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ABSTRACT

Pregestational diabetes significantly increases the risk of neural tube defects (NTDs). Maternal diabetes activates an
Apoptosis Signal-regulating Kinase 1 (ASK1)-initiated pathway, which triggers neural stem cell apoptosis of the developing
neuroepithelium leading to NTD formation. How high glucose of diabetes activates ASK1 is still unclear. In this study, we
investigated the mechanism underlying high glucose-induced ASK1 activation. High glucose suppressed miR-17
expression, which led to an increase in its target gene Txnip (Thioredoxin-interacting protein). High glucose-increased
Txnip enhanced its binding to the ASK1 inhibitor, thioredoxin (Trx), and thereby sequestered Trx from the Trx-ASK1
complex. High glucose-induced ASK1 activation and consequent apoptosis were abrogated by either the miR-17 mimic or
Txnip siRNA knockdown. In contrast, the miR-17 inhibitor or Txnip ectopic overexpression mimicked the stimulative effect
of high glucose on ASK1 and apoptosis. Thus, our study demonstrated that miR-17 repression mediates the pro-apoptotic
effect of high glucose, and revealed a new mechanism underlying ASK1 activation, in which decreased miR-17 removes Trx

inhibition on ASK1 through Txnip.
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Diabetic pregnancy is associated with a high rate of birth de-
fects including neural tube defects (NTDs) and congenital heart
defects (CHDs), which have become a significant public health
problem (Correa et al., 2008). Studies from our group (Gabbay-
Benziv et al., 2015; Gu et al., 2015b; Li et al., 2012, 2013; Wang
et al.,, 2015a,b,c,e,f; Wu et al., 2015; Yang et al., 2013, 2015) and
others (Gareskog et al., 2007; Li et al., 2005; Pavlinkova et al., 2009;
Salbaum and Kappen, 2010) have demonstrated that oxidative
stress-induced pro-apoptotic kinase signaling plays a vital role
in the induction of NTDs and CHDs in diabetic pregnancies.
Specifically, the apoptosis signal-regulating kinase 1 (ASK1)-
initiated pathway triggers neural stem cell apoptosis in the de-
veloping neuroepithelium of embryos exposed to maternal
diabetes (Yang et al., 2013). In diabetic pregnancies, phosphory-
lation of ASK1 at Thr®** is increased in the developing neuroepi-
thelium (Yang et al., 2013). Phosphorylation of ASK1 at Thr®** is

essential for the catalytic activity of ASK1 and the induction of
apoptosis (Tobiume et al., 2002). ASK1 activation stimulates the
activity of the transcription factor FoxO3a, which increases the
abundance of an apoptosis-promoting factor TRADD, therefore
leading to caspase 8 dependent neuroepithelial cell apoptosis
and finally NTD formation (Yang et al., 2013). Ask1 gene deletion
inhibits maternal diabetes-induced neuroepithelial cell apopto-
sis and the development of NTDs (Yang et al., 2013). Thus, ASK1
activation is a causal event for maternal diabetes-induced NTD
formation. However, the mechanism underlying maternal dia-
betes-induced ASK1 activation is still unclear.

MicroRNAs (miRNAs) are small endogenous non-coding
RNAs that repress gene expression by binding to the 3’-untrans-
lated region (3'-UTR) of mRNAs with imperfect complementa-
tion, resulting in direct translational repression, mMRNA
destabilization, or a combination of the 2 (Bartel, 2009; Lee et al.,
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1993; Xiao et al.,, 2011; Zhuang et al, 2013). The functions of
miRNAs were originally described during normal development
(Lee et al., 1993). Multiple lines of indirect evidence implicate
that miRNAs mediate the adverse effect of high glucose on neu-
ral stem cells in the developing neuroepithelium and conse-
quent NTD formation. First, miRNA profiling exhibits dynamic
changes during mouse embryonic neurulation (Mukhopadhyay
et al., 2011). Second, altered circulating miRNA profiling is ob-
served in human pregnancies associated with NTDs (Gu et al.,
2012, 2015b). Third, oxidative stress, a central causal event in di-
abetic embryopathy, modulates miRNA expression (Gu et al.,
2015b; Magenta et al., 2011). Fourth, we have recently demon-
strated that maternal diabetes and high glucose in vitro alter
miRNA expression leading to neural stem cell apoptosis (Gu
et al., 2015b). However, it is unknown whether altered miRNA
expression contributes to ASK1 activation, which is required for
high glucose-induced apoptosis.

