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Abstract
Actions constrain perception by changing the appearance of objects in the environment. As such, they provide an interactive
basis for learning the structure of visual input. If an action systematically transforms one stimulus into another, then these
stimuli are more likely to reflect different states of the same persisting object over time. Here we show that such multistate
objects are represented in the humanmedial temporal lobe—the result of a mechanism in which actions influence associative
learning of how objects transition between states. We further demonstrate that greater recruitment of these action-based
representations during object perception is accompanied by attenuated activity in stimulus-selective visual cortex. In this way,
our interactions with the environment help build visual knowledge that predictively facilitates perceptual processing.
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Introduction
Different visual stimuli can signify the same object at different
moments in time, such as an open versus closed umbrella, a
book on the table versus shelf, or the front versus side view of a
face. To recognize and keep track of objects, the identity of each
objectmust be preserved across such differences (Biederman and
Gerhardstein 1993; DiCarlo et al. 2012; Hindy et al. 2012, 2015). By
way of their invariant tuning properties, high-level areas of the
visual system, including inferior temporal cortex and lateral oc-
cipital (LO) cortex,may be sufficient for recognizing objects across
simple transformations, such as rotated viewpoints or translated
locations (Grill-Spector et al. 2001; DiCarlo et al. 2012).

However, generalization of identity across multiple states of
an object that have little or no overlap in features (e.g., a fresh
laid egg, a painted egg, or an omelet)may require learning the dy-
namic structure of the object (e.g., that a fresh laid egg can be-
come either a painted egg or an omelet). Accordingly, such
multistate object recognition may depend on associative learn-
ing mechanisms in the medial temporal lobe (MTL) (Cohen and
Eichenbaum 1993; Miyashita 1993). In particular, different states
of the same object are often observed contiguously in time, and

such temporal regularities induce changes in how stimuli are re-
presented in perirhinal cortex (PRC) and entorhinal cortex (ERC)
(Miyashita 1988; Wirth et al. 2003; Schapiro et al. 2012).

In the current study, we investigate how actions influence the
formation of multistate object representations in the MTL, be-
yond what can be gleaned from passively perceiving state transi-
tions. Specifically, actions provide a rich source of information
about the relational structure of stimuli that constitute the
same object (e.g., that a fresh laid egg can only become a painted
eggwhen painted and an omelet when scrambled). In amore for-
mal example, if stimulus B appears whenever action X is per-
formed on stimulus A, and stimulus C appears whenever a
different action Y is performed on A, then A, B, and C may all
be states of the same object, linked by action in a tree-like struc-
ture. Although the stimulus transitions in this example areweakly
probabilistic (if actions are equally frequent: P[B|A] = P[C|A] = 0.5),
the actions add predictive power, allowing the outcome stimulus
to be anticipated deterministically (P[B|AX] = P[C|AY] = 1.0). If par-
ticular regions of the MTL are sensitive to action information, ac-
tions may facilitate generalization of object identity across
unique but predictable stimuli by binding object states into struc-
tured representations.
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Note that this process involves building stimulus–response
associations, a function typically ascribed to the striatum rather
than the MTL (Poldrack et al. 2001; Yin and Knowlton 2006).
However, in the current study, we examine response learning
in a different sense—the role that responses play in mediating
stimulus–stimulus learning in the MTL. Such learning could
occur in an error-driven manner (e.g., predicting B after AY and
receiving C instead), but this error signal is an unexpected stimu-
lus rather than a reward or punishment. The role of the striatum
in learning from such stimulus prediction errors (in the absence of
motivational significance) is unclear (Niv and Schoenbaum2008).
Moreover, the MTL is more involved in response learning (Sadeh
et al. 2010; Wimmer and Shohamy 2012; Shohamy and Turk-
Browne 2013) and prediction error (Henson and Gagnepain
2010; Chen et al. 2011) than previously thought. We test the pos-
sibility that actions are encoded by the MTL, leading to stimulus–
response–stimulus associations that serve as the foundation for
dynamic object representations.

The current study was conducted over 2 days (Fig. 1A). On the
first day, participants underwent a training regimen in which
they learned associations between stimuli that were or were
not linked by predictive actions. On each trial, participants were
presented with a cue stimulus, pressed a button with either their
left or right hand as an action (their choice), and were then

presented with an outcome stimulus (Fig. 1B). The stimuli were
drawn from 4 triads (Fig. 2A). Two of the triads belonged to the
predictable condition: given cue A, outcome B appeared with
high probability when the left button was pressed and outcome
C appeared with high probability when the right button was
pressed (Fig. 2B). The other 2 triads belonged to the unpredictable
condition: given cue D, outcomes E and Fwere equally likely after
either a left or right button press (Fig. 2C). Actions weremeaning-
less for unpredictable triads, as they did not provide any informa-
tion about which outcome would appear. Since unpredictable
triads were otherwise identical to predictable triads, they served
as a baseline control for the learning of stimulus–stimulus tran-
sitions in the absence of predictive action. Participants repeated
this exploratory training until they achieved criterion perform-
ance in a behavioral test (Fig. 1D).

On the second day, participants completed additional train-
ing with directed actions, both to refresh the associations
and to balance the frequencies of all stimuli and transitions
(Fig. 1C). For example, if they responded left more than right
during the exploratory training, they were more likely to be
instructed to respond right in the directed training. Thus, across
all training sessions, the stimulus and transition probabilities
were identical for both outcome stimuli and for both the predict-
able and unpredictable conditions. The one thing that differed

Figure 1. Procedure. (A) Study timeline, including exploratory training in which participants chose their own actions (green), tests for whether they had learned cue–

action–outcome associations (red), and directed training in which their actions were instructed (blue). (B) Trial sequence for the exploratory training. Each trial began

with a cue at fixation. A double-headed arrow prompted participants to press a button with their choice of left or right hand, at which point an outcome appeared

immediately. (C) In the directed training and scan task, a single-headed arrow prompted the desired action, for counterbalancing reasons. (D) Behavioral tests were

conducted to assess participants’ learning at different stages. Each test trial involved a verbal “top” or “bottom” response to select which of 2 outcomes seemed most

probable.
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between conditions was whether the action was informative
about which outcome would appear. After another behavioral
test, participants again performed the directed version of the
task in the scanner, while we measured blood oxygen level-
dependent (BOLD) activity patterns in the MTL. A localizer scan
was included at the end of the scan session to identify stimu-
lus-selective areas of visual cortex, and a final behavioral test
was administered to verify that participants had retained the ac-
tion-based associations.

