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Abstract
Cognitive control plays an important role in goal-directed behavior, but dynamic brain mechanisms underlying it are poorly
understood. Here, using multisite fMRI data from over 100 participants, we investigate causal interactions in three cognitive
control tasks within a core Frontal-Cingulate-Parietal network. We found significant causal influences from anterior insula (AI)
to dorsal anterior cingulate cortex (dACC) in all three tasks. The AI exhibited greater net causal outflow than any other node in
the network. Importantly, a similar pattern of causal interactions was uncovered by two different computational methods for
causal analysis. Furthermore, the strength of causal interaction from AI to dACC was greater on high, compared with low,
cognitive control trials and was significantly correlated with individual differences in cognitive control abilities. These results
emphasize the importance of the AI in cognitive control and highlight its role as a causal hub in the Frontal-Cingulate-Parietal
network. Our results further suggest that causal signaling between the AI and dACC plays a fundamental role in implementing
cognitive control and are consistent with a two-stage cognitive control model in which the AI first detects events requiring
greater access to cognitive control resources and then signals the dACC to execute load-specific cognitive control processes.

Key words: brain network, connectivity, fMRI, human, temporal dependence

Introduction
Humans have a remarkable capacity for flexible goal-directed be-
haviors. These behaviors depend on dynamic cognitive control
processes for selectively enhancing task-relevant information,
allocating attentional resources, suppressing inappropriate, and
facilitating appropriate behavioral responses (Robbins 1996; Pos-
ner and DiGirolamo 1998; Miller and Cohen 2001; Gazzaley and
Nobre 2012; Hofmann et al. 2012). Although brain areas under-
lying cognitive control have been extensively studied in the
past decade, little is known about dynamic causal mechanisms
underlying cognitive control as most previous research has

focused on localization of brain function andmagnitude of signal
change within specific brain regions. Here, we use a novel neuro-
cognitive systems analysis to investigate causal interactions
within a core Frontal-Cingulate-Parietal network across 3 cogni-
tive control studies from multiple sites.

Cognitive control refers to mechanisms responsible for guid-
ing behavior and thought in accordance with current goals and
intentions (Miller and Cohen 2001; O’Reilly et al. 2010). Cognitive
control processes play a critical role in orienting attention, de-
tecting conflict, inhibiting prepotent responses, and switching
between tasks in response to changing goals. A number of
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experimental paradigmshave beenused to investigate the neural
basis of cognitive control in the human brain. Among the most
widely used are the Stop-Signal, Go/NoGo, Flanker, Stroop, and
antisaccade tasks (see Fig. 1 for examples). Despite variations in
stimulus and design, a common feature of these tasks is that
each requires detection of a novel conflicting or countermanding
event, suppression or override of prepotent cognitive and motor
processes, and initiation of a new goal-relevant behavior.

There is growing evidence to suggest that these cognitive con-
trol tasks engage a common set of brain areas, most prominently
the anterior insula (AI), ventrolateral prefrontal cortex (VLPFC),
dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal
cortex (DLPFC), and posterior parietal cortex (PPC) (Buchsbaum
et al. 2005; Wager et al. 2005; Levy and Wagner 2011; Swick
et al. 2011; Cai et al. 2014). Furthermore, resting-state fMRI studies
have pointed to these regions as forming a core intrinsically con-
nected Frontal-Cingulate-Parietal network, which interact to im-
plement different aspects of cognitive control in the human brain
(Dosenbach et al. 2006; Menon and Uddin 2010). Studies using in-
dependent component analysis (ICA) have suggested that the
Frontal-Cingulate-Parietal task network can be dissociated into
2 distinct intrinsic networks, a salience detection network and
a central executive network (Seeley et al. 2007). Both the salience
detection network, anchored in the AI, the adjoining VLPFC, and
ACC, and the central executive network, anchored in the DLPFC
and PPC, are important for implementing goal-directed behavior
across awide range of cognitive tasks (Dosenbach et al. 2006; See-
ley et al. 2007; Sridharan et al. 2008; Menon and Uddin 2010;
Menon 2011; Uddin et al. 2011; Supekar and Menon 2012). How
these 2 systems implement cognitive control is unclear.

Critically, it is not known whether cognitive control relies on
similar dynamic mechanisms operating within the same brain
areas across different task contexts. Despite increasing support
for the view that high-order cognitive functions, and cognitive
control in particular, emerge as a result of dynamic interactions
between distributed brain regions (Roebroeck et al. 2005; Bressler

and Menon 2010), no studies have systematically investigated
causal interactions within the same core network across differ-
ent cognitive control tasks. A consistent network approach for
characterizing common causal mechanisms within task-rele-
vant Frontal-Cingulate-Parietal regions is important not only
for understanding fundamental brain mechanisms underlying
cognitive control, but also for creating a template that will facili-
tate a deeper understanding of several psychiatric and neuro-
logical disorders that are characterized by deficits in cognitive
control (Menon 2011).

In the present study, we address a fundamental, and hereto-
fore unaddressed, question in cognitive neuroscience: Are there
commondynamic causalmechanisms andbrainnetworksunder-
lying different types of tasks commonly employed to investigate
cognitive control? We selected three fMRI studies, including two
from OpenfMRI.org, a public fMRI database—a Stop-signal task
(SST1; Xue et al. 2008) and a Flanker task (Kelly et al. 2008)—and
another Stop-signal task (SST2) acquired fromover 59 participants
at Yale University (Zhang and Li 2012). The stop-signal task has
been extensively used to investigate response inhibition and in-
hibitory control processes (Logan et al. 1984; Verbruggen and
Logan 2008). The flanker task is widely used to investigate re-
sponse competition and conflict monitoring (Ullsperger and von
Cramon 2001; Chambers et al. 2007). Both paradigms capture pro-
cesses crucial for cognitive control. The data were collected from
three institutions, UCLA,NYUChild StudyCenter, andYale School
of Medicine, including more than 100 adults in total. The recent
meta-analysis by Button et al. (2013) reminds us that “Improving
reproducibility in neuroscience is a key priority.” Surprisingly,
they found that statistical power fell within the abysmal range
of approximately 8% to 25% in most neuroimaging studies. Our
study is a significant step forward, because it demonstrates strong
and reliable effects across different studies from multiple sites.

Figure 1 illustrates the task paradigms and Table 1 sum-
marizes critical study details. For each task, we estimated causal
interactions within a common predefined Frontal-Cingulate-

Figure 1. Task design. Illustration of the 3 cognitive control tasks. For the purpose of visualization, the figure for each task designwas regenerated based on the stimuli and

parameters described in the original publication. (A) SST1 (Xue et al. 2008)—participants are required to make left/right button presses (right index/middle finger) in

response to letter “T”/”D” and try to stop the response if a beep is played. (B) Flanker (Kelly et al. 2008)—participants are required to make left/right button presses

(right index/middle finger) in response to the direction of the central arrow. (C) SST2 (Zhang and Li 2012)—participants are required to make button presses (right

index finger) in response to a circle and attempt to stop the response if an “X” is displayed. SST, stop-signal task.
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Parietal network using two different quantitative methods. The
Frontal-Cingulate-Parietal network was composed of five regions
of interest (ROIs) within the dACC, AI, DLPFC, VLPFC, and PPC
(Fig. 2). Critically, ROIs were selected independently of the tasks
and were based on the salience and central executive networks,
two intrinsic brain networks that can be readily identified using
resting-state fMRI data (Sridharan et al. 2008).

Here, we apply a novel multivariate dynamical systems
(MDSs) approach to estimate causal interactions between mul-
tiple brain regions (Ryali et al. 2011). MDS uses a state-space
model for estimating causal interactions in fMRI time series
and has several key advantages comparedwith traditional meth-
ods such as Granger causal analysis (GCA) and dynamic causal
modeling (DCM) (Friston et al. 2003; Seth 2010). All threemethods
rely on predicting current task-evoked responses from the past
(Granger 1969; Friston et al. 2003; Seth 2010; Ryali et al. 2011). Cru-
cially, like DCM, MDS estimates causal interactions in latent
neuronal signals, rather than the recorded fMRI signals, after
taking into account interregional variations in hemodynamic
response but, unlike DCM, does not require testing a large num-
ber of models (Ryali et al. 2011). Moreover, MDS can estimate
trial-specific effects allowing us to investigate how the strength
of causal interactions is modulated by increasing demands for
cognitive control. Extensive computer simulations have demon-
strated that MDS can accurately estimate causal interactions in
fMRI data (Ryali et al. 2011).

We used MDS to investigate whether there are common pat-
terns of causal interactions in the three cognitive control studies.
Building on our previous work using a visual attention “oddball”
task (Sridharan et al. 2008), we predicted that the right AI would
emerge as a hub mediating causal interactions in the salience
and executive control networks across all three cognitive control
tasks. We then conducted trial-specific causal analyses and pre-
dicted that the strength of causal influences from the AI to other
nodes of the Frontal-Cingulate-Parietal network would increase
with cognitive control demand. In contrast to most previous

studies which have primarily focused on the dACC and VLPFC,
our results suggest that the AI, a key node of the salience net-
work, plays the most critical role in implementing cognitive con-
trol. We also conducted additional analyses using GCA and DCM
to provide converging evidence for a common dynamic causal
mechanism during cognitive control. Our findings provide
novel insights into a fundamental mechanism underlying cogni-
tive control in the human brain.

Materials and Methods
Ethics Statement

All datasets used in the current study were approved by their
local Institutional Review Boards (IRB).

Data Access and Selection Criteria

Two datasets were obtained from a public fMRI database—Open-
fMRI (http://openfmri.org, Texas Advanced Computing Center,
the University of Texas at Austin). All datasets were approved
for public distribution by their local IRBs. All data had been dei-
dentified by removing subject identities and facial features in
MRI data.

Four criteria were applied for choosing datasets: 1) The data
were previously published in peer-reviewed journals, 2) the
task could be used to study cognitive control, 3) the dataset had
a sample size of at least 15 subjects, and 4) TR in functional
image acquisition protocol was at most 2 s to allow reliable esti-
mation of causal interactions at the group level (Schippers et al.
2011). Two datasets were finally selected (Fig. 1 and Table 1): a
stop-signal task (SST1 [Xue et al. 2008], 19 subjects) and a flanker
task (Flanker, [Kelly et al. 2008], 25 subjects). One hallmark of cog-
nitive control is being able to withhold or override an automatic,
habitual, or prepotent response, thought, or urge. Both the stop-
signal and flanker paradigms have been widely used in studying
cognitive control (Chambers et al. 2007).