miR-17 belongs to the miR-17/92 cluster, the members of
which are abundantly expressed during embryonic develop-
ment (Foshay and Gallicano 2009; Mogilyansky and Rigoutsos,
2013). miR-17/92 inhibits cell apoptosis by repressing the ex-
pression of pro-apoptotic proteins such as Bim (Li et al., 2014;
Ventura et al., 2008). Deletion of the miR-17/92 cluster results in
embryonic anomalies that are similar to those observed in dia-
betic pregnancies (Ventura et al., 2008), suggesting that miR-17
down-regulation may mediate the pro-apoptotic effects of ma-
ternal diabetes or high glucose on neural stem cells. It has been
shown that miR-20, a member of the miR-17/92 cluster, sup-
presses ASK1 expression in a disease model of inflammation
(Philippe et al., 2013). Because high glucose does not affect ASK1
expression but activates ASK1, we hypothesize that high glu-
cose-induced miR-17 down-regulation induces ASK1 activation.

In this study, we found that maternal diabetes and high glu-
cose in vitro down-regulated miR-17 leading to the up-regulation
of its target gene, Thioredoxin-interacting protein (Txnip).
Txnip, a thioredoxin (Trx) binding protein, is a negative regula-
tor of the biological function and expression of Trx (Nishiyama
et al., 1999). On the other hand, Trx is an inhibitor of ASK1 that
is constitutively associated with non-active ASK1 under basal
conditions and its dissociation from ASK1 allows subsequent
phosphorylation and activation of ASK1 (Saitoh et al., 1998).
Here, we revealed a mechanism underlying maternal diabetes-
or high glucose-induced ASK1 activation by demonstrating that
miR-17 down-regulation-increased Txnip triggers ASK1 activa-
tion by suppressing Trx.

MATERIALS AND METHODS

Animals. Wild-type (WT) C57BL/6] mice were purchased from
the Jackson Laboratory. Streptozotocin (STZ) from Sigma was
dissolved in sterile 0.1 M citrate buffer (pH4.5). The procedures
for animal use were approved by the University of Maryland
School of Medicine Institutional Animal Care and Use
Committee.

Mouse models of diabetic embryopathy. Our mouse model of dia-
betic embryopathy has been described previously (Yang et al.,
2013). Briefly, 10-week old WT female mice were intravenously
injected daily with 75 mg/kg STZ over 2 days to induce diabetes.
Diabetes was defined as a 12h fasting blood glucose level of
>14mM. Male and female mice were paired at 3:00r.m., and
pregnancy was established by the presence of the vaginal plug
next morning, and noon of that day was designated as embry-
onic day 0.5 (E0.5). WT female mice were treated with vehicle
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injections as non-diabetic controls. On E8.75 (at 6:00r.m.), mice
were euthanized and conceptuses were dissected out of the
uteri, embryos with the yolk sacs were removed from the decid-
uas and then yolk sacs were removed from the embryos. The
embryos were used for miRNA profiling using the Exigon service
(www.exiqon.com) as we previously described (Gu et al., 2015b),
and RT-gqPCR analyses.

Cell culture and treatments. Originally obtained from European
Collection of Cell Culture, C17.2 mouse neural stem cells, new-
born mouse cerebellar progenitor cells transformed with retro-
viral v-myc, were maintained in DMEM with 5mM glucose
supplemented with 10% fetal bovine serum, 100 U/ml of penicil-
lin and 100pug/ml of streptomycin at 37°C in a humidified
atmosphere of 5% CO,. Lipofectamine RNAIMAX (Invitrogen)
was used according to the manufacturer’s protocol for the
transfection of miRNA mimic or inhibitor into cells under 1%
fetal bovine serum culture conditions. The mirVana miRNA
mimic, the miRNA inhibitor for miR-17 and the negative control
(NC) were purchased from Ambion (Life Technologies). Glucose
was added to the culture medium at different doses for high
glucose conditions. GFP-Txnip plasmid was a gift from Clark
Distelhorst (Addgene plasmid no. 18758) (Wang et al., 2006). This
plasmid was transfected into cells using Lipofectamine 2000
(Invitrogen).

Plasmid construction. The full-length coding region (CR) or its 3'-
UTR and 2 fractions (F1 and F2) in its 3'-UTR with 2 predicted
miR-17-binding sites were amplified and subcloned into the
pmirGLO Dual-Luciferase miRNA Target Expression Vector
(Promega) to generate the pmirGLO-Luc-CR, the pmirGLO-luc-
3'-UTR and the pmirGLO-luc-F1/F2. The sequences and orienta-
tions of the fragments in the luciferase reporters were
confirmed by DNA sequencing and enzyme digestion.
Luciferase activity was measured using the Dual-Luciferase
Assay System (Promega). Levels of pmirGLO-Luc-CR, 3'-UTR and
F1/F2 luciferase activities were normalized to Renilla luciferase
activity. All primer sequences for generating these constructs
are provided in Supplementary Table S1.

Immunoprecipitation. Cells were lysed in non-denaturing lysis
buffer containing 20mM of Tris-HCl (pH 7.5), 150mM of Nadl,
1mM of Na,EDTA, 1mM of EGTA, 1% Triton, 2.5 mM of sodium
pyrophosphate, 1mM of f—glycerophosphate, 1 mM of NazVOy,
and 1pug/ml of leupeptin (Cell Signaling technology). Protease
inhibitor (Sigma) was added before use. After centrifugation at
12 000 g for 10 min at 4°C, the supernatant was pre-cleaned with
protein A/G magnetic beads (Thermo Scientific) for 2h at 4°C.
Five hundred pg of protein extraction were incubated with an
antibody to ASK1 (Santa Cruz) or thioredoxin (Abcam) at 4°C
overnight. Twenty-five pl of protein A/G magnetic beads was
added for immunoprecipitation (IP) at room temperature for 2 h.
Precipitated complexes were cleansed in washing buffer
(Thermo Scientific), and bound proteins were analyzed by
immunoblotting (IB).

Immunoblotting. Equal amounts of protein (30 or 50 ug) from cul-
tured cells or immunoprecipitates were resolved by sodium
dodecyl sulfate-polyacryamide gel electrophoresis and trans-
ferred onto Immunobilon-P membranes (Millipore). Five pg of
Precision Plus Protein Standards (Bio-Rad) was loaded into one
lane of the gel. Membranes were incubated in 5% nonfat milk
for 1h and then were incubated for 18 h at 4°C with the follow-
ing primary antibodies at dilutions of 1:500-1:5000: Txnip
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(Cell Signaling Technology, 1:1000), p-ASK1 (Santa Cruz, 1:500),
ASK1 (Santa Cruz, 1:1000), Trx (Abcam, 1:1000), and caspase 3
(Millipore, 1:1000). Membranes were then exposed to goat anti-
rabbit or anti-mouse secondary antibodies. To ensure that
equivalent amounts of protein were loaded, membranes were
stripped and probed with a mouse antibody against p-actin
(Abcam, 1:5000). Signals were detected using the SuperSignal
West Femto Maximum Sensitivity Substrate kit (Thermo
Scientific). Quantification of blots was performed using
VisionWorksLS software (UVP Company). All experiments were
repeated in triplicate.

RNA extraction and RT-qPCR. Total RNA was isolated from cells
using the Trizol reagent (Ambion) and reverse transcribed using
the QuantiTect Reverse Trancription Kit (Qiagen). Reverse tran-
scription for miRNA was performed using the qScript miRNA
cDNA Synthesis Kit (Quanta Biosciences). RT-qPCR for Txnip,
B-actin, miR-17, and small nuclear RNA U6 was performed using
the Maxima SYBR Green/ROX gPCR Master Mix assay (Thermo
Scientific). The primers for RT-qPCR are listed in Supplementary
Table S2. RT-gPCR and subsequent calculations were performed
by a StepOnePlus RT-PCR System (Applied Biosystem).

TUNEL Assay. The TUNEL assay was performed using the In Situ
Cell Death Detection Kit (Millipore). Cells were seeded on an 8-
well Nunc Lab-Tek Chamber Slide system (Sigma). After trans-
fection and high glucose treatment, cells were fixed with 1%
paraformaldehyde in PBS, incubated with TUNEL reagent coun-
terstained with 4/,6-diamidino-2-phenylindole (DAPI) and
mounted with aqueous mounting medium (Sigma). TUNEL-pos-
itive cells in each well were counted. The percentage of apop-
totic cells was calculated as the number of TUNEL-positive
(apoptotic) cells divided by the total number of cells in a micro-
scopic field from 3 separate experiments.

Statistics

All experiments were completely randomized designed and
repeated in triplicate. Data are presented as means + SE. One-
or two-way ANOVA was performed using the SigmaStat 3.5 soft-
ware. Most of data were analyzed by 1-way ANOVA. However,
2-way ANOVA was used for Figures 1A, B, D, F, H, J; 2C; and 3B
and E. A Tukey test was used to estimate the significance.
Statistical significance was indicated when P < 0.05.

RESULTS

High Glucose Suppresses miR-17 Expression
In our preliminary study, we performed a microarray of global
miRNA expression on E8.5 embryos from diabetic and nondia-
betic mice. This stage is vital for neurulation during mouse
embryonic development. We found that miR-17-5p but not
miR-17-3p was down-regulated in embryos from diabetic dams
compared with embryos from nondiabetic dams (Figure 1A).
This result was validated by RT-qPCR (Figure 1B).

To test if high glucose in vitro has a similar effect on miR-17-
Sp expression as that of maternal diabetes, C17.2 neural stem
cells were cultured under normal glucose (5 mM) or high glucose
(16.7, 25, and 33.3mM) conditions. High glucose decreased miR-
17-5p levels in a dose-dependent manner and the decline of
miR-17-5p reached a plateau at 25mM glucose (Figure 1C).
Twenty-five mM glucose is comparable to the high blood
glucose level (average: 26 mM of glucose) of diabetic dams. A
time-course study on the effect of 25mM glucose showed that

miR-17-5p was down-regulated at 12, 24, and 48h (Figure 1D).
We did not find any changes in miR-17-3p levels under high
glucose conditions (Figs. 1E and F). In addition, we used manni-
tol as an osmotic control for glucose. High mannitol had no
effect on the expression of miR-17-5p and miR-17-3p levels
(Figs. 1G-)).

A precursor miRNA produces a mature miRNA (a guide
strand for gene regulation) and a passenger strand, which is
degraded and does not play a role in gene regulation. According
to the miRNA database (www.mirbase.org), miR-17-5p is the
mature miR-17 and miR-17-3p is the passenger strand.
Therefore, we subsequently used miR-17 instead of miR-17-5p.

Txnip Is a Target Gene of miR-17

Bioinformatic target prediction algorithm (miRanda, www.
microRNA.org) reveals that Txnip is a predicted target gene of
miR-17. There are 2 potential-binding sites of miR-17 in the
3'-UTR of Txnip (Figure 2A). To test if Txnip is a true target of
miR-17, we used luciferase reporter constructs to investigate if
miR-17 can directly regulate Txnip expression. miRNAs are able
to repress gene expression by binding to seed site sequences
located within the 3’-UTRs of mRNAs. Fractions of the CR and
3'-UTR of Txnip mRNA or the specific binding sites (Fraction 1
[F1] and F2) of miR-17 were subcloned into the pmirGLO dual-
luciferase miRNA target expression vector to generate CR-luc,
3'-UTR-luc, F1-luc and F2-luc reporter constructs as depicted in
Figure 2B. The miR-17 mimic and the luciferase constructs were
co-transfected into cells. The miR-17 mimic significantly
decreased the luciferase activities of 3'-UTR-luc and F1-luc
reporters but failed to inhibit the activities of CR-luc and F2-luc
reporters (Figure 2C). This indicates that miR-17 repressed
Txnip expression by interacting with the F1 binding site in the
Txnip 3'-UTR.

The repression of Txnip expression by miR-17 was further
verified by the transfection with the miR-17 mimic and inhibi-
tor. miR-17 levels increased markedly from the transfection
with the miR-17 mimic (Figure 2D). Txnip mRNA and protein
levels were significantly decreased by the miR-17 mimic (Figs.
2E and F). On the other hand, miR-17 levels were decreased by
transfection with the miR-17 inhibitor (Figure 2G), and Txnip
mRNA and protein levels increased accordingly (Figs. 2H and I).
Altogether, these results indicate that miR-17 represses Txnip
expression through its interaction with 1 specific binding site of
the Txnip 3'-UTR and subsequent degradation of mRNA.

High Glucose Increases Txnip Expression Through miR-17

Since high glucose down-regulates miR-17, we sought to inves-
tigate if high glucose also regulates the miR-17 target gene
Txnip expression. Cells were treated with normal (5mM) and
high (16.7, 25, and 33.3mM) glucose for 48h. High glucose
increased Txnip mRNA and protein levels in a dose-dependent
manner (Figs. 3A and C). A time-course study of the effect of
25mM glucose showed that Txnip mRNA was up-regulated at
24 and 48h but not 12h (Figure 3B). In contrast, mannitol as an
osmotic control for glucose did not affect Txnip mRNA and
protein levels (Figs. 3D-F).

To explore if miR-17 down-regulation mediates the stimula-
tive effect of high glucose on Txnip expression, we restored
miR-17 expression by transfecting cells with the miR-17 mimic
under normal (5mM) or high (25mM) glucose conditions. The
miR-17 mimic suppressed high glucose-induced increase of
Txnip in mRNA and protein levels (Figs. 3G and H). Conversely,
the miR-17 inhibitor mimicked the stimulative effect of high
glucose on Txnip expression (Figs. 31 and J). Thus, these findings
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FIG. 1. Maternal diabetes in vivo and high glucose in vitro down-regulate miR-17. A. miR-17-5p/3p levels in E8.75 embryos determined by the miRNA profiling (n =3 lit-
ters). B. miR-17-5p/3p levels in E8.75 embryos assessed by RT-qPCR. ND, non-diabetic; DM, diabetic mellitus. C. miR-17-5p levels in cells treated with normal glucose
(5mM) or high glucose (16.7, 25, 33.3mM) for 24h. D. miR-17-5p levels in cells under normal (5 mM) or high (25 mM) glucose conditions for 12, 24, and 48 h. E. miR-17-3p
levels in cells treated with different glucose concentrations for 24 h. F. miR-17-3p levels in cells under normal (5 mM) or high (25 mM) glucose conditions for 12, 24, and
48h. G. miR-17-5p levels in cells under normal glucose (5 mM) conditions with or without high mannitol (11.7, 20, and 28.3 mM) for 24 h. H. miR-17-5p levels under nor-
mal glucose (5 mM) conditions with or without 20 mM of mannitol for 12, 24, and 48 h. I. miR-17-3p levels in cells under normal glucose (5 mM) conditions with or with-
out high mannitol (11.7, 20, and 28.3 mM) for 24 h. J. miR-17-3p levels in cells under normal glucose (5 mM) conditions with or without 20 mM of mannitol for 12, 24, and
48h. G: glucose, M, mannitol. Experiments were repeated 3 times (n = 3). Values are means = SEM from 3 separate experiments. *indicates significant difference (P <.05)
compared with the ND group or the 5mM glucose group.

support that high glucose induces Txnip expression through constitutively associated with nonactive ASK1 under basal con-
repression of miR-17. ditions and whose dissociation from ASK1 allows subsequent

phophorylation and activation of ASK1 (Saitoh et al., 1998). The
Txnip Sequesters Trx From the Trx-ASK1 Complex Leading to ASK1 amount of ASK1 in Trx immunoprecipitates from high glucose
Activation (25 mM)-treated cell lysates was significantly lower than that in

To elucidate how high glucose activates ASK1, we assessed the normal glucose (5SmM)-treated cell lysates (Figure 4A). The
interaction between ASK1 and Trx, an inhibitor of ASK1 that is decreased association between Trx and ASK1 was not due to
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reduced abundances of endogenous ASK1 and Trx because high
glucose had no effect on total ASK1 and Trx protein levels
(Figure 4A).

Next, we tested whether miR-17 and Txnip are responsible
for the dissociation between Trx and ASK1 induced by high glu-
cose. Both the miR-17 mimic and Txnip siRNA knockdown
restored the binding between Trx and ASK1 under high glucose
conditions (Figs. 4A and B). On the other hand, the miR-17 inhib-
itor treatment led to the dissociation between Trx and ASK1,
and the effect was suppressed by Txnip siRNA knockdown
(Figure 4C). To uncover whether high glucose-increased Txnip
through miR-17 suppression mediates the dissociation between
Trx and ASK1, Txnip was overexpressed in cells. Txnip overex-
pression increased the binding between Txnip and Trx, whereas
the interaction between Trx and ASK1 was significantly
decreased (Figure 4D). Therefore, our data suggest that the
increase of Txnip protein levels by high glucose and miR-17
sequesters Trx from ASK1 leading to ASK1 activation.

High Glucose Activates ASK1 via the miR-17-Txnip Circuit

Our previous studies have demonstrated that maternal diabetes
activates ASK1 leading to apoptosis in the developing neuroepi-
thelium (Yang et al., 2013). To investigate whether miR-17 and
Txnip contribute to maternal diabetes-induced ASK1 activation,
which is responsible for high glucose-induced apoptosis, the
phosphorylation of ASK1 was assessed. To detect the activation
of ASK1 with greater easily, we enriched total ASK1 protein
through IP and then determined phosphorylation at the Thr®*®
of ASK1, which is essential for the catalytic activity of ASK1 and
the induction of apoptosis (Tobiume et al., 2002). High glucose
induced ASK1 phorphorylation under treatment with high glu-
cose (25mM), and the effect was inhibited by the miR-17 mimic
(Figure 5A).

Because Txnip is a target gene of miR-17 and high glucose
increased Txnip expression, we tested if suppressing Txnip
expression inhibits high glucose-induced ASK1 activation.
Ninety nM of Txnip siRNA treatment reduced Txnip mRNA and
protein levels to approximately 50% of those in the control
groups (Figs. 5B and C). When Txnip was silenced, high glucose-
induced ASK1 phosphorylation was suppressed (Figure 5D).

Additionally, the reduction of miR-17 by the miR-17 inhibitor
promoted ASK1 phosphorylation, and the effect was blocked by
the Txnip siRNA (Figure 5E). Txnip overexpression by transfect-
ing the Txnip plasmid also induced phorphorylation of ASK1
(Figure SF). Taken together, these data indicate that high
glucose induces ASK1 activation through down-regulation of
miR-17 and consequent up-regulation of Txnip.

The miR-17-Txnip Circuit Mediates the Pro-apoptotic Effect of High
Glucose

To define the biological effect of high glucose-mediated
decrease of miR-17, increase of Txnip and subsequent ASK1
activation, we assessed the number of apoptotic cells and cas-
pase cleavage. When cells were exposed to high glucose, apop-
totic cells were robustly present, whereas the miR-17 mimic
protected cells from high glucose-induced aopotosis (Figure 6A).
Likewise, Txnip siRNA knockdown significantly reduced the
high glucose-increased apoptotic cell number (Figure 6B).
Moreover, the miR-17 inhibitor triggered cell apoptosis, and the
effect was attenuated by Txnip siRNA knockdown (Figure 6C).
Txnip overexpression also induced cell apoptosis in normal glu-
cose (5mM) conditions (Figure 6D). High glucose increased the
abundance of cleaved caspase 3, and both the miR-17 mimic
and Txnip siRNA knockdown suppressed high glucose-induced
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caspase 3 cleavage (Figs. 6E and F). Txnip siRNA knockdown pre-
vented miR-17 inhibitor-increased caspase 3 cleavage
(Figure 6G). Meanwhile, Txnip overexpression induced caspase
3 cleavage (Figure 6H). These data suggest that high glucose
induces apoptosis through the miR-17-Txnip-ASK1 pathway.

DISCUSSION

Maternal diabetes-induced malformations may involve more
than 1 organ and frequently result in significant disability or
death in offspring (Eriksson et al., 2000; Ylinen et al., 1984).
Because the neural folds and the heart develop early during
embryogenesis, a higher incidence of malformations is
observed in these organs (Eriksson et al., 2000; Ylinen et al.,
1984). Multiple studies including ours have revealed that exces-
sive cell apoptosis in the developing neuroepithelium contrib-
utes to the abnormal development of structures in embryos of
diabetic animals (Eriksson et al., 2000; Fine et al., 1999; Forsberg
et al., 1998; Li et al., 2012, 2013; Moley, 2001; Sun et al., 2005; Yang
et al., 2013). These findings strongly support the hypothesis that
high glucose causes damage to neuroepithelial cells or neural
stem cells, leading to apoptosis and, ultimately, NTDs. Our pre-
vious studies have demonstrated that high glucose of diabetes
induces apoptosis in neuroepithelial cells through the ASK1-
JNK1/2-FoxO3a-TRADD-caspase 8 pathway (Li et al., 2012, 2013;
Yanget al., 2013). It is suggested that ASK1 activation is an initial
event for apoptosis. In this study, we demonstrated that ASK1
activation was associated with high glucose-suppressed miR-17
and -increased Txnip. Txnip is up-regulated by high glucose
through miR-17 down-regulation. Increased Txnip is bound to
Trx, which leads to the dissociation of Trx from ASK1 leading to
ASK1 activation. Thus, high glucose induces ASK1 activation via
the miR-17-Txnip-Trx pathway.

ASK1 belongs to the family of MAPK kinase kinase kinase
(MAP3K) (Widmann et al., 1999). ASK1-mediated apoptosis is
involved in the pathogenesis of several diseases such as brain
ischemia (Zhang et al., 2003), ischemic heart disease (Watanabe
et al., 2005) and Alzheimer’s disease (Kadowaki et al., 2005). Most
recently it has been shown that high glucose-activated ASK1
mediates endothelial cell senescence (Yokoi et al., 2006). These
findings are consistent with our findings that ASK1 functions as
a mediator of diabetes-induced embryonic malformations.
ASK1 can be activated through different mechanisms. One
mechanism is that oxidative stress directly induces phosphory-
lation of Thr®* in the activation loop of ASK1, a process corre-
lated with enhanced ASK1 activity and increased apoptosis
(Tobiume et al., 2002). Another is that Trx inhibits ASK1 through
a direct interaction, and the interaction between Trx and ASK1
depends on the redox status of Trx (Saitoh et al., 1998). ROS oxi-
dizes the cysteine residues of Trx, which induce the dissociation
of Trx from ASK1, thereby leading to ASK1 activation (Saitoh
et al., 1998). We uncovered a new mechanism of ASK1 activation
in which the dissociation of Trx from ASK1 is induced by
increased Txnip, a Txnip (Nishiyama et al.,, 1999), leading to
ASK1 phosphorylation and subsequent apoptosis in neural
stem cells under high glucose conditions.

Txnip was first identified as a 1,25-dihydroxyvitamin D-3
inducible gene (Chen and DeLuca, 1994). Using the yeast
2-hybrid system, Txnip was revealed as a Trx-binding protein
(Nishiyama et al., 1999). Txnip is one of the genes that are most
highly inducible by diabetes and high glucose in various tissues
(Chen et al., 2008; Cheng et al., 2006; Kobayashi et al., 2003; Price
et al., 2006; Shalev et al., 2002; Singh, 2013). The induction of
Txnip by high glucose or diabetes is carried out through several
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pathways (Singh, 2013). These pathways focus on the Txnip pro-
moter, which contains various transcription factor binding
sites, such as E-Box (also known as carbohydrate response ele-
ment), Foxo element, and anti-oxidant response element
(Singh, 2013). Txnip transcription induced by high glucose
involves an array of transcription factors (Singh, 2013). Our
study elucidates that Txnip up-regulation by high glucose is
through a post-transcriptional mechanism, in which high glu-
cose-induced decay of miR-17 contributes to the increase of
Txnip. miR-17 represses Txnip expression by a direct interac-
tion with one specific binding site in the Txnip 3'-UTR. This
interaction leads to subsequent degradation of Txnip mRNA.

The physiological function of Txnip is not yet fully under-
stood. However, Txnip has emerged as a new pro-apoptotic fac-
tor, especially for diabetes-mediated pancreatic p-cell apoptosis
(Chen et al., 2008, 2010; Harada et al., 2015; Lerner et al., 2012;
Minn et al., 2005; Shalev, 2008; Wang et al., 2006). Txnip is impli-
cated in a critical link between glucose toxicity and pancreatic
B-cell apoptosis (Chen et al., 2008). Lack of Txnip protects pan-
creatic p-cells against glucotoxicity (Chen et al., 2010; Masson
et al., 2009; Shalev, 2008). High glucose leads to a significant ele-
vation of Txnip and apoptosis in pancreatic islets in vivo and
pancreatic p-cells in vitro (Chen et al., 2008, 2010; Shalev, 2008).
The major mechanism underlying Txnip-induced apoptosis is
via the mitochondrial pathway but not the ER stress pathway
because Txnip overexpression induces mitochondrial cyto-
chrome c release into cytosolic fractions, whereas there is no
change in ER stress marker expression (Chen et al., 2008).
Another indication is that the lack of Txnip protects p-cell apop-
tosis induced by staurosporine, a well-known stimulus of the
mitochondrial death pathway, but not by thapsigargin, an ER
stress inducer (Chen et al., 2010). In this study, we identified
Txnip as a critical factor mediator of high glucose-induced neu-
ral stem cell apoptosis through ASK1 activation. We have previ-
ously shown that ASK1 activation induces apoptosis through 2
different pathways in neuroepithelial cells or neural stem cells
(Wang et al., 2015b; Yang et al., 2015). One is that activated ASK1
phosphorylates c-Jun N-terminal kinase 1/2 and induces trans-
location of pro-apoptotic Bcl-2 family members to the mito-
chondria, resulting in apoptosis (Wang et al., 2015b; Yang et al.,
2015). Another is that activated ASK1 increases the nuclear
translocation of FoxO3a, which induces TRADD expression. Up-
regulation of TRADD leads to caspase 8 cleavage and apoptosis
(Wang et al., 2015b; Yang et al., 2015). Therefore, our study sug-
gests that Txnip induces apoptosis by the mitochondrial path-
way and the FoxO3a-TRADD pathway, both of which are
activated by ASK1 in neural stem cells.

Members of the miR-17/92 cluster include miR-17, miR-18a,
miR-19a, miR-20a, miR-19b-1, and miR-92a-1 (Concepcion et al.,
2012; Mendell, 2008; Mogilyansky and Rigoutsos, 2013). The
miR-17/92 cluster was initially linked to cancer pathogenesis
(Mogilyansky and Rigoutsos, 2013), and its role in embryonic
development is beginning to emerge (Mendell, 2008). The miR-
17/92 cluster is highly expressed in embryonic cells (Ventura
et al., 2008). Loss-of-function of the miR-17/92 cluster results in
smaller embryos and mediates postnatal death (de Pontual
et al,, 2011; Ventura et al., 2008). This is likely due to severe
developmental defects and widespread apoptosis (de Pontual
et al., 2011; Ventura et al., 2008). These observations are consis-
tent with our present finding that high glucose-suppressed
miR-17 triggers cell apoptosis. miR-17 is reduced in neurulation
stage embryos exposed to maternal diabetes. Because apoptosis
is the central mechanism of maternal diabetes-induced NTDs
(Gabbay-Benziv et al., 2015; Wang et al., 2015b; Yang et al., 2015),

it is highly possible that miR-17 down-regulation is critically
involved in the induction of NTDs in diabetic pregnancies.

Our previous studies have demonstrated that ER stress plays
a critical role in the etiology of maternal diabetes-induced struc-
tural birth defects (Gu et al., 2015a; Li et al., 2013; Wang et al.,
2015d, 2015e,f). Maternal diabetes in vivo or high glucose in vitro
induces ER stress by activating the unfolded protein response
pathways including the inositol-requiring enzyme-1o (IREla)-
initiated pathway in the developing embryo (Gu et al., 2015a;
Zhong et al., 2015). IRE1a activation triggers its endoribonuclease
activity, which causes a rapid decay of a group of miRNAs
including miR-17, miR-34a, and miR-125b (Upton et al., 2012).
Therefore, IRElo. may be responsible for high glucose-induced
miR-17 down-regulation.

In summary, our study revealed that high glucose activated
ASK1 by suppressing miR-17 expression and increasing the
expression of the miR-17 target gene Txnip. Txnip was compe-
tently bound to the endogenous ASK1 inhibitor Trx leading to
the dissociation between ASK1 and Trx. The events collectively
led to ASK1 activation. Our findings elucidate a unique mecha-
nism underlying high glucose-induced ASK1 activation and cell
apoptosis, in which the miR-17-Txnip circuit induces ASK1
activation.
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