If predictive actions allow the MTL to learn the multistate
structure of an object, then the MTL should treat predictable
triads differently from unpredictable triads. In particular, the
multistate objects learned from predictable triads should be
more recognizable, such that the underlying neural representa-
tions of these triads are more distinguishable from one another
(Naya and Suzuki 2011). To test this hypothesis, we examined
multivariate patterns of BOLD activity in 4 MTL regions-of-
interest (ROIs): the hippocampus, PRC, ERC, and parahippocam-
pal cortex (PHC). We used a hierarchical analysis approach, in
which we first tested within each ROI for an overall effect of pre-
dictability on the representation of the stimulus triads. We found
that activity patterns in PRC and ERC for predictable triads were
more distinguishable from one another than patterns for unpre-
dictable triads. In these ROIs that showed a difference in triad
similarity, we then tested alternative explanations of the under-
lying representational change: internal merging between states
of the same object, or external differentiation between states of
different objects. Follow-up analyses examined whether a sub-
jective sense of predictability was sufficient to induce represen-
tational changes, and how action-based learning in MTL
affected stimulus processing in visual cortex.

Materials and Methods
Participants

Twenty-four individuals (11 female, aged 18–31 years) from the
Princeton University community participated in the study. Each
participant was right-handed and had normal or corrected-to-
normal vision. One additional participant was excluded from
data analysis and replaced due to excessive motion in the scan-
ner (moved ∼14.5 mm during the scan and partially out of the
field of view) and another due to unusually poor performance
on the scan task (failed to press the indicated button on >27%
of trials, which was 4 SDs worse than the mean). Participants
were paid $20 per hour andprovided informed consent to a proto-
col approved by the Princeton University Institutional Review
Board.

Stimuli

The primary stimulus set of 12 fractal-like images is displayed in
Figure 2A. An additional 48 unique fractal images were used as
novel outcomes during the scan task, and 72 additional unique
fractal images were used for the localizer. All fractal images
were created using ArtMatic Pro (www.artmatic.com), with a sub-
set of the images used in a previous study (Schapiro et al. 2012).
Fractal images subtended ∼4° of visual angle in diameter on the
training/testing laptop computer, and 4.5° in the scanner. We
counterbalanced the assignment of images to predictable and
unpredictable triads, and randomly assigned them to be cues or
outcomes.

Training

Training consisted of two 30-min sessions prior to the scanning
session. Within each training session, participants responded
to 80 repetitions of each cue stimulus. For each trial, an arrow
prompt appeared below the cue after 1000 ms, and the partici-
pant pressed the left or right button using the corresponding
hand. Immediately upon button press, the cue stimulus was
replaced by an outcome stimulus. For predictable triads, one spe-
cific outcome (outcome1) appeared with 95% probability when
the left button was pressed and the other outcome (outcome2)
appeared the remaining 5% of the time; when the right button
was pressed, outcome2 appeared with 95% probability and
outcome1 with a 5% probability. For unpredictable triads,
outcome1 or outcome2 appeared with 50% probability when
either the left or right button was pressed. There were 2 motiva-
tions formaking the predictable triads only 95% (instead of 100%)
consistent: (1) to make the task of learning probabilistic relation-
ships credible to participants, and (2) to protect learning against
extinction when predictions were occasionally violated during
the scan task.

Exploratory (Day 1)
The first training session was an exploratory phase in which the
arrow prompt was always a double-headed arrow, and partici-
pants decided for each cue stimulus whether to press the left or
right button. This session included 320 trials and was conducted
on a laptop computer ∼24 h prior to scanning, which allowed
time for additional training in case a participant did not immedi-
ately learn to criterion all of left/right response mappings for the
predictable triads. Throughout exploratory training, a response
meter at the bottom of the screen tracked the proportion of left
and right button presses, and participants were instructed to

Figure 2. Stimulus triads. (A) Two predictable triads and 2 unpredictable triads were each composed of one cue stimulus and 2 outcome stimuli. (B) For predictable triads

(A1B1C1, A2B2C2), given the cue (A1, A2), one specific outcome (B1, B2) appeared with 95% probability when the left button was pressed, and a different specific outcome

(C1, C2) appearedwith 95% probability when the right button was pressed. (C) For unpredictable triads (D1E1F1, D2E2F2), given the cue (D1, D2), either of 2 outcomes (E1 or F1,

E2 or F2) appeared with 50% probability when either the left or right button was pressed.
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keep themeter pointer within a specified central zone (as a visual
aid to encourage self-counterbalancing).

Directed (Day 2)
After tracking responses during exploratory training, any fre-
quency differences were balanced through directed training. On
each trial, a single-headed arrow prompt was shown after the
cue to specify the desired left or right response. The directed
training session occurred immediately prior to the scan. The
first 240 trials of directed training were performed on a laptop
computer and the final 80 trials were performed in the scanner
during acquisition of structural images (to familiarize partici-
pants with their appearance in this new environment). Across
the exploratory and directed training sessions, the frequency of
stimulus transition was equated for all triads.

Behavioral Tests

To verify learning of the predictable action-based associations,
each participant performed 2 prescan tests and one postscan
test. On each test trial, a cue stimulus appeared at fixation.
Below the cue, a single-headed arrow pointed left or right, and
participants were instructed to press the corresponding button.
The cue and arrow disappeared, replaced by the 2 possible out-
comes for that cue, presented above and below where the cue
had been. One outcome correctly completed the cue–action–
outcome sequence, while the other outcome completed the
cue–action–outcome sequence for the other action. Each test in-
cluded 16 predictable and unpredictable trials in random order,
with 2 trials of each cue–action–outcome sequence (4 trials for
each cue). Participants spoke aloud either “top” or “bottom” to
indicate which outcome was expected given the cue and action.
Verbal responses were used to avoid the button presses used
for our trained actions. The only feedback that participants
received regarding their test performance was their accuracy for
predictable triads on the first prescan test. Participants were
required to be 100% accurate on the first prescan test in order to
ensure action-based learning of predictable triads during the ex-
ploratory training phase. For analyses based on test consistency,
consistent and inconsistent triads were coded post hoc for each
participant based on performance on all 3 tests.

Scan Task

The task in the scanner resembled the training tasks, and in-
cluded 336 trials equally distributed across 6 runs, with each
run ∼6 min in duration. Upon beginning the scan, participants
knew to expect a final behavioral test after the scan in order to
measure how their knowledge about the action-based relation-
ships had developed over the course of the scan task. Specifically,
participants were instructed: “This is a test of how learning af-
fects perception. For each trial, a fractal will appear at the center
of the screen. When a single-headed arrow appears, press left or
right as directed to see the next fractal. Continue to keep track of
probabilistic relationships between button presses and fractal
pairs.” As during training, each trial in the scanner included 3
parts: a cue stimulus for 1000 ms, an action prompt, and an out-
come stimulus for 1000 ms. Identical to the directed training
phase, the action prompt was a single-headed arrow pointing
left or right below the cue, which remained on the screen until
a button press or until a 1500 ms response window elapsed.
Using a separate response box for each hand, participants
pressed the left or right button that corresponded to the direction
that the arrowwas pointing. If participants did not press a button

within the responsewindow, the cue stimulus and action prompt
were replaced with a fixation cross that remained on the screen
until the subsequent trial. The average length of fixation between
trials was 3612 ms, which included an interval of 1500, 3000, or
4500 ms of fixation, along with additional fixation determined
by the response time for the previous trial. The order of trial
types within each run was optimized for statistical power using
optseq2 (Dale 1999; http://surfer.nmr.mgh.harvard.edu/optseq/).

During the scan task, 50% of trials included a predictable cue
and 50% included an unpredictable cue. Outcome stimuli were
likewise presented with equal frequency across predictable and
unpredictable conditions. In total, predictable triads were 28.6%
of all trials and unpredictable triads were 35.7% of all trials.
There were fewer trials for predictable triads because an add-
itional 7.1% of trials with predictable cues involved presenting
the incorrect, counter-predicted outcome (i.e., as if the other
action had been performed). Other trial types were also inter-
spersed throughout the scan task in order to probe repetition-
related univariate activity in LO and MTL (Supplementary
Fig. S1). Specifically, 28.6% of trials included a novel-outcome
stimulus that was not seen at all during training, and 28.6% of
trials included an unassociated outcome that had been paired
with a different cue during training (counterbalanced across
all cues).

Localizer

The final scanning run was a functional localizer to identify
stimulus-selective LO (Kourtzi and Kanwisher 2000). During this
run, participants viewed 16 s blocks of fractal images, alternating
with fixation and with blocks of phase-scrambled versions of the
images. Each stimulus was presented for 1000 ms followed
by 500 ms fixation between trials, and participants performed
a one-back repetition detection task. The localizer run was
∼7 min in duration, and included 72 unique fractal images,
along with 72 phase-scrambled versions of those images. The
images were divided into groups of 9, spread across 8 blocks of
fractal images and 8 blocks of scrambled images, along with 1
repeated image within each block. Supplementary Figure S2
displays example stimuli and an overlay map of individual LO
ROIs in each hemisphere.

Data Acquisition

Structural and functional MRI data were collected on a 3 T Sie-
mens Skyra system with a 16-channel head coil. Structural data
were acquired with a high-resolution T1-weighted MPRAGE se-
quence, while functional data were acquired with a T2*-weighted
echo-planar imaging sequence with a voxel size of 3 × 3 × 4 mm
(TR = 1500 ms, TE = 32 ms). A B0 fieldmap was collected at the
end of the experiment. Twelve seconds preceded data acquisition
in each functional run to approach steady-state magnetization.

MTL Segmentation

MTL regions, including hippocampus, PRC, ERC, and PHC, were
defined probabilistically in MNI space based on a database of
manual MTL segmentations from a separate set of 24 partici-
pants. Manual segmentations were created on T2-weighted TSE
images using anatomical landmarks (Duvernoy 2005; Carr et al.
2010; Schapiro et al. 2012), and then registered to an MNI
template. Voxels in the MNI template were assigned to ROIs
based on a probability threshold of P > 0.5. Nonlinear registra-
tion (FNIRT; Andersson et al. 2007) was used to register each

1856 | Cerebral Cortex, 2016, Vol. 26, No. 5

http://surfer.nmr.mgh.harvard.edu/optseq/
http://surfer.nmr.mgh.harvard.edu/optseq/
http://surfer.nmr.mgh.harvard.edu/optseq/
http://surfer.nmr.mgh.harvard.edu/optseq/
http://surfer.nmr.mgh.harvard.edu/optseq/
http://surfer.nmr.mgh.harvard.edu/optseq/
http://surfer.nmr.mgh.harvard.edu/optseq/
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv030/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv030/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv030/-/DC1


participant’s high-resolutionMPRAGE to the probabilistic atlas of
MTL in MNI space. Supplementary Figure S3 displays the
MTL ROIs for PRC, ERC, and hippocampus in the native high-
resolution space of each participant.

Data Analysis

Software
Preprocessing and GLM analyses were performed in FSL5 (Smith
et al. 2004), and the resulting parameter estimates were pro-
cessed further in MATLAB for subsequent analyses.

Preprocessing
Data were corrected for slice-acquisition time and head motion,
high-pass temporally filtered (using a 50 s period cutoff for event-
related runs, and a 128 s period cutoff for the blocked localizer
run), and spatially smoothed using a 5 mm FWHM Gaussian
kernel. Such spatial smoothing has been shown to benefit multi-
variate analysis (Op de Beeck 2010). Regardless, the same pattern
of results was found for unsmoothed data (Supplementary
Fig. S4). Functional runs were registered to each participant’s
high-resolution MPRAGE image using FLIRT boundary-based
registration with B0-fieldmap correction, and then normalized
using FNIRT to a standardMNI templatewith 2 mm isotropic vox-
els (Andersson et al. 2007; Greve and Fischl 2009).

General Linear Modeling
Parameter estimates of BOLD response amplitude were com-
puted using FILM, with a modified GLM that included temporal
autocorrelation correction and 6 motion parameters as nuisance
covariates. Each trial was modeled with a boxcar that matched
the average trial duration for the participant (between 2500 and
2600 ms, depending on the participant’s mean response time)
and then convolved with a double-gamma hemodynamic re-
sponse function. Three separate GLMs were used to examine:
(1) triad similarity, (2) within-triad and across-triad similarity,
and (3) trial-by-trial MTL–cortical interaction.

In GLM1, which was used to examine triad similarity, each of
the 4 triads wasmodeled with a single regressor and its temporal
derivative. In GLM2, which was used to examinewithin-triad and
across-triad similarity (including the subjective predictability
analyses), each cue–action–outcome sequence was modeled
with its own regressor and temporal derivative. This resulted
in 12 regressors of interest: 4 regressors for the cue–action–
outcome sequences of the 2 predictable triads (e.g., A1-left-B1

and A1-right-C1), and 8 regressors for the cue–action–outcome
sequences of the 2 unpredictable triads (e.g., D1-left-E1, D1-left-
F1, D1-right-E1, and D1-right-F1). In both GLM1 and GLM2, param-
eter estimates were calculated within run and then averaged
across runs for each participant and condition. Also, both GLMs
included additional regressors and their temporal deriva-
tives for: counter-predicted, novel-outcome, and unassociated-
outcome trials, as well as trials for which the participant failed
to press the indicated button. In GLM3, which was used to exam-
ine trial-by-trial MTL–LO interactions, each of the 56 trials in
every run was modeled with its own regressor and temporal
derivative.

Similarity-Based Analyses
Pattern similarity was measured as the Pearson correlation
across voxels between parameter estimates for triads from
GLM1, cue–action–outcome sequences from GLM2, or trials from
GLM3. For each similarity analysis, vectors of parameter esti-
mates were z-scored within voxel across triads, sequences, or

trials, respectively. Within-voxel normalization was performed
in order to remove common activation in response to the highly
similar fractal stimuli, as well as control for potential differences
in the univariate signal magnitude between conditions (Sayres
and Grill-Spector 2008). The same basic pattern of results was
found before parameter estimates were normalized (Supplemen-
tary Fig. S4).

Triad similarity for predictable triads was measured as the
correlation between the average vectors for A1B1C1 and A2B2C2,
while triad similarity for unpredictable triads was measured as
the correlation between the average vectors for D1E1F1 and
D2E2F2. In each case, this overall similarity between pairs of triads
was ameasure of the neural separation of the triads with respect
to one another, with lower similarity interpreted as greater
separation.

Sequence similarity for every triad type was measured as the
correlation between cue–action–outcome sequences fromwithin
the same triad (e.g., A1-left-B1 and A1-right-C1) or across different
triads of the same condition (e.g., A1-left-B1 and A2-right-C2). To
control for multiple comparisons, primary analyses of within-
triad and across-triad similarity focused exclusively on MTL
subfields that showed a triad-similarity difference between con-
ditions. We reasoned that it only makes sense to ask follow-up
questions about this difference (e.g., how it manifests in repre-
sentational space) if the difference exists in the first place.

To examine the effect of subjective predictability on sequence
similarity, we used performance on behavioral tests to label each
triad as predictable-consistent, unpredictable-consistent, or
unpredictable-inconsistent. For unpredictable-consistent and
unpredictable-inconsistent triads, we focused exclusively on
trials in which participants subjectively expected the outcome
that appeared. That is, we considered only those trials in which
the cue–action–outcome sequence matched the participant’s
preferred left/right response mapping from the behavioral tests.
This is most obvious for the unpredictable-consistent triads, for
which one of the outcomes was chosen with 100% consistency
across all the tests for a particular cue and action: we restricted
analysis to the half of scanned trials for this cue and action
that contained this outcome. However, this also applies to un-
predictable-inconsistent triads for which one of the left/right
response mappings was indicated more often than the other
left/right response mapping. For instance, a participant may
have associated a left button press with outcome E on 83% of
test trials, and with outcome F on 17% of test trials. In this case,
we again restricted analysis to the half of scanned trials for this
cue and action that contained the majority outcome. When an
unpredictable-inconsistent triad did not have a preferred map-
ping (i.e., there was exactly 50% consistency), both cue–action–
outcome sequences were included in the analysis.

Triad reactivation for every triad type was measured as the
Pearson correlation between the pattern of activity evoked by
the cue–action–outcome sequence on each trial and the average
activity pattern across all cue–action-outcome sequences from
the same triad. For example, triad reactivation (Y) for trial i of pre-
dictable triad j can be formalized as:

Yi ¼ r Patterni;
Xn
1

AjBjþ
Xm
1

AjCj

 !
=ðnþmÞ

 !
;

wheren is the total number ofAjBj trials andm is the total number
of AjCj trials. To examine possible interactions between the MTL
and LO, we related this measure of triad reactivation to the level
of activity in LO on the same trial using linear regression. The
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same procedure was also used over the whole brain, relating
trial-by-trial MTL triad reactivation to the activity of every
voxel. Activity maps for these analyses were corrected for mul-
tiple comparisons across the whole brain at P < 0.05, based on a
voxelwise α of P < 0.001 and a cluster-forming threshold of 25
voxels determined using 3dClustSim (Cox 1996; http://afni.nimh.
nih.gov/pub/dist/doc/program_help/3dClustSim.html).

All correlation coefficients were Fisher transformed prior to
statistical analysis. For all analyses, pattern similarity was calcu-
lated separately for each hemisphere and then averaged across
hemispheres to reduce multiple comparisons. We used paired-
sample t-tests to compare similarity for objectively predictable
and unpredictable triads. For analyses that depended on subject-
ive predictability, we used subject-level bootstrap resampling
(Efron and Tibshirani 1986) to assess random-effects reliability.
This approach can be useful when the number of items varies
across participants as a result of post hoc coding from behavioral
responses (Kim et al. 2014). For each bootstrap, we standardized
similarity and activity measures within participant and then
sampled with replacement from the 24 participants 10 000
times. If a sampled participant did not have any trials of a par-
ticular trial type (either Up or Ui), this participant did not contrib-
ute any trials of that trial type to the bootstrap iteration while
nonetheless contributing to other trial types. (However, each
Up and Ui bootstrap statistic was equally reliable when resam-
plingwas constrained to participants with trials of that particular
type.) The intuition behind the subject-level bootstrap approach
used here is that insofar as one or a small number of participants
is driving the effect (hence, it is unreliable), a large proportion of
these samples will miss these participant(s) and show little evi-
dence of the effect. If the participants are substitutable in terms
of their influence when sampled, then the effect will be highly
stable and reliable. This technique provides significance values
(and confidence intervals) in terms of proportion of resamples
for eachparameter estimate, or difference between parameter es-
timates, below some threshold. By z-scoring values within each
participant prior to pooling, we eliminated between-subject vari-
ance, thus allowing us to test for within-subject effects.

Results
Behavior

Participants were required to be 100% accurate for predictable
triads on the criterion test immediately following exploratory
training on Day 1. Only 2 participants did not achieve this per-
formance level after one round of training; they completed
one half of the training again and achieved 100% test accuracy.

On Day 2, accuracy for predictable triads was 98.4% on average
(SD = 4.2%) in the prescan test and 99.5% on average (SD = 2.6%)
in the postscan test (both means above chance of 50%,
Ps < 0.001).

Although both outcomeswere equally likely for unpredictable
triads, participants varied in terms of how consistently they
chose a particular outcome given a cue and action at test. For ex-
ample, after cue D and a left action, some participants reliably
chose outcome E, others reliably chose outcome F, and others
chose both E and Fon different test trials or sessions. In later ana-
lyses, we exploit these subjective (and spurious) associations.

During the scan task, participants pressed the indicated left-
or right-hand button on 98.2% of trials (SD = 2.4%), with a mean
response time of 589 ms (SD = 91 ms). Neither the accuracy
(P = 0.27) nor the response time (P = 0.53) of button presses reli-
ably differed between predictable and unpredictable triads.

Object Learning

Prior studies of associative learning suggest that the formation of
object representations in the MTL is reflected as changes in the
similarity among stimulus-evoked patterns of BOLD activity
(Schapiro et al. 2012). Does learning the tree-like structure of pre-
dictable triads, inwhich A transitions to B after a left button press
and to C after a right button press, lead these stimuli to be bound
together as a single object? To test for such action-based learning
in theMTL,we calculated the Pearson correlation of BOLD activity
patterns over voxels for different cue–action–outcome events.

Our first and broadest prediction concerned object learning
evidenced by neural separation between triad representations.
To determine the similarity of the predictable triads and unpre-
dictable triads with respect to each other, we measured the cor-
relation of the average patterns for the 2 triads within each
condition (Fig. 3A). We reasoned that if predictable triads come
to be represented as objects, thenMTLpatterns of activity for pre-
dictable triads (i.e., A1B1C1 vs. A2B2C2) should be less correlated
than patterns for unpredictable triads (i.e., D1E1F1 vs. D2E2F2).
To measure how each triad was represented in an MTL ROI
(Fig. 3B), we calculated the average voxelwise pattern of activity
across all cue–action–outcome sequences of the same triad. For
example, the pattern for A1B1C1 was calculated as the average
of the patterns for A1B1 and A1C1. This produced 4 averaged
triad patterns per participant and ROI: A1B1C1, A2B2C2, D1E1F1,
and D2E2F2.

Comparing the similarity of these patterns within condition
(Fig. 3C), we found significantly lower correlations for predictable
compared with unpredictable triads in both PRC (t(23) = −4.87,
P < 0.001) and ERC (t(23) = −3.75, P = 0.001; no differences were

Figure 3. Triad similarity. (A) After averaging across all trials for each triad, we calculated the pattern similarity over voxels within eachMTL ROI between the 2 predictable

triads and between the 2 unpredictable triads. (B) MTLROIs, including hippocampus, PRC, ERC, and PHC,were defined probabilistically inMNI space based on a database of

manual MTL segmentations. (C) There was lower similarity for predictable versus unpredictable triads in PRC and ERC. Error bars indicate ±1 SEM. **P < 0.01, ***P < 0.001.
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observed in the hippocampus (P = 0.32) or PHC (P = 0.63). Critical-
ly, the predictable and unpredictable conditions were nearly
identical (stimulus familiarity, action frequency, stimulus-tran-
sition frequency, etc.), with one key exception: on unpredictable
trials, actions were not informative about how the cue would
transition into the outcome. Triad-similarity effectswere numer-
ically stronger in the right hemisphere than in the left hemi-
sphere for both PRC and ERC (Supplementary Fig. S5), but these
differences were not reliable when the interaction between con-
dition and hemisphere was tested (Ps > 0.45). Thus, PRC and ERC
showed evidence of action-based object learning, representing
triads as less similar to one another when their stimuli were
linked by predictive actions.

Representational Space

Having obtained an overall effect of predictable triads beingmore
distinguishable from each other in PRC and ERC, we can now
examine themechanism forwhy theyweremore distinguishable
within these ROIs. Specifically, the finding of lower similarity be-
tween predictable triads in PRC and ERC can be explained by one
of 2 types of representational change at the level of individual
cue–action–outcome sequences that make up the triads (e.g.,
A1-left-B1 and A1-right-C1). According to a merging hypothesis
(Fig. 4B), lower overall similarity between triads resulted from
higher similarity between sequences within the same triad.
That is, lower similarity between A1B1C1 and A2B2C2may have re-
sulted from higher similarity between A1B1 and A1C1, as well as
between A2B2 and A2C2 (Fig. 4E). Alternatively, according a differ-
entiation hypothesis (Fig. 4C), lower similarity between triads re-
sulted from lower similarity between sequences from different

triads. That is, lower similarity between A1B1C1 and A2B2C2 may
have resulted from lower similarity between A1B1 and A2C2, and
likewise between A2B2 and A1C1 (Fig. 4F). Importantly, although it
is theoretically possible to obtain merging without differenti-
ation and differentiation without merging (as displayed in
Fig. 4), these types of representational change are not mutually
exclusive and could together explain the triad-similarity differ-
ence between predictable and unpredictable triads.

We measured within-triad similarity as an index of merging
(Fig. 5A), and across-triad similarity as an index of differentiation
(Fig. 5C). In order to evaluate evidence for each hypothesis, we
compared between predictable and unpredictable conditions
separately for each measure. Note that the interaction between
condition and measure is not informative since either increased
within-triad similarity (merging) or decreased across-triad simi-
larity (differentiation) could likewise lead to greater within-triad
than across-triad similarity for the predictable condition but not
the unpredictable condition. For both measures, we always com-
pared across left and right button presses (i.e., the diagonal lines
in Fig. 4). Comparing across left and right button presses was ne-
cessary by definition for measuring the within-triad similarity of
predictable triads (since the 2 sequences had opposite re-
sponses). We wanted to equate this for the other analyses too
(within-triad similarity of unpredictable triads and the across-
triad similarity of all triads), to prevent a confound in which the
response could be the same in some conditions but not others.
All possible cue–action–outcome sequenceswere included in cal-
culating the within-triad and across-triad similarity of both pre-
dictable and unpredictable triads.

Consistent with the merging hypothesis, we observed greater
within-triad similarity between cue–action–outcome sequences

Figure 4. Merging versus differentiation. (A) A set-theoretic (Tversky and Gati 1982) intuition for merging and differentiation can be gained by visualizing the stimulus

triads as overlapping distributions in representational space. (B) Lower triad similarity between predictable triads suggests that the underlying representations are

less overlapping. This reduced overlap could occur if predictable triad representations became more tightly bound internally such that the size of each representation

was smaller (merging). (C) Reduced overlap could also occur without any within-triad changes in representation, if the centers of the representations moved further

apart from one another (differentiation). (D) A geometric (Shepard 1962) example of the alternative hypotheses can be gained by considering a representational space

that is in the shape of a unit circle. Triad similarity can be decomposed into within-triad and across-triad similarity between the cue–action–outcome sequences that

make up the triads. Similarity between the representations for unpredictable triads serves as a baseline to compare with similarity between representations for

predictable triads. Non-bolded lines in (D–F) indicate this baseline similarity, while bolded lines in panels E and F indicate off-baseline similarity. (E) Merging

hypothesis: lower similarity between triads reflects greater similarity between cue–action–outcome sequences within the same triad. (F) Differentiation hypothesis:

lower triad similarity reflects lower similarity between cue–action–outcome sequences across different objects.
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for predictable triads than for unpredictable triads (Fig. 5B),
in both PRC (t(23) = 2.67, P = 0.01) and ERC (t(23) = 2.15, P = 0.04).
Inconsistent with the differentiation hypothesis, there was no
difference between predictable and unpredictable triads in
across-triad similarity of cue–action–outcome sequences (Fig. 5D),
in either PRC (P = 0.86) or ERC (P = 0.95). Thus, fora givencue, actions
predictive of outcomes drew these cue–action–outcome sequences
closer together in representational space.

For within-triad similarity, there was no interaction between
condition and hemisphere in either PRC or ERC (Ps > 0.28). For
across-triad similarity, there was a reliable interaction between
condition and hemisphere in PRC (P = 0.03), but the simple effect
of condition was not reliable in either hemisphere on its own
(Ps > 0.17); there was no interaction in across-triad similarity
between hemispheres of ERC (P > 0.99). To control for multiple
comparisons, primary analyses of within-triad and across-triad
similarity were restricted to PRC and ERC, the only MTL subfields
that showed a triad-similarity difference between conditions. For
completeness, however, we also examined whether the merging
effect was selective to these regions (Supplementary Fig. S6). In-
deed, within-triad similarity did not reliably differ between con-
ditions in either the hippocampus (P = 0.14) or PHC (P = 0.65).

Subjective Predictability

Wedefined predictable versus unpredictable conditions based on
the objective probabilities of the cue–action–outcome sequences.
However, in addition to this, participants may have had a sub-
jective impression of howpredictable the sequenceswere on par-
ticular trials. Thus, it is unclear to what extent our effects mirror
the actual statistics of the input or participants’ conscious experi-
ence of the input. These 2 possibilities cannot, in fact, be dis-
tinguished for the predictable triads, since participants were

required to reach a test criterion at which they were subjectively
confident about the strong objective probabilities. However, the
unpredictable triads provide such an opportunity: They were
objectively unpredictable, and thus any behavior indicating
that participants found them predictable can be interpreted as
subjective.

We used test performance as a measure of whether partici-
pants found individual unpredictable triads to be predictable.
We quantified how consistently participants mapped each
outcome onto specific cue/action combinations across the 3 be-
havioral tests. A subjective associationwas inferredwhen an out-
come was chosen with 100% consistency across all test sessions
on both days of the experiment. For example, if a participant
always chose E as the outcome for D with a left response and F
as the outcome for D with a right response, then we categorized
this triad as subjectively predictable (likewise, any inconsistency
across sessions was categorized as subjective unpredictability).
Participants varied in consistency: 3 were consistent for both of
their unpredictable triads, 8 were consistent for one unpredict-
able triad but inconsistent for the other, and 13were inconsistent
for both unpredictable triads.

Is subjective predictability, defined this way, sufficient to in-
duce merging in MTL? Or does action-based learning depend ex-
pressly on the objective predictability of the outcomes? Because
the amount ofmerging based on objective predictabilitywas stat-
istically indistinguishable in PRC and ERC (P = 0.94), we pooled
these voxels into a single MTL ROI in order to address these
follow-up questions with greater power and fewer comparisons.
To test the effect of subjective experience on merging, we
measured the pattern similarity of the 2 cue–action–outcome se-
quences within 3 types of triads (Fig. 6A): predictable triads with
consistent test responses, unpredictable triads with consistent
test responses, and unpredictable triads with inconsistent test
responses. [Despite the uniformly consistent responses for pre-
dictable triads in the criterion test, therewere 4 predictable triads
with inconsistent responses in later tests across all participants
(out of a total of 48 predictable triads). This was an insufficient
number to analyze separately and thus they were excluded
from this analysis (but included in earlier analyses).] Note that,
for unpredictable-consistent and unpredictable-inconsistent
triads, this analysis focused on trials in which the outcome
matched the preferred response mapping at test (see Materials
and Methods).

Because consistency varied across participants, and not every
participant had both consistent and inconsistent unpredictable
triads, we examined the effect of subjective predictability by
pooling normalized data across participants (Fig. 6). We then
used subject-level bootstrap resampling (Efron and Tibshirani
1986) to test the random-effects significance of the relationship
between MTL within-triad similarity and test consistency (Sup-
plementary Fig. S7). As expected based on the separate analysis
of PRC and ERC ROIs, predictable-consistent triads produced
more within-triad pattern similarity in MTL than unpredictable-
inconsistent triads (P = 0.001). Interestingly, among unpredictable
triads, pattern similarity was reliably greater for consistent versus
inconsistent triads (P = 0.01). Indeed, there was no difference in
within-triad similarity betweenpredictable-consistent andunpre-
dictable-consistent triads (P = 0.99).

These merging effects could be interpreted as reflecting the
expectations induced by subjectively predictive cues and actions
and/or the fulfillment of these expectationswhen the anticipated
outcome appeared. To evaluate this latter possibility, we com-
pared unpredictable-consistent trials in which the expected
outcome appeared (as used in the merging analysis above) to

Figure 5. Within-triad versus across-triad similarity. (A) Merging predicts greater

similarity of the cue–action–outcome sequences from within the same

predictable triad, relative to an unpredictable triad. (B) This was found in both

PRC and ERC. (C) Differentiation predicts reduced similarity of cue–action–

outcome sequences across different predictable triads, relative to unpredictable

triads. (D) Neither PRC nor ERC exhibited this effect. Error bars indicate ±1 SEM.

*P < 0.05.

1860 | Cerebral Cortex, 2016, Vol. 26, No. 5

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv030/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv030/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv030/-/DC1


unpredictable-consistent trials in which the other, unexpected
outcome occurred. The same expectation was present in both
cases—the same cues and actions were involved—but differed
in terms of whether this expectation was fulfilled or violated.
The match between expectation and outcome played a role in
merging, with marginally greater within-triad similarity when
the expected versus unexpected outcome appeared (P = 0.07;
Supplementary Fig. S7D). This analysis does not rule out a contri-
bution of the expectation itself, but suggests that its fulfillment
was also important.

Consequences for the Visual System

How does action-based learning in the MTL interact with percep-
tual processing in visual cortex? Prior studies of object learning
and recognition have focused on posterior, object-selective
visual areas such as LO (Grill-Spector et al. 2001). These studies
consistently report attenuated activity in LO for repeated versus
novel stimuli (Schacter et al. 2007), with growing evidence for
increased repetition attenuation when repeated stimuli are ex-
pected versus unexpected (Summerfield et al. 2008; Larsson
and Smith 2012); these latter findings have been interpreted as
reflecting reduced prediction error (Ewbank and Henson 2012).

To provide a baselinemeasure of repetition attenuation, a sub-
set of trials in the scan task includedapredictableorunpredictable
cue stimulus followed by a novel-outcome stimulus that was not
seen at all during training (Supplementary Fig. S1). In comparing
predictable and unpredictable triads (with familiar outcomes) to
these trials, we found a reliable reduction in activation for both
LO (F1,23 = 57.88, P < 0.001) and the combined PRC/ERC ROI (F1,23 =
7.72, P = 0.01).Mean activity did not reliably differ between predict-
able and unpredictable triads in eitherMTL or LO (Ps > 0.7), and the
interaction between predictable and unpredictable triads and the

novel-outcome stimuli did not approach significance for either re-
gion (Ps > 0.3). Based on the overall effect of repetition attenuation
for familiar outcome stimuli, we used reduced univariate activa-
tion in LO as a proxy for facilitated perceptual processing.

Learning the structure of predictable triads could allow parti-
cipants to form an expectation about which outcome should ap-
pear given a cue and action. We reasoned that such expectations
might influence how outcomes are processed in LO. Specifically,
we tested for a trial-by-trial relationship between the amount of
within-triad similarity in the MTL ROI (PRC/ERC) and the amount
of repetition attenuation in LO (Supplementary Fig. S8). We
hypothesized that the more that a full triad representation was
reactivated in MTL from the cue–action–outcome sequence on a
given trial, the more strongly that the learned outcome could be
predicted, and the lower the prediction error (and hence activity)
in LOwhen the outcome appeared in that sequence.We expected
this negative relationship for predictable-consistent triads but
not for unpredictable-inconsistent triads. If subjective predict-
ability was again sufficient, we should also obtain a negative re-
lationship for unpredictable-consistent triads.

For predictable-consistent triads, reactivation in MTL nega-
tively predicted LO activity across trials (P = 0.001; Fig. 7A). This ef-
fect specifically tracked objective probabilities as it was not found
for unpredictable-consistent (P = 0.58; Fig. 7B), nor for unpredict-
able-inconsistent triads (P = 0.26; Fig. 7C). The comparisons of
predictable-consistent triads to unpredictable-consistent triads
(P = 0.04) and to unpredictable-inconsistent triads (P = 0.03) were
reliable; unpredictable-consistent triads and unpredictable-
inconsistent triads did not differ (P = 0.87). Furthermore, when
the relationship between MTL triad reactivation and attenuation
was examinedover thewhole brain, voxels thatwere identified as
stimulus selective in the localizer weremore likely to exhibit this
relationship in the predictable-consistent than unpredictable-
consistent condition (χ2(1, N = 24) = 15.35, P < 0.001); no voxels
exhibited a reliable relationship for unpredictable-inconsistent
(Supplementary Fig. S9).

Although merging was found for both predictable-consistent
and unpredictable-consistent triads when MTL was considered
in isolation, examining MTL–LO interactions revealed a dissoci-
ation, with only predictable-consistent exhibiting an effect. In
other words, the conscious experience of predictive action was
sufficient to influence MTL representations themselves, but not
to enable these representations to impact processing in stimu-
lus-selective visual cortex.

Discussion
Weemployed anovel paradigm inwhich actions induced predict-
able versus unpredictable transitions between stimuli. Subre-
gions of MTL cortex — the PRC and ERC in particular — came to
represent triads of stimuli that were linked by predictive actions
as less similar to other triads. This increased distance between
triads was driven by representational merging, whereby the
alternative cue–action–outcome sequences from the same triad
produced more similar activity patterns. Among triads for
which the outcomes could not be predicted from actions object-
ively, similar merging occurred in MTL when participants
subjectively felt that their actions predicted the outcomes. Fur-
thermore, the reactivation of triad representations in MTL was
linked to reduced activity in stimulus-selective visual cortex,
consistent with the possibility that predictive actions create ex-
pectations that obviate sensory processing. This interaction was
restricted to objectively predictable stimulus triads. We interpret
these findings as evidence of a new form of action-based learning

Figure 6. Test consistency. (A) Within-triad similarity (an index of merging) was

measured separately for each triad type within a combined PRC/ERC ROI. (B)

Merging was greater for predictable-consistent triads and unpredictable-

consistent triads, relative to unpredictable-inconsistent triads. Open circles

show the average pattern similarity and consistency for each triad type, while

error bars indicate 95% confidence intervals for each average, derived from

bootstrap resampling over participants. *P < 0.05, **P < 0.01.
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in the MTL, whereby actions help create structured representa-
tions about the different possible states of objects.

Because stimuli were randomly assigned to predictable and
unpredictable triads, the overlap of static visual features among
stimuli was arbitrary. This is distinct from other types of object
learning, such as forming invariant representations across subtle
changes in viewpoint, where the stimuli share many if not most
of the same features (Biederman and Gerhardstein 1993; DiCarlo
et al. 2012). The lack of feature overlap implicates the MTL, given
its ability to bind arbitrary stimuli such as in statistical learning
(Schapiro et al. 2012) and episodic encoding (Davachi 2006;
Eichenbaum et al. 2007). Within the MTL, the effects we observed
were restricted to the PRC and ERC rather than the hippocampus.
This may reflect the fact that the triads were learned over
multiple days and thus had the opportunity to be consolidated
(Erickson and Desimone 1999; Norman and O’Reilly 2003).

By isolatingmerging without differentiation as the represen-
tational change underlying the formation of object identities for
predictable stimulus triads, we strictly constrain the hypothesis
space of potential cognitive and neural mechanisms that could
underlie action-based learning. Specifically, merging suggests
the formation of schematic knowledge structures for predict-
able triads. Although the analyses used for examining action-
based learning, such as measuring triad reactivation for each
trial, may specifically suggest a prototype-based model of
category learning (Reed 1972; Rosch 1978), the observedmerging
without differentiation is also consistent with the formation of
knowledge structures through exemplar-based models (Medin
and Schaffer 1978; Hintzman 1986). In contrast, merging contra-
dicts the possibility that the triad similarity effect was due to
interference for unpredictable triads (Kirwan and Stark 2007;
Axmacher et al. 2009; Watson and Lee 2013). Such interference
would cause greater within-triad similarity for unpredictable
triads than for predictable triads, since the multivariate pattern
for all trials (regardless of action) of an unpredictable triad
would reflect reactivation of both outcomes. Likewise, greater

within-triad similarity for unpredictable triads would be ex-
pected if only one outcome was predicted per trial, but which
outcome was predicted varied across trials. In this case, predic-
tions for both outcomes would be evident in the average pattern
across trials.

Merging described here also relates to more basic neural me-
chanisms of pattern completion and pattern separation (Marr
1971; O’Reilly and Rudy 2001). For instance, the observed effects
are consistent with pattern completion for predictable triads, in
which individual cue–action–outcome sequences reactivate the
complete representation of a stimulus triad, including the other
possible sequence for the cue. Insofar as such retrieval causes
cortical reinstatement, pattern completion could provide the
mechanism by which action-based learning facilitates visual
processing. It is important to note, however, that these processes
are often ascribed to the hippocampus (Leutgeb and Leutgeb
2007; Bakker et al. 2008). Although triad-level representations in
hippocampus did not differ between conditions, hippocampal
processes of pattern completion and pattern separation may in
turn support the higher-level object learning observed here in
ERC and PRC.

In prior studies of arbitrary associative learning in the MTL,
the stimulus sequence itself contained all of the needed informa-
tion about how stimuli should be associated (Naya and Suzuki
2011; Schapiro et al. 2012). That is, to-be-associated stimuli
could be identified based on having higher transition probabil-
ities with each other than with other stimuli. However, this was
not the case in the current study when comparing predictable
with unpredictable triads: in both conditions, the cuewas exactly
50% likely to be followed by each of the outcomes. Although ar-
rows prompted actions in the scanner for counterbalancing pur-
poses, this was critically not the case during exploratory training
that was performed until learning reached criterion. Throughout
exploratory training, the only information that distinguished con-
ditions was that actions made the outcomes perfectly determin-
istic for predictable triads but did not add any predictive value to

Figure 7. MTL–LO interaction. (A) Triad reactivation in PRC/ERC was associated with lower LO activity across trials generated from predictable-consistent triads, but not

from either (B) unpredictable-consistent triads or (C) unpredictable-inconsistent triads. Error bands indicate 95% confidence intervals of the linear trends, derived from

bootstrap resampling.
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the outcomes for unpredictable triads. The merging observed in
the scanner for predictable triads may suggest that actions be-
come an integral part of the object representation (e.g., that the
cue and outcomes are bound to the actions in theMTL). However,
it is also possible that this finding reflects stimulus–stimulus
learning that was initially facilitated by actions (e.g., predictive
actions were a sign that 2 stimuli belonged together). One ap-
proach for disentangling these interpretations may be to present
a cue, elicit an action, and then showa blank screen. Any effect of
the action on outcome reactivation in MTL or LO must reflect the
fact that the action is part of the representation. Alternatively,
one could present the cue and outcome in the scanner without
an action and see whether the predictable versus unpredictable
effects persist. If so, this would suggest that actions facilitate
stimulus–stimulus learning but are not required for its expres-
sion once at asymptote.

We view theMTL as central not only for learning the structure
of the triads, but also for deploying this knowledge subsequently
via the retrieval of learned associations in the service of predic-
tion. The observed interaction between MTL triad reactivation
and LO activity for predictable triads is consistent with this
possibility, and it extends prior findings about the role of MTL
modulating visual cortex (Bosch et al. 2014) to include prediction
from action. Such action-based perceptual prediction can be de-
scribedwithin a hierarchical Bayesian framework inwhichmany
sources of expectation converge to “explain away” sensory evi-
dence and minimize prediction error (Rao et al. 1999; Friston
2005). Previously considered sources of visual expectation in-
clude recent stimuli (Summerfield et al. 2008), auditory cues
(Kok et al. 2012), temporal context (Turk-Browne et al. 2012),
and actions alone (Cardoso-Leite et al. 2010). In the current
case, predicting a forthcoming stimulus involved an initial
stimulus and an action, which were together coupled in the
MTL as part of a multistate object representation.

MTL–LO interactions were evident for objectively predictable
stimulus triads, and not for subjectively predictable (i.e., unpre-
dictable-consistent) triads. There are several possible explana-
tions for this dissociation. For instance, the dissociation may
simply reflect the differences in sensitivity between pattern ana-
lysis (of MTL) and univariate analysis (of visual cortex) for detect-
ing cognitive states (Norman et al. 2006; Davis et al. 2014).
Alternatively, the dissociation may suggest distinct mechanisms
for the formation of object representations in MTL and the effect
of these representations on visual cortex. Furthermore, although
a subjective association was inferred when an outcomewas cho-
senwith 100% consistency across all test sessions on both days of
the experiment, it is possible that these were doubtful associa-
tions for at least a subset of participants. For instance, a partici-
pant may have designated a particular set of left/right response
mappings for one of the unpredictable triads on the first behav-
ioral test. Then, in the 2 subsequent tests, the participant may
remember previously indicated left/right mappings, and con-
tinue to indicate this initial response mapping for the triad des-
pite increased uncertainty about the validity of the preferred
mapping. In this case, the participant would have maintained
the knowledge that a specific outcomewas previously associated
with the cue and a left or right action. However, the participant’s
perceptual expectation that the preferred outcomewould actual-
ly appear for a particular trial would be relatively weak. A more
direct measurement of confidence, such as confidence ratings,
could potentially reveal effects of subjective predictability on vis-
ual cortex that were not observed here.

Although we considered very simple objects and a limited
repertoire of actions in our study, such action-based learning

may scale up to more complex objects and actions. Do associa-
tions between complex actions and real-world objects experi-
enced over a lifetime lead to similar learned representations as
those observed here? Considering that semantic representations
of real-world objects may include the specific action affordances
of those objects (Gibson 1986; Cisek and Kalaska 2010; Valyear
et al. 2012), future studiesmay test whether preexisting semantic
knowledge can be leveraged to generate predictions about object
states. Most real-world actions would be difficult to perform in
the scanner, but studies of action simulation andmirror neurons
(Calvo-Merino et al. 2005; Rizzolatti et al. 2014) suggest that ef-
fects of action-based learning could potentially be observed in
an experimental setting in which motor responses are withheld.

Our mind normally infers that 2 stimuli belong to the same
object based on perceptual cues such as feature similarity and
spatiotemporal continuity (Pylyshyn 1989; Kahneman et al.
1992; Yi et al. 2008; Flombaum et al. 2009). The present findings
suggest that beyond these factors, learning about which stimuli
follow each other and how our actions control this transition
may be important for object perception.

Supplementary Material
Supplementary Material can be found at http://www.cercor.
oxfordjournals.org/.
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