To replicate our findings in a large sample dataset, we ob-
tained another dataset from Yale University School of Medicine.
The study was approved by the Yale University IRB. This dataset
has been published in peer-review journals (Zhang and Li 2012); it
is a stop-signal task (SST2); there are 59 subjects and TR is 2 s; and
it meets the above criteria.

Behavioral Paradigm

Here, we provide brief description of each of the three cognitive
control tasks. Other details can be found in the original publica-
tions (Kelly et al. 2008; Xue et al. 2008; Zhang and Li 2012). Also see
Figure 1 for illustration of the task designs.

Stop-Signal Task 1—SST1
In the SST1 (Xue et al. 2008), subjectsmade button-press response
to a letter “T” or “D” (Go signal). In 25% of trials, the letter was fol-
lowed by a beep (Stop signal) and subjects attempted to stop their
responses. The stop-signal delay (SSD) varied dynamically in a
stepwise procedure. If the subject successfully stopped on a stop
trial, the SSD increased by 50 ms on the next stop trial. If the sub-
ject failed to stop ona stop trial, the SSDdecreased by50 mson the
next stop trial. Eight SSDs used in the fMRI experiment were gen-
erated based on the average SSD in the practice session ±60/20 ms.

Flanker Task—Flanker
In the Flanker, subjects made button-press responses to the dir-
ection of the central arrow within an array of arrows. Arrows in

Figure 2. Anatomical locations of the five ROIs in the right hemisphere. ROIs were

selected independently of the cognitive control tasks and were based on the

salience and central executive networks, two intrinsic brain networks identified

using a resting-state fMRI dataset. ROIs include dACC (x = 7, y = 18, z = 33, MNI

coordinates), right anterior insula (rAI; x = 37, y = 16, z = −2), right dorsolateral

prefrontal cortex (rDLPFC; x = 50, y = 18, z = 44), right ventrolateral prefrontal

cortex (rVLPFC; x = 42, y = 26, z = 14), and right posterior parietal cortex (rPPC;

x = 48, y =−52, z = 50).

Table 1 Task 1: Task information

Task Number of
subjects

Task design TR (s)

SST1a 19 fast-jitter (average ITI = 1 s) 2
Flankerb 25 slow-jitter (average ITI = 12 s) 2
SST2c 59 jittered fixation = 1–5 s ITI = 2 s 2

aXue et al. 2008.
bKelly et al. 2008.
cZhang and Li 2012.
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one array may point to the same direction (congruent trial) or to
the different directions (incongruent trial).

Stop-Signal Task 2—SST2
In the SST2, subjects made button-press responses to a circle (Go
signal), whichwas occasionally (∼25%of trials) followed byan “X”
(Stop signal). If the stop signal was presented, subjects needed to
stop their responses. The SSD varied dynamically in a stepwise
procedure. If the subject successfully stopped on a stop trial,
the SSD increased by 67 ms on the next stop trial. If the subject
failed to stop on a stop trial, the SSD decreased by 67 ms on the
next stop trial.

fMRI Preprocessing

Identical preprocessing steps were applied to each of the three
datasets using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/
spm8). We first conducted slice-timing correction, because func-
tional images were acquired in an interleaved fashion. Function-
al images were then realigned to correct rigid body motion.
Subjects whose maximum displacement in any run is >1 voxel
were discarded. Images were then normalized to the Montreal
Neurological Institute (MNI) space and smoothed using a 5-mm
full-width half-maximum 3D Gaussian kernel.

General Linear Model

A general linear model (GLM) analysis was first conducted to 1)
confirm that the preprocessing procedures in our study led to
similar activation patterns as in the original publications and 2)
examine common brain activation patterns across these studies.
The following regressors were used for each study.

The SST1 and SST2 included four regressors: Go, Successful
Stop (SuccStop), Unsuccessful Stop, and non-interest (Go-error)
trials. The contrast of interest was “SuccStop - Go.”

The Flanker task included three regressors: Congruent, Incon-
gruent, and non-interest (error) trials. The contrast of interest
was “Incongruent – Congruent.”

Six motion parameters were entered as covariates and re-
gressed out as effects of no interest. A combined activation
threshold (P < 0.05, FDR corrected) and a cluster threshold (cluster
size >10 voxels)was applied to test for significance ofwhole-brain
activation.

To investigate common neural substrates underlying the cog-
nitive control across different studies, we applied a propositional
logical “AND” operation on the group-level suprathreshold acti-
vation maps from each of the three contrasts described above.
Specifically, all activation maps were first thresholded (P < 0.05,
FDR corrected and cluster size >10 voxels) and then binarized (1
for suprathreshold voxels and 0 for others). The binarized activa-
tionmaps were thenmultiplied so that only voxels that were sig-
nificant across all studies survived.

Regions of Interest

ROIs were built using ICA on an independent resting-state data-
set. ICA is a model-free, data-driven approach and has the flexi-
bility to identify various independent spatial patterns and their
associated temporal fluctuations (Beckmann et al. 2005). Critical-
ly, ROIswere selected independently of the task-fMRI datasetswe
examined, thus facilitating comparison between tasks and stud-
ies in an unbiased and principled manner. Additionally, it has
been demonstrated that task-evoked brain networks can be simi-
larly detected using ICA on resting-state fMRI (Smith et al. 2009;

also see Supplementary Fig. S4). The same approach has been
successfully applied to select ROIs in several previous studies
(Sridharan et al. 2008; Uddin et al. 2011; Supekar and Menon
2012).

Twenty-two adults (11 males, 11 females, 19–22 years old)
participated in the independent resting-fMRI session. All pro-
vided written informed consent. The study was approved by
the Stanford University Institutional Review Board.

The same image preprocessing steps applied to task-fMRI da-
tasets were applied to the resting-fMRI data. Each participant’s
smoothed, normalized images were concatenated across time
to form a 4-dimensional matrix using FSL 3.3 (FMRIB’s Software
Library, www.fmrib.ox.ac.uk/fsl). This 4-dimensional matrix
was then analyzed with FSL 4.4 MELODIC (Multivariate Explora-
tory Linear Decomposition into Independent Component) and
concatenated across participants. Insula-cingulate and frontal-
parietal networks were selected using previously validated
methods (Greicius et al. 2004). Given the right hemispheric dom-
inance in this class of cognitive control studies (Levy andWagner
2011; Swick et al. 2011), we first selected peaks in the right
hemisphere from ICA clusters, including dorsal ACC (x = 7, y = 18,
z = 33), AI (x = 37, y = 16, z =−2), DLPFC (x = 50, y = 18, z = 44), VLPFC
(x = 42, y = 26, z = 14), and PPC (x = 48, y =−52, z = 50). After select-
ing a voxel with the highest Z score within each cluster, the
ROIs were constructed as spheres of 6 mm radius using Marsbar
(http://marsbar.sourceforge.net). Details of ROI determination
procedure can be found in our previous publication (Supekar
and Menon 2012). To examine whether a similar causal mechan-
ism exists in the left hemisphere, we built another set of
corresponding ROIs in the left hemisphere except the dACC, in-
cluding AI (x = −34, y = 20, z = −8), DLPFC (x = −46, y = 20, z = 44),
VLPFC (x =−42, y = 26, z = 14), and PPC (x =−40, y =−56, z = 44).

These AI ROIs were localized to the dorsal aspects of the AI
(Touroutoglou et al. 2012; Ryali et al. 2013, 2015). To further inves-
tigate the specificity of our findingswith respect to the dorsal and
ventral subdivisions of the AI, we conducted several additional
analyses as described in the Supplementary Material.

Time Series Extraction

MarsBar was used to extract the 1st eigenvector from the prepro-
cessed fMRI 4D data for each ROI. The original time series ex-
tracted from the ROI has a dimension of T ×N, where T is the
number of scans/time points and N is the number of voxels in
the ROI. Singular value decomposition (SVD) is applied on the
ROI time series matrix, and the resultant 1st eigenvector corre-
sponding to the first principal component is extracted to re-
present the signals of interest within the ROI. The output was a
T × 1 vector. We used the first eigenvector instead of mean signal
within the ROI to reduce noise in potentially heterogeneous ROIs.

Causal Analysis

WeusedMDS to investigate causal interactionswithin the Frontal-
Cingulate-Parietal network in each study. Secondary analyses
were carried out using GCA and DCM, two other widely used ap-
proaches for estimating causal interactions in fMRI data. Note
that although both MDS and GCA can examine nontrial-specific
causal interaction, MDS has the additional ability to simultan-
eously model trial-specific causal interactions. Here we provide
brief descriptions of each method. The details of these methods
can be found in the original publications (Granger 1969; Roebroeck
et al. 2005; Seth 2010; Ryali et al. 2011). Causal analyses, as mea-
sured by MDS and GCA, assess how well the current signal at a
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givennode canbepredicted fromsignals at previous timepoints in
other nodes of the network. No specific temporal relationship be-
tween signals can be construed from this analysis. To address the
question of temporal precedence, we conducted latency analysis
as described in the Supplementary Material.

Multivariate Dynamical Systems
MDS is a state-space model consisting of a state equation to
model the latent “neuronal-like” (quasi neuronal) states of the
dynamic network and an observation equation to model BOLD-
fMRI signals as a linear convolution of latent neural dynamics
and hemodynamic responses (Ryali et al. 2011). MDS estimates
both intrinsic and experimentally modulated causal interactions
between brain regions while accounting for variations in hemo-
dynamic responses in these regions.

The state equation in MDS is a multivariate linear difference
equation or a first-order multivariate auto regressive (MVAR)
model that defines the state dynamics

sðtÞ ¼
XJ

j¼1

vjðtÞCj sðt� 1Þ þwðtÞ ð1Þ

The model for the observed BOLD responses is a linear convolu-
tion model

xmðtÞ ¼ ½smðtÞsmðt� 1Þ: : :smðt� Lþ 1Þ�0 ð2Þ

ymðtÞ ¼ bmΦxmðtÞ þ emðtÞ ð3Þ

In Equation (1), s(t) is a M×1 vector of latent signals at time t of M
regions. Cj is an M×M connection matrix ensued by modulatory
input vj (t), J is the number of modulatory inputs. The non-
diagonal elements of Cj represent the coupling of brain regions
in the presence of modulatory input vj(t). C(m,n) denotes the
strength of causal connection from n-th region to m-th region.
wðtÞ is anM × 1 state noise vector that is assumed to be Gaussian
distribution with covariance matrix QðwðtÞ ∼ Nð0;QÞÞ. Addition-
ally, state noise vector at time instances 1, 2, . . ., T
(wð1Þ;wð2Þ: : :wðTÞ) is assumed to be identical and independently
distributed (iid). Equation (1) represents the time evolution of la-
tent signals in M brain regions. The latent dynamics modeled in
equation (1) gives rise to the observed fMRI time series repre-
sented by equation (3).

We model the fMRI time series in regionm as a linear convolu-
tion of HRF and latent signal smðtÞ in that region. To represent this
linear convolutionmodel asan innerproduct of 2 vectors, thepast L
values of smðtÞ are storedasavector. xmðtÞ in equation (2) represents
an L × 1 vector with L past values of latent signal at mth region.

In equation (3), ymðtÞ is the observed BOLD signal at time in-
stance t for mth region. Φ is a p × L matrix whose rows contain
bases for the HRF. Here, we use the canonical HRF and its time de-
rivative as bases, as is common in most fMRI studies. bm is a 1 × p
coefficient vector representing theweights for each basis function
in explaining the observedBOLDsignal ymðtÞ. Therefore, theHRF in
the mth region is represented by the product bmΦ: The BOLD re-
sponse in this region is obtained by convolving the HRF ðbmΦÞ
with the L past values of the region’s latent signal ðxmðtÞÞ and
is represented mathematically by the vector inner product
bmΦ xmðtÞ: Uncorrelated observation noise emðtÞ with zero mean
and variance σ2

m is then added to generate the observed signal
emðtÞ. emðtÞ is also assumed to be uncorrelated with wðτÞ, at all t.

Equations (1–3) together represent a state-space model for
estimating the causal interactions in latent signals based on ob-
served multivariate fMRI time series. This model can be seen as
an extension of GCAwherein a VARmodel for latent, rather than
BOLD-fMRI, signals is used to model the causal interactions

among brain regions. Furthermore, MDS model also takes into
account variations in HRF while estimating causal interactions
between the brain regions.

Estimating causal interactions between M regions specified
in the model is equivalent to estimating the parameter C. To
estimate C, the other unknown parameters, Q, fbmgMm¼1, and
fσ2

mgMm¼1 and the latent signal fsðtÞgTt¼1 based on the observations
fysmðtÞgM;S

m¼1;s¼1; t ¼ 1; 2; : : :T, where T is the total number of time
samples and S is number of subjects, need to be estimated.

We used a nonparametric procedure to infer statistically sig-
nificant causal interactions estimated by MDS (Uddin et al. 2011;
SupekarandMenon2012). Specifically, for each individual, we gen-
erated an instance of surrogate data by first applying a Fourier
transform to each ROI time series, randomizing the phase of the
transformedsignal and thenapplyingan inverseFourier transform
(Prichard and Theiler 1994). This procedure has the advantage that
the magnitude spectrum of the data is preserved while any causal
interactions between various regions are eliminated. MDS is then
applied on the surrogate data to estimate causal interaction. The
above procedurewas repeated on 500 independently generated in-
stances of surrogate data for each subject. At the group level, the
medianMDS value across subjects for each link and each instance
of surrogate datawas computed. The 500medianMDS estimations
served as the empirical null distribution from which a P-value for
each causal link was obtained. Finally, FDR correction (P < 0.05)
was applied to correct for multiple comparisons.

We also modeled high and low cognitive control trials to esti-
mate trial-specific causal networks. For the Flanker task, Congru-
ent trials were modeled as low cognitive control trials, whereas
Incongruent trials were high cognitive control trials. For the
SST1 and SST2 tasks, Go trialsweremodeled as low cognitive con-
trol trials, whereas Stop trials were modeled as high cognitive
control trials. We combined Successful and Unsuccessful Stop
trials to increase samples for high cognitive control trials in the
SST1 and SST2 tasks. Since, even after combination, the ratio of
Stop versus Go trials is 1:3, Go trials were further randomly and
equally split into three subgroups to balance the samples between
Go and Stop trials. Then MDS was applied to estimate causal in-
teractions on Stop trials as well as three subgroups of Go trials
in the SST1 and SST2 tasks, or on Congruent and Incongruent
trials in the Flanker task. The median of MDS estimation from
the three subgroups of Go trials was used to compare with Stop
trials. A permutation procedure was used to infer statistically
significant causal links that differ between two types of trials.
Specifically, in each permutation, trial labels (high vs. low) were
randomly exchanged with a probability of 0.5 for each subject.
Then, the difference between relabeled MDS causal strengths
was computed for each subject, and the median of the causal
strengths difference across all subjects was calculated. Median
values of causal strength difference from 500 permutations were
used to construct the empirical null distribution from which a
P-value for each causal link was obtained. Finally, FDR correction
(P < 0.05) was applied to correct for multiple comparisons to
determine the causal links that show significantly greater causal
interaction on high compared with low cognitive control trials.

Identifying Common Patterns of Causal Interactions
A logical “AND” operationwas applied at the group level across the
three tasks to identify common causal interactions in the Frontal-
Cingulate-Parietal network. MDS results were first thresholded (P
< 0.05, FDR corrected) and binarized (1 for significant causal influ-
ences 0 for others). The binarized results were multiplied to iden-
tify causal influences that were significant across all three tasks.
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Graph-Theoretical Network Analysis
Graph-theoretical Network Analysis was used to evaluate the
overall causal influence of each node in the networks identified
by MDS and GCA. First, we estimated inflow and outflow degree
of each node within the network for each subject. Inflow degree
was determined by the number of significant causal inflow con-
nections to a node from any other node in the network. Outflow
degree was determined by the number of significant causal out-
flow connections from a node to any other node in the network.
We then calculated Net Causal Outflow degree of each node for
each subject, which is the difference between outflow degree
and inflow degree. A positive value indicates that the node exe-
cutes greater causal influence on other nodes than others influ-
ence it, whereas a negative value indicates that the node is
more influenced by other nodes than it influences others. Note
that a causal interaction map portrays significant causal influ-
ence from one node to another on each edge, whereasNet Causal
Outflow indicates the overall causal drive from each node to all
other nodes in the network.

Concretely, the Outflow and Inflow degree of each node was
first calculated for each subject by counting howmany estimated
out- or in-direction causal influence from or to each node was
highly unlikely under the null distribution (generated by 500
bootstrapped samples, see above) of estimated causal interaction
in the network. Then, the Net Causal Outflow was computed for
each node for each subject. Lastly, we tested whether the Net
Causal Outflow of the AI is significantly greater than any other
nodes using paired t-test with Bonferroni multiple comparison
correction.

Granger Causal Analysis
Multivariate GCAwas performed in accordancewith themethods
of Seth (2010). At the individual level, the first eigenvector from
each ROI was first extracted for all subjects. Each time series
was then detrended, demeaned, and normalized by its standard
deviation. A multivariate vector autoregressive model was fitted
using ROI time series from each subject. The optimalmodel order
for each subject was determined using the Bayesian information
criterion. To estimate the causal interaction between node “x”
and node “y,” we used the measure “difference of influence”
(DOI) as suggested in previous research (Roebroeck et al. 2005).
This measure captures causal links that only show a dominant
direction of influence and has the advantage of limiting poten-
tially spurious links caused by hemodynamic blurring. For
group-level analysis, we computed the median value of DOIs es-
timated for each link across all the subjects and used the same
nonparametric statistical testing procedure used for MDS on
median DOIs to infer statistical significance.

Specifically, for each individual, we generated an instance of
surrogate data by first applying a Fourier transform to each ROI
time series, randomizing the phase of the transformed signal
and then applying an inverse Fourier transform. This procedure
has the advantage that the magnitude spectrum of the data is
preserved while any causal interactions between various regions
are eliminated. Multivariate GCA is then applied on the surrogate
data to estimate DOI values. The above procedure was repeated
on 500 independently generated instances of surrogate data for
each subject. At the group level, the median DOI value across
subjects for each link and each instance of surrogate data was
computed. The 500median DOIs served as the empirical null dis-
tribution from which P-value for each causal link was obtained.
Finally, FDR correction (P < 0.05) was applied to correct for mul-
tiple comparisons. All other methods are similar to those used
for MDS.

Dynamic Causal Modelling
For completeness, we conducted additional analyses using DCM,
a widely used method for investigating context-dependent cau-
sal interactions between brain regions (Friston et al. 2003). DCM
is a confirmatorymethodwhere several causalmodels are tested,
and the model with the highest evidence is chosen. Because it is
computationally impractical to test all combinatorialmodels and
perform model selection with the large number of nodes in the
present study,we investigated a limited setmodels based on con-
vergent findings from MDS and GCA. We applied DCM on the 3
datasets to investigate whether DCM produced convergent re-
sults across different datasets and whether DCM results were
convergent with MDS and GCA findings. We used the stochastic
DCM package implemented in SPM12 (http://www.fil.ion.ucl.ac.
uk/spm/software/spm12/) to perform the analysis. Analysis of
multiple models, including the ones identified by both MDS
and GCA, did not produce replicable patterns of causal interac-
tions across the three datasets and is not considered further here.

Relation Between Causal Interactions and Behavior
To investigate the relationship between causal interaction and
cognitive control ability, we examined Pearson’s correlation be-
tweenMDS estimation and behavioral measures in each task, in-
cluding stop-signal reaction time (SSRT) for stop-signal tasks and
congruency effect = (Incongruent RT − Congruent RT)/Congruent
RT for the Flanker task. To control the effect of outlier behavior,
we screened subjects’ performance: response accuracy in con-
gruent and incongruent trials in the Flanker task and response
accuracy in go and stop trials the SST1 and SST2 tasks. An outlier
is defined as a data point whose value is larger than 1.5 times the
interquartile range (IQR) above the third quartile or smaller than
1.5 times IQR below than the first quartile. One subject was
excluded from the flanker task, 1 from the SST1, and 7 from the
SST2.

Results
Common Frontal-Cingulate-Parietal Regions Are
Involved in All 3 Cognitive Control Tasks

We first examinedwhole-brain activation during cognitive control
in each task usingGLM. For the SST1 andSST2 tasks,we examined
brain responses to successful stop trials versus go trials (SuccStop-
Go). For the Flanker task, we examined brain responses to incon-
gruent trials versus congruent trials (Incongruent-Congruent).
Consistent activation was observed in Frontal-Cingulate-Parietal
regions, encompassing the dACC, AI, VLPFC, DLPFC, and PPC
ROIs, in eachof the threedifferent tasks (all Ps< 0.05FDRcorrected,
Fig. 3). A logical “AND” operation confirmed common, right hemi-
spheric dominant activationofAI,VLPFC, dACCandadjoiningdor-
somedial prefrontal cortex, DLPFC, and PPC across the three
different tasks (Fig. 3).

Causal Interactions in the Right Frontal-Cingulate-
Parietal Network

Common Causal Influence from the Right AI to the dACC and the PPC
Are Detected in All 3 Tasks
MDS analysis revealed significant causal influences from the
right AI to the dACC, right VLPFC, and PPC in all three tasks (all Ps
< 0.05 FDR corrected, Fig. 4A). Significant causal influences were
also found from the right AI to the right DLPFC in the SST1 and
SST2 but not in the Flanker task.
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GCA also showed significant causal influences from the right
AI to the dACC, the right DLPFC and PPC, and from the dACC to
the right PPC in all three tasks, and from the right AI to the
right VLPFC in SST2 and Flanker but not in SST1 (all Ps < 0.05
FDR corrected, Fig. 4B).

A logical “AND” operation was applied to examine common
patterns of causal interactions across the three tasks (Fig. 4).
Both MDS and GCA showed common causal influences from
the right AI to the dACC and the right PPC.

Consistent with these results, analysis of the fitted hemo-
dynamic response revealed that the right AI had higher ampli-
tudes and shortest latencies relative to other network nodes
(Supplementary Material, Fig. S9).

Right AI Is a Dominant Causal Outflow Hub in 3 Cognitive
Control Tasks
Next, we compared the strength of causal influences of each node
in the Frontal-Cingulate-Parietal network using graph-theoretical
network analysis. The strength of causal influence was measured
by Net Causal Outflow (Sridharan et al. 2008), the difference be-
tween outflow degree (the number of significant causal outflow
connections from a node to any other node in the network), and
inflowdegree (thenumberof significant causal inflowconnections
to a node from any other node in the network), for each node for
each subject in each task.

We first investigated Net Causal Outflow using MDS. Re-
peated-measures ANOVA with ROI as a within-subject factor
was used to determine whether there is a significant difference
among all ROIs in terms of Net Causal Outflow. The ANOVA re-
vealed a significant difference in Net Causal Outflow among the
five ROIs in all tasks (all Ps < 0.05). Overall, the right AI had greater
Net Causal Outflow than any other ROI in the network in all tasks
(Fig. 4A). To further quantify the Net Causal Outflow for the right

AI relative to all other ROIs, we applied one-tailed paired t-tests.
Multiple comparisons were corrected using the Bonferroni pro-
cedure (P < 0.05/4 = 0.0125). For the SST1 task, the right AI had sig-
nificantly greater Net Causal Outflow than the dACC, right DLPFC,
and PPC. For the Flanker task, the right AI had significantly great-
er Net Causal Outflow than the right DLPFC and PPC. For the SST2,
the right AI had significantly greater Net Causal Outflow than the
right PPC.

A similar pattern of Net Causal Outflow results was found
with GCA. A significant difference of GCA Net Causal Outflows
was identified among five ROIs in SST1 and Flanker tasks (all Ps
< 0.05) but not for SST2 tasks (P = 0.121). Overall, the right AI had
greater Net Causal Outflow than any other ROI in the network in
any task (Fig. 4B). The same one-tailed paired t-tests andmultiple
comparison corrections (P < 0.05/4 = 0.0125) were conducted. For
the SST1 task, the right AI had significantly greater Net Causal
Outflow than the dACC, right DLPFC, and VLPFC. For the Flanker
task, the right AI had significantly greater Net Causal Outflow
than all the other ROIs. For the SST2 task, the right AI had signifi-
cantly greater Net Causal Outflow than the right VLPFC.

Strength of Causal Interaction from Right AI to dACC Is Modulated
by Cognitive Control Demand
To further characterize the relationship between causal inter-
action in the Frontal-Cingulate-Parietal network and cognitive
control, we conducted trial-specific MDS analysis to examine
whether the strength of causal interaction ismodulated by cogni-
tive control demand. Go trials in the SST tasks and Congruent
trials in the Flanker task are low cognitive control trials, whereas
Stop trials in the SST and Incongruent trials in the Flanker task
are high cognitive control trials. The analysis revealed that the
right AI has significantly greater causal interaction with the
dACC on high cognitive control trials than on low cognitive

Figure 3. Brain areas activated during the three cognitive control tasks. The first 3 columns show Frontal-Cingulate-Parietal activation in the three studies. All contrast

maps were thresholded at P < 0.05, FDR corrected for multiple comparisons. The rightmost column shows the overlapped suprathreshold activation in all three studies

identified using logical “AND” operation.
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control trials in SST1, Flanker and SST2 tasks (all Ps < 0.05, FDR
corrected, Fig. 5).

Right AI-dACC Causal Interaction Is Related to Cognitive
Control Ability
Lastly, we investigated the relationship between the strength of
causal interaction in the Frontal-Cingulate-Parietal network
and individual differences in cognitive control ability. Because
the trial-specific MDS analysis showed that causal interactions
between the right AI and dACCweremodulated by cognitive con-
trol demand, we focused on causal interactions within this link.
We derived task-specific cognitive control indices to assess each
individual’s ability to rapidly and flexibly adjust behavior. Con-
sistent with previous behavioral literature (Logan et al. 1984; Ver-
bruggen and Logan 2008), we used SSRT, the time to cancel a
prepotent response, to measure cognitive control abilities in
the SST1 and SST2 tasks.We used the Congruency Effect (Eriksen
and Eriksen 1974; Henik et al. 1999; Fan et al. 2009), the time to re-
solve stimulus-response conflict, to measure cognitive control
abilities in the Flanker task. We found that the net strength of

causal interaction between right AI and dACC (MDSrAI −> dACC −
MDSdACC −> rAI) was significantly correlated with measures of
cognitive control ability in the Flanker task (r = 0.49, P < 0.05),
the SST2 (r = 0.28, P < 0.05), and marginally in the SST1 (r = 0.43,
P = 0.07) (Fig. 6). Since higher scores of SSRT or Congruency Effect
indicate lower cognitive control ability, our finding suggests that
individuals who have weaker cognitive control capacity require
greater causal interactions between the right AI and dACC for
successfully performing cognitive control tasks.

Causal Interaction in the Left Frontal-Cingulate-Parietal
Network

As noted above, despite that overall activations across the three
tasks showed a right hemispheric dominance, a homologous
Frontal-Cingulate-Parietal network in the left hemisphere was
also activated in some of the tasks. It is possible that, even
when left hemisphere responses are weaker than those in right
hemisphere, causal interactionsmay be just as robust in homolo-
gous left hemisphere regions. To address this, we conducted par-
allel analyses on homologous ROIs in the left hemisphere.

Figure 4. Causal interactions identified byMDS and GCA in the three cognitive control tasks. (A) MDS result: Upper panel shows causal interaction graphs for each task (all

Ps < 0.05, FDR corrected). The right AI showed significant causal influence to the dACC and right PPC in all 3 studies. Lower panel showsNet Causal Outflow (outflowdegree

− inflowdegree) in each node in each task. The right AI had greater Net Causal Outflow than all other nodes in the network in all three studies. (B) GCA result: Upper panel

shows causal interaction graph for each task (all Ps < 0.05, FDR corrected). The right AI showed significant causal influence to the dACC and right PPC in all three studies.

Lower panel shows Net Causal Outflow (outflowdegree − inflowdegree) in each node in each task. The right AI had greater Net Causal Outflow than all other nodes in the

network in all three studies. The rightmost column shows the common causal interaction in all three tasks identified using logical “AND” operation. Green edges indicate

significant causal interactions along the direction of the arrow and significantly greater causal interaction along the direction of the arrow against the opposite direction

(i.e., MDSrAI−>dACC − MDSdACC−>rAI or GCArAI−>dACC − GCAdACC−>rAI). * indicates statistical significance after Bonferroni multiple comparison correction (P < 0.05).
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Common Causal Influences from the Left AI to dACC Are Detected
in All Three Tasks
MDS revealed significant causal influences from the left AI to
dACC and from the left PPC toDLPFC in all three tasks (all Ps < 0.05
FDR corrected, Supplementary Fig. S1A). Significant causal influ-
ences from the left AI to the left DLPFC, VLPFC, and PPCwere also
found in SST1 and SST2 except in the Flanker task. GCA showed
significant causal influences from the left AI to the dACC and
left PPC and from the left PPC to the left DLPFC in all three
tasks, from left AI to the left DLPFC in SST1 and SST2 but not in
the Flanker (Supplementary Fig. S1B).

Left AI Is a Dominant Causal Outflow Hub
Repeated-measures ANOVA revealed a significant difference in
Net Causal Outflow, as assessed using MDS, among the five
ROIs in all the tasks (all Ps < 0.01). For the SST1 and SST2 task,
the left AI had significantly greater Net Causal Outflow than all
the other ROIs. For the Flanker task, the left AI had significantly
greater Net Causal outflow than left PPC. For GCA results, there
was a significant Net Causal Outflow difference in the SST1 and
SST2 (all Ps < 0.05) but not in Flanker. For the Flanker, there was
no significant difference between the left AI and any of the
other ROIs. For the SST1, the left AI had significantly greater
Net Causal Outflow than the dACC and left VLPFC. For the SST2,
the left AI had significantly greater Net Causal Outflow than all
the other ROIs. In sum, the AI is also a dominant causal outflow
hub in the left hemisphere (Supplementary Fig. S1).

Strength of Causal Interactions from Left AI to dACC Is Modulated
by Cognitive Control Demand
Trial-specific MDS showed significantly greater causal inter-
action between the left AI and the dACC on high versus low
cognitive control trials in Flanker and SST2 but not in SST1 and
significantly greater causal interaction between the left AI and
left PPC and between the left DLPFC and left PPC in SST2 (all Ps <
0.05, FDR corrected, Supplementary Fig. S2).

Left AI-dACC Causal Interaction Is Related to Cognitive Ability in SST2
The brain-behavior analysis showed that the strength of causal
interaction between the left AI anddACC is significantly correlated
with SSRT in the SST1 (r = 0.51, P < 0.05) but not in the Flanker and
SST2 tasks (all Ps > 0.05), as illustrated in Supplementary Figure S3.

Discussion
Across multiple tasks, scanners, and cohorts, our findings dem-
onstrate strong and reliable causal interactions between core
Frontal-Cingulate-Parietal regions involved in cognitive control.
The datasets investigated in this study encompass paradigms,
such as the stop-signal task and the flanker task, that have
been widely used to investigate the neural basis of cognitive con-
trol in humans. Critically, we used a task-independent approach
based on a neurocognitive networkmodel to specify key nodes of
a Frontal-Cingulate-Parietal network that has been implicated in
a wide range of cognitive tasks (Dosenbach et al. 2006, 2007;

Figure 5. Trial-specific causal interaction in 3 cognitive control tasks. Trial-specific MDS revealed significant causal interactions in low cognitive control trials (i.e.,

Congruent trials in Flanker task, Go trