classes of proteins vary both in their 

magnitude and direction—in our description, a protein attached to the extracellular side of 

the cell membrane is said to induce a positive curvature if it curves the membrane into the 

extracellular side and vice versa.

When the in-plane field is in the nematic phase (we set εLL = 3kBT), the nematic membrane 

model predicts a diverse spectrum of membrane shapes as a function of the anisotropic 

spontaneous curvature . In Fig. 7, we display the representative equilibrium shapes for 

values of  in the range –0.6 to 0.6. The equilibrium shape of a fully decorated nematic 

membrane for the case of  is a prolate, as in Fig. 7(a), instead of being quasi-spherical 
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as in the case of membranes without nematic field 1. Non zero values of  stabilize many 

shapes ubiquitous in the cell: like tubes (–0.3 to 0.3), corkscrew (0.35 to 0.5), branched 

shapes (> 0.5), discs (–0.35 to –0.55) and invaginations or caveola (< –0.55). It should be 

noted that, when the magnitude of  is small both positive and negative spontaneous 

curvatures can stabilize cigar like or cylindrical membrane structures, as shown in Figs. 7(b) 

and (e) for  and 0.2 respectively. A close inspection of the nematic texture reveals 

the subtle difference in the shapes wherein the average nematic orientation is along the 

maximally curved direction (〈φ〉 ~ 0) for  and is along the minimally curved direction 

(〈φ〉 ~ π/2) when .

In summary, the spontaneous curvature induced by a protein is the key driver of shape 

transformations in membrane. In spite of its simplicity, the nematic membrane model 

predicts the conformational space for the entire repertoire of membrane shapes reported in 

the literature, especially in experimental studies on protein assisted shape transformation of 

cellular or model membranes (see references [35, 41, 43, 55, 109]).

So far we had investigated the role of the various elastic moduli that characterize the 

proteins and their interactions with the membrane. In addition to κ∥,  and εLL, the 

elasticity of the underlying cell membrane also plays a definitive role in determining the 

nature of the emergent conformations. The effect of the bending rigidity κ on the 

equilibrium shapes of a nematic membrane, with ϕA = N, J = 0, εLL = 3kBT, κ∥ = 5kBT and 

, is shown in Fig. 8. In the absence of the in-plane nematic field, tubular, branched 

geometries have been shown to be the equilibrium state of a flexible membrane (κ = 0) [110, 

111]. This natural state does persist for a nematic membrane with κ = 0 (Fig. 8(a)) but the 

presence of an orientational order reduces the degree of branching, for similar reasons given 

in the discussions on Fig. 6. The radius of the tubular region is set by the values of κ,  and 

κ∥ and it has been shown in Ramakrishnan et. al [105] that it follows the relation,

(14)

The membrane conformations shown in Figs. 8(b) and (c), for κ = 5kBT and κ = 20kBT, 

follow this relation as evidenced by the decrease in the tube length as the membrane 

becomes stiffer. The change in bending rigidity also modulates the nematic texture as seen in 

the insets to Figs. 8(a) and (b). In case of stiff membranes, the in-plane field orients along 

the maximally curved direction (〈φ〉 ~ 0), as expected. However, when the membrane is 

flexible the tubular region is highly constricted (i.e. one or both of its principal curvatures 

are larger than ) and as a result the system minimizes  through modulations in the 

orientational degree of freedom—this is shown in Fig. 8(a) for κ = 0, where 〈φ〉 ~ π/4. See 

reference [102] for a detailed discussion on this topic.

1This transformation occurs due to the implicit coupling between the nematic texture and membrane geometry [106–108].
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So far, we had used the example of a fully decorated nematic membrane and had shown how 

changes in the model parameters can influence its equilibrium state. However, the 

concentration and lateral organization of the proteins is another factor that can significantly 

alter the outcome of protein induced membrane remodeling. In the next section, we briefly 

touch upon this aspect and show how variations in the nematic density alone is enough to 

generate non trivial membrane shapes.

4.2. Role of nematic density and patterning

The cell membrane, or in general an elastic surface, can mediate the interactions between the 

various surface inclusions, such as between proteins [112–116]. The form of this interaction 

depends on the nature of the deformation field induced by the protein and can either be 

repulsive or attractive depending the on the elastic moduli of the membrane. Such indirect 

interactions gain significance in the context of membrane remodeling since they govern how 

the proteins aggregate into clusters, especially in the absence of specific interactions 

between them. In Fig. 9 we show how a nematic membrane with 10% field concentration 

(ϕA = 0.1N) aggregates into a single patch through membrane mediated interactions. The 

initial state of the membrane with random spatial distribution of the nematic field is shown 

in Fig. 9(a) and Fig. 9(b) shows its intermediate state at TMCS = 1.6 × 105 Monte Carlo steps 

where the field aggregates into small local clusters. At much longer times the membrane 

reaches its equilibrium state wherein the local clusters aggregate into a larger cluster and 

cooperatively remodels the membrane surface into a rim like structure, a snapshot of the 

equilibrium state at TMCS = 17.5 × 105 Monte Carlo steps can be seen in Fig. 9(c).

Variations in the field concentration can evoke varied conformational responses in the shapes 

of the membrane. We demonstrate this feature of membrane remodeling in Fig. 10 for a 

nematic membrane with J = 0, , κ∥ = 5kBT and κ = 10MkBT for three different 

values of ϕA = 0.1N, 0.4N and 0.7N. The observed array of shapes are diverse and range 

from rim like structures for ϕA = 0.1N (Fig.10(a)), to discs for ϕA = 0.4N (Fig. 10(b)), and 

coexisting state of discs and tubules for ϕA = 0.7N (Fig. 10(c)). With further increase in ϕA 

the equilibrium shapes of the membrane approaches the state corresponding to a fully 

decorated membrane, which was earlier shown in Fig. 7. The role of protein concentration 

and their associated shapes in well exemplified in the endoplasmic reticulum (ER) where 

DP1 and reticulon class membrane reshaping proteins are involved in the formation of ER 

discs and tubules [36, 38, 43, 117].

4.3. Free energy methods in nematic membranes

The nematic membrane model or in general the elasticity based membrane models are by 

construction faithful to the underlying thermodynamics of the system. Hence, such models 

are excellent candidates to probe the thermodynamic free energy landscapes of the 

membrane in a number of scenarios. Here, we show how conventional, perturbative and non-

perturbative methods can be used to determine the various free energy measures related to 

protein driven membrane remodeling. A number of methods such as the thermodynamic 

integration technique [32], the Widom insertion technique [32] and the Bennet acceptance 

scheme [118] has been earlier used by Agrawal and Radhakrishnan [82, 119], and Tourdot 

et. al. [13, 31] to study the thermodynamic stability of the membrane conformations 
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remodeled by isotropic curvature inducing proteins. These techniques can also be readily 

extended to understand the stability of the various conformations observed for the nematic 

membrane. Here, we briefly describe the thermodynamic integration technique to compute 

the free energies of highly curved membrane shapes stabilized when .

To perform thermodynamic integration we slowly introduce the effect of the nematic 

interactions by coupling the Kirkwood coupling parameter λ to the directional bending 

rigidity κ∥. The nematic membrane interaction, given in eqn.(11), now has the form,

(15)

and hence the total energy has the form,

(16)

For a given value of the anisotropy parameters κ∥ and , the free energy of the highly 

curved membrane morphology, observed when λ = 1, with respective to the prolate shapes, 

seen for λ = 0, can be computed using eqn.(15) as,

(17)

(18)

In simulations, the average value of , i.e. the integrand of eqn.(17), is computed for a 

range of values of λ and these average values are then numerically integrated to compute the 

relative free energy .

Fig. 11(a) shows the isotropic ( ) and the anisotropic ( ) energy contributions in a 

fully decorated nematic membrane as a function of the Kirkwood coupling parameter λ, for 

three different values of , and 1.0. It can be seen that the dominant energy 

contribution is a function of λ and also a function of . When ,  is an increasing 

function of λ since any non-zero curvature on the membrane tends to penalise the 

anisotropic part, i.e. . This increase is balanced by a corresponding 

decrease in  which indicates that the equilibrium state of the membrane is governed by 

the complex interplay between the various energy contributions. However, when , 

 increases when λ < λ*, while this contribution is minimum when λ exceeds the 

threshold value λ*—in the former the nematic field merely senses the membrane curvature 

while in the latter it also deforms the membrane and imposes the preferred curvature profile. 

The same cannot be said for the case of curvactants with  and particularly for values of 

 that invaginates the membrane surface. Here, the number of invaginations formed by the 
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protein coat is limited by the volume enclosed by the cell membrane and as a result the 

nematic field in the non-invaginated regions have frustrated textures that lead to higher 

energy states [102].

The relative free energy, , for a fully decorated nematic membrane, with κ 

= 10kBT, εLL = 3kBT, and κ∥ = 5kBT, is plotted against  in Fig. 11(b)—the values of 

chosen here encompasses all the morphologies shown in Fig. 7. The relatively smooth free 

energy landscape indicates that the shape transformations in the membrane, as a function of 

, is a continuous transition with no meta stable states. In other words, an invaginated 

membrane (say for ) can be transformed into a tubule (say for ) just by 

increasing the value of the anisotropic spontaneous curvature. A completely tubulated and 

branched structure, like in panel (g) of Fig. 7, has a higher entropy compared to the rest of 

the morphologies of the nematic membrane, and this can serve as a marker to determine the 

state point for the onset of membrane tubulation. The large entropic contributions due to the 

tubular structures is also captured in Fig. 11(b) which is seen as a small kink at , 

which coincides very well with the onset values predicted in Fig. 7. Furthermore, 

 also allows us to compute that the relative energy barriers for the various 

equilibrium shapes; it can be seen that membrane tubulation is less energetic compared to 

membrane invaginations. More details of the free energy techniques can be found in the 

review article by Ramakrishnan et. al. [21].

In this section, we have given a brief overview of the role of the various model parameters in 

reshaping the cell membrane. All the results presented here are purely from an equilibrium 

perspective: the energetics of the membrane, its interactions with the protein and the 

interactions amongst the proteins govern the conformational outcome. In the next section, 

we treat the curvature field and its deformation as a non-equilibrium process and show how 

such a process can lead to dramatic conformational response in the membrane, even at 

negligible protein concentrations.

5. Active membrane models for curvature fluctuations

The focus of this section is to study how the modulations in the membrane curvature due to 

the kinetic events occurring either on its surface or in its vicinity can affect cellular shapes. 

The class of biophysical processes that also remodel cell membrane curvature had earlier 

been discussed in Sec. 3 using three specific examples whose illustrations were shown in 

Fig. 3(b). To reiterate, we are interested in understanding how cellular morphologies are 

impacted by the rate of spontaneous curvature fluctuations on the cell membrane, which in 

turn is slaved to the rates of the cellular processes that induce curvature. Before proceeding 

to the model, it is important to understand the main differences between this approach and 

that discussed in Sec. 4, where the focus was to study how a fixed number of proteins self-

assemble and cooperatively sculpt the membrane. The active membrane model has the 

following distinctions: (i) the number of curvactants on the membrane surface is not a 

conserved variable, i.e ϕA(t) ≠ constant, where t denotes time, (ii) the undulations in the 

number of proteins is governed by an underlying non-equilibrium process, and (iii) the 
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membrane shapes obtained here are steady-state shapes and do not correspond to the true 

equilibrium state of the system.

The model for a membrane subjected to non-equilibrium curvature inducing processes is 

also based on the frameworks of membrane elasticity and DTMC introduced in Sec. 2. The 

location of a protein, as before, is marked by the scalar field ϕ, whose value is ϕ+ when a 

protein is present and ϕ– when it is not. On a triangulated surface the continuous field ϕ is 

represented by its discrete representation ϕv which is defined at every vertex v of the discrete 

surface. If the variables ϕ± take values ±1 then the number of curvature active sites is given 

by  and the number of curvature inactive sites is given N– = N – N+, 

with N being the total number of the vertices on the triangulated surface. The spontaneous 

curvature field at a vertex v is related to the scalar variable ϕv as H0(1 + ϕv)/2, where H0 

denotes the specific form of the spontaneous curvature measured from experiments or 

atomistic simulations.

For simplicity, in our discussions we treat H0,v to be a point scalar field by setting 

 in eqn. (4), with δ being the Kronecker delta function: this form of H0,v 

induces a spontaneous curvature only at the vertex it is associated with. This class of 

curvatures can be studied using the isotropic curvature model, where the interactions 

between the spontaneous curvature field and a tensionless membrane surface is given by a 

modified form of eqn. (3),

(19)

An illustration of a triangulated surface with N+ = 0.1N is shown in Fig. 12(a). The self 

interaction between two neighboring sites ( ) follows the classical Ising Hamiltonian,

(20)

which was already introduced in eqn. (12). The exchange interaction strength can either be 

positive (promoting the formation of protein clusters) or negative (inhibiting the formation 

of clusters). The thermodynamic state of the active membrane is then governed by the total 

Hamiltonian given by:

(21)

Fig. 12(b) depicts the set of three equilibrium Monte Carlo moves that are used to sample 

both the protein and membrane degrees of freedom. Of these, the vertex move and link flip 

are similar to those for a bare membrane, introduced in Sec. 2, but in course of these moves 

the lateral organization of the curvature field ({ϕ}) is preserved. A third class of Monte 

Carlo moves, generally called the Kawasaki exchange, is designed to enhance the clustering 
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dynamics of the protein field through the exchange of opposite valued curvature fields (one 

with ϕ = 1 and the other with ϕ = –1) between two neighbouring vertices on the triangulated 

surface. This move conserves the scalar field ϕ and the transition probability for a Kawasaki 

exchange move has been shown to be ( ) [120], where  is the energy 

cost to flip the values of two neighbouring field variables. In the model presented here, the 

field exchange move ((iii) in Fig. 12(b)) is accepted using the Metropolis scheme with the 

above mentioned transition probability, but one can also use the probability based on the 

Boltzmann factor  which was earlier described in eqn. (8).

So far, we had focused on the equilibrium aspects of the active membrane and the sampling 

techniques shown in Fig. 12(b) conform to the rules of the canonical Monte Carlo namely: 

(i) conservation of the microscopic reversibility of the states, and (ii) the conservation of the 

number of protein fields N+ during these MC moves. In order to account for the effect of 

non-equilibrium curvature fluctuations in the membrane, the model should also 

accommodate for the spatial and temporal fluctuations in the total number of curvactants N+. 

As stated earlier, such a fluctuation can be caused by a variety of factors which also include 

the binding/unbinding kinetics of proteins and the onset of curvature inducing/inhibiting 

physical processes like endocytosis and vesicle fission/fusion.

At every vertex v, the transition probabilities to add or remove a curvactant (ϕv ⇄ –ϕv) are 

taken to be independent of each other. These probabilities are assumed to be governed by a 

signaling pathway that is sensitive to the number of curvature inducing units associated with 

the membrane: it promotes the addition of an active curvactant (a site with ϕ– is converted 

into a site with ϕ+) when N+ decreases below its preferred steady value  and vice versa. 

In our Monte Carlo method the transitions between curvature active and curvature inactive 

states are modeled as,

(22)

and,

(23)

The transition probabilities are only dependent on the preferred asymmetry parameter, 

, and the fluctuations in N+ is set by the parameter ζ. In case of membranes 

with N+ ≠ N– the factor ξ ensures that the transitions are attempted with the prescribed rates 

ε+ and ε–, with ξ = 1 when N+ = N–. Though the transition probabilities shown in eqns. (22) 

and (23) are applicable to most active remodeling events, it should be applied with care if 

used to model the effects of vesicle fission and fusion. The given form of the probabilities 

assumes that the total system size is conserved even when the population of the individual 

species changes, i.e. it is in a semi grand ensemble. In this context, the results obtained using 

this model are only valid when the average membrane area remains unaltered during vesicle 

fission and fusion—this is equivalent to a regime where the area increase due to vesicle 
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fusion is balanced by the area loss due to the budding vesicles. Hence, in order keep our 

discussions at a generic level we set ε+ = ε– = ε, which denotes the number of attempts per 

Monte Carlo moves to convert an active species to an inactive one and vice versa.

The above transition probabilities do not depend on the energy change associated with a 

change in the local configuration, ϕ ⇄ –ϕ hence violating detailed balance. We now 

explicitly show that this form of transition probabilities do not obey detailed balance, by 

demonstrating a violation of the Kolmogorov loop condition. The Kolmogorov loop 

condition states that for every loop in state space, the product of transition probabilities in 

one direction is equal to the product taken in the reverse direction. Our task is therefore to 

construct a loop where this condition is violated.

Consider a Kolmogorov loop connecting four distinct states of the continuum membrane, 

labeled 1 - 4, and characterized by state variables {ϕ, H}, as shown in Table 1

The transition between any two states with the same value of ϕ is an equilibrium process — 

here, this corresponds to transitions between 1 ↔ 2 and 3 ↔ 4. Such transitions are 

characterized by a change in the elastic energy of the membrane , which can either be 

positive or negative. In perspective, one of these transitions corresponds to a membrane 

relaxation from a deformed/undeformed state following the unbinding/binding of a 

curvature-generating vesicle-protein complex. If  be the change in energy upon 

relaxation, it can be shown that the transition probabilities for the various equilibrium 

transitions are,

(24)

The transition between any two states with different values of ϕ is an active process: here, 

this corresponds to transitions between 2 ↔ 3 and 4 ↔ 1. In our model, we have taken the 

rates for the transition of the state variable ϕ from 1 → –1 and –1 → 1 to be ε– and ε+, 

respectively. The probabilities to transition between the various active states can be 

computed using eqns. (22) and (23) as:

(a) Addition of active species: N+ = n → N+ = n + 1

(25)

(b) Removal of active species: N+ = n + 1 → N+ = n

(26)

In systems where microscopic reversibility is obeyed, the Kolmogorov loop condition states 

that the clockwise and counter-clockwise transition probabilities are related by,
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(27)

From Fig. 13, the difference in the transition probabilities in the clockwise and counter-

clockwise directions is non-zero. This is a clear violation of the Kolmogorov loop condition, 

and hence a violation of the detailed balance. The Kolmogorov loop condition is restored if 

we set either C0 = 0 or ε = 0. In summary, the binding and unbinding kinetics of curvature 

remodeling proteins is an active process, since they violate microscopic reversibility.

First, it is important to note that the properties of an active membrane is considerably 

different from that of its equilibrium counterpart. For the purpose of demonstration, starting 

from the same initial configuration of a membrane, with κ = 20kBT, Δp = 0, , and 

C0 = 0.7, we simulate four unique systems namely: (i) J = 0 and ε = 0, (ii) J = 1 and ε = 0, 

(iii) J = 0 and ε = 0.1N/MCS, and (iv) J = 1 and ε = 0.1N/MCS. The first two corresponds to 

an equilibrium membrane and the rest two represent an active membrane. Three different 

geometric and thermodynamic measures —(a) V, the volume enclosed by the membrane, (b) 

Nclus, the number of unique clusters formed by the spontaneous curvature field ϕ and (c) 

, the elastic energy of the surface computed from eqn. (19)—for the four cases are 

compared in Fig. 14.

The first noticeable difference can be seen in the membrane conformations, which are also 

shown in Fig. 14, where the presence of activity drives an otherwise quasi-spherical 

membrane into non-trivial shapes like tubes and branched tubes. The implications of this 

shape transition is also reflected in the membrane volume V (Fig. 14(a)) where the active 

membranes show consistently smaller volumes. Similarly, the lateral organization of the 

protein field is significantly altered by non-equilibrium curvature fluctuations. It can be seen 

from the snapshots of the equilibrium membrane that the affinity of the protein field to 

aggregate into higher order clusters increases with J, as previously shown by Kumar et. al. 

[121], and the onset of aggregation is marked by a decrease in the number of protein clusters 

Nclus as in Fig. 14(b). However, the formation of such clusters is inhibited in an active 

membrane, even for large values of the parameter J [122]. Finally, the non-equilibrium 

nature of the active membrane can also be established from the elastic energy of the 

membrane surface which is shown in Fig. 14(c). It reveals that the energy of the active 

membrane is at least three times larger compared to its equilibrium state and given that the 

model only relies on the minimization of the elastic energy it is clear that the large 

membrane deformations are primarily driven by non-equilibrium curvature fluctuations. At 

this point, it is instructive to compare the tubular structures stabilized by an active membrane 

(Fig. 14) to those stabilized by a nematic membrane (see Fig. 10). It can be seen that the 

threshold protein coverage required to tubulate a membrane is around 70% in case of the 

latter while this threshold reduces to 10% for the active membrane. This clearly illustrates 

that the remodeling ability of a given protein not only depends only on its binding energy but 

also depends on its dynamics in the vicinity of the cell membrane.

We can verify our hypothesis that non-equilibrium curvature fluctuations lead to highly 

curved, non trivial membrane shapes by observing the stability of the membrane 

conformation to changes in the activity rate ε. In Fig. 15 we show how a flattened sac like 
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membrane structure which is the steady state of an active membrane, with κ = 20kBT, Δp = 

0, , J = 1 and ε = 0.1N/MCS, rapidly reverts back to its equilibrium state when the 

activity rate ε is abruptly set to zero at TMCS = 106 steps. Also shown in Fig. 15, is the 

elastic energy  which also shows a rapid decay to its equilibrium value on inhibition of 

active curvature fluctuations. Furthermore, the proteins aggregate into clusters that are not 

seen in the case of active membranes. Using this simple experiment, we have shown how the 

membrane shapes stabilized by the presence of curvature fluctuations are true steady state 

structures. However, the emergent conformations strongly depends on a number of model 

parameters. The repertoire of shapes stabilized due to the interplay of J, C0 and ε are shown 

in Fig. 16. Here, we have investigated how variations in the system parameters can lead to 

altered morphologies using an active membrane with N = 2030 vertices and .

Role of curvature-activity coupling, C 0 

The sequence of steady state shapes of the active membrane going from quasi-spherical to 

tubule to flattened sac on increasing C0, at a fixed activity rate ε = 0.1N/MCS is shown in 

Fig. 16a(i-iii). These nonequilibrium steady state shapes are distinct from their equilibrium 

counterparts obtained when the activity rate ε = 0. The membrane remains nearly quasi-

spherical when the spontaneous curvature has values in the range 0.0 ≥ C0 < 0.6, but readily 

deforms into tubular structures when 0.6 ≤ C0 < 0.9. At extremely large values of the 

curvature-activity coupling, which has been determined to be C0 > 0.9 for an active 

membrane with , ε = 0.1N/MCS and J = 0, the tubular structures are unstable and 

leads to the emergence of flattened sac like conformations, that are reminiscent of the sac 

structures in the golgi.

Role of activity rate, ε

The steady state shapes are very sensitive to the rates of activity and go from tubular to 

flattened sacs to stomatocyte as the activity rate ε is increased. This effect is displayed in 

Fig. 16b for three different activity rates, ε = 0.1, 0.25, and 0.5N/MCS, at a fixed value of C0 

= 0.8.

Effect of cooperativity, J

Cooperativity between the active species (J > 0), which can be caused due to the presence of 

export sites [123, 124], promotes the formation of clusters, which in turn enhances the 

effects of activity and curvature-activity coupling, consistent with results reported in [125] 

for the case of membrane mediated aggregation of active pumps, and leads to the sequence 

of shapes depicted in Fig. 16c.

It is now clear that tubules, sacs and stomatocytes are the dominant highly curved shapes 

within the conformational space of the active membrane and the stability of these shapes are 

highly sensitive to the various parameters in the model. Interestingly, all the three major 

shapes of the active membrane can also be stabilized by changing the osmotic pressure 

difference between the inside and outside of the membrane. It has been shown by Gompper 

and Kroll that tubules, discs and stomatocytes are the natural states of a closed membrane 

surface subjected to a deflating pressure [126]. How can one relate two seemingly disparate 
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set of parameters, i.e how to recast the parameters defining the membrane activity (given by 

the activity rate ε and the curvature activity coupling C0) in terms of a mechanical parameter 

like the osmotic pressure difference? It has shown by Ramakrishnan et. al [122] that the 

active processes on the membrane renormalizes its osmotic pressure and this renormalized 

pressure is related to ε and C0 as ; here, R is the radius of the vesicle 

in its equilibrium state and the induced pressure is deflating. A closer look at this relation 

reveals another interesting aspect. The quantity ΔpRR can be thought as the spontaneous 

tension in the membrane, due to the active processes, and its value is proportional to  as 

predicted by Lipowsky [127] for any contribution C0 within the isotropic framework of 

membrane elasticity.

In summary, the active membrane model provides an alternative avenue to understand the 

phenomenon of how curvature remodeling processes can cooperatively affect the 

macroscopic shapes of cell membranes. It also shows that the non-equilibrium aspects of 

these processes play a significant role even when the protein concentration is small enough 

to be negligible.

6. Conclusions

We have presented an elasticity based membrane mechanics model to study the 

morphogenesis of cell membranes and have shown how the emergent morphologies are 

influenced by the presence of passive and active remodeling processes that can 

spontaneously modulate the local curvature of the membrane. In this approach, we represent 

the interaction between the membrane and the curvactants as effective spontaneous curvature 

fields, whose values are determined either through experiments or through other high 

resolution simulation techniques. We have also shown how the Dynamical triangulated 

Monte Carlo technique provides a computationally less expensive route to study the 

thermodynamic states of the membranes, with dimensions matching cellular scales. The 

nematic membrane model was introduced in the context of proteins that deform the cell 

membrane only along some preferred directions. This anisotropic elasticity based model has 

been used to show how biologically relevant morphologies are stabilized by the cooperative 

action of anisotropically curving proteins and the relative stability of the membrane shapes 

were analyzed using free energy methods based on thermodynamic integration. The active 

membrane model captures the non-equilibrium curvature fluctuations on the membrane 

surface caused due to the involvement of the cell membrane in a number of essential 

biophysical processes like cellular trafficking, cell signaling and motility. The non-

equilibrium fluctuations can stabilize a number of non-trivial, steady state membrane shapes 

even when the concentration of the curvactants is very small. The framework presented in 

this chapter offers a generic framework to model more complex problems in cell biology 

where the role of the cell membrane is indispensable.
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Figure 1. 
(a) Cross sectional view of a flat membrane, with surface area A0. (b) When bent, the flat 

membrane shows stretching (A > A0) in the top monolayer and compression (A < A0) in the 

bottom monolayer. The neutral surface is the plane in the bent membrane with nearly 

constant surface area (A = A0). The neutral surfaces in the flat and bent membranes are 

shown as solid lines.
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Figure 2. 
Monte Carlo moves involved in equilibrium simulations of a fluid random surface. (a) vertex 

move emulates thermal fluctuations in the membrane and (b) link flip simulates its fluidity.
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Figure 3. 
Equilibrium and non equilibrium processes that remodel membrane curvature. (a) Shown on 

the left are illustrations of (i) the scaffolding mechanism: a dimer of the classical BAR 

domain interacts with negatively charged lipids on the membrane, through its positively 

charged membrane facing residues and (ii) the spontaneous curvature induced by the 

asymmetric insertion of a protein. (b) Curvature fluctuations in a planar membrane due to (i) 

fission and fusion of transport vesicles, (ii) binding and unbinding kinetics of membrane 

associated proteins and (iii) change in the conformation of ion channels.
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Figure 4. 
(a) Illustration of a nematic in-plane field on a patch of the triangulated surface. The unit 

field m̂v is defined on the tangent plane at vertex v and it subtends an angle ϕv with the 

maximum curved direction t̂1,v. The three sets of Monte Carlo moves are shown in panel (b). 

The field orientation φ is preserved during (i) a vertex move (i) and (ii) a link flip while the 

position and triangulation of the surface is preserved when φ → φ′ as in (iii).
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Figure 5. 
Membrane conformations for κ∥=0, 2.5 and 5kBT for a nematic membrane with ϕA = N, εLL 

= 3kBT, J = 0,  and κ = 10kBT. The membrane remains quasi-spherical when κ∥ = 0 

(a), which remodels into tubules when κ∥ = 2.5 (b), which then branches out into multiple 

tubules when κ∥ = 5 (c).
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Figure 6. 
Tubular membrane structures as a function of the texture of the in-plane nematic field. 

Shown are (a) the isotropic phase when εLL = 0, (b) in the vicinity of the isotropic-nematic 

transition when εLL = 0.9kBT and (c) the nematic phase when εLL = 3kBT. The arrows mark 

the location of the necks from which the branched structures emanate. All data correspond to 

a fully decorated nematic membrane with J = 0, , κ∥ = 5kBT and κ = 10kBT.
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Figure 7. 

Membrane conformations as a function of  for a nematic membrane with ϕA = N, J = 0, 

κ∥ = 5kBT and κ = 10kBT. The membrane stabilizes a prolate like shape when  (a) 

which remodels into cylinders (b), discs (c) and invaginations (d) for , and –

0.6. Similarly, for positive values of the spontaneous curvature  and > 0.5 the 

observed shapes correspond to cylinder (e), corkscrew (f), branched tubules (g and h). The 

shapes correspond to a membrane with ϕA = N, J = 0, εLL = 3kBT, κ∥ = 5kBT and κ = 

10kBT.
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Figure 8. 
Shapes of a membrane with ordered in-plane field for three value of the bending rigidity, κ = 

0 (a), 5kBT (b) and 20kBT (c). The inset to (a) and (b) shows the nematic texture on a small 

segment on the tubular region. The rest of the parameters are fixed to be ϕA = N, J = 0, εLL = 

3kBT, κ∥ = 5kBT and .
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Figure 9. 
Membrane mediated self assembly of the in-plane nematic field in a membrane with protein 

concentration ϕA = 0.1N. Panels from left to right shows (a) the initial state of the membrane 

with random distribution of the in-plane field, (b) local clustering of the field at intermediate 

times, TMCS = 1.6 × 105 and (c) aggregation of the smaller clusters and cooperative 

remodeling of the membrane into a rim like structure. Data shown for membrane parameters 

ϕA = 0.1N, J = 0, , κ∥ = 5kBT and κ = 10kBT.
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Figure 10. 
Conformations of a nematic membrane as a function of field concentration ϕA: (a) rim like 

structures for ϕA = 0.1N, (b) discs for ϕA = 0.4N, and (c) coexisting disc and tubules for ϕA 

= 0.7N. Shown data corresponds to J = 0, , κ∥ = 5kBT and κ = 10kBT.
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Figure 11. 
(a) The isotropic elastic energy,  (filled symbols), and the anisotropic elastic energy, 

 (open symbols), as a function of λ, for three different values of the anisotropic 

curvature for a nematic membrane with ϕA = N. (b) The relative thermodynamic free energy 

 as a function of  for a fully decorated nematic membrane. Shown 

alongside are the regions corresponding to the various morphologies shown in Fig. 7.
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Figure 12. 
(a) An active membrane with 10% active curvactants which are modeled as scalar fields with 

magnitude C0. On a triangulated surface, these curvactants are marked by a vertex with field 

variable ϕ = +1, as shown in the inset. (b) Shown are three equilibrium Monte Carlo moves 

to sample both the membrane degrees of freedom and the lateral organization of the scalar 

field ϕ.
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Figure 13. 
A Kolmogorov loop diagram illustrating the transition probabilities between four distinct 

states of the membrane. The number of active species in states 1 and 2 is N+ = n and in 

states in 3 and 4 is N+ = n + 1.
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Figure 14. 
Shown are (a) the volume V, (b) the number of clusters Nclus, and (c) the elastic energy 

 for four case of equilibrium and active vesicular membranes with κ = 20kBT, Δp = 0, 

 and C0 = 0.7. All simulations start from the same quasi-spherical initial 

configuration. The conformations of the equilibrium state corresponding to J = 0 ( ) and J = 

1 ( ), and the steady state shapes of the active membrane, with ε = 0.1N/MCS, 

corresponding to J = 0( ) and J = 1( ) are also shown alongside.
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Figure 15. 
The stability of active membrane shapes in response to the inhibition of curvature 

fluctuations. TMCS = 0 corresponds to the steady state of an active membrane and this steady 

state persists till activity is abruptly switched off at TMCS = 106 steps. The highly curved 

sac-like shape of the active membrane disassembles and rapidly goes to the equilibrium 

shape corresponding to a membrane with κ = 20kBT, Δp = 0,  and J = 1.
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Figure 16. 
Shapes of an active membrane. (a) Steady state shapes at ε = 0.1N/MCS and J = 0, as a 

function of curvature-activity coupling, C0. (b) Steady state shapes at J = 0 and C0 = 0.8, as 

a function of activity rate, ε. The side of the stomatocyte that is curved-in, is colored 

differently, for clarity. (c) Steady state shapes at ε = 0.1N/MCS and C0 = 0.8, as a function 

of cooperativity J between active species. All configurations are obtained with κ = 20, Δp0 = 

0 and .
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Table 1

Enumeration of the states considered in the Kolmogorov loop diagram and the associated membrane 

morphology.

state ϕ H morphology

1 −1 = 0 nearly flat

2 −1 ≠ 0 curved

3 1 ≠ 0 curved

4 1 = 0 nearly flat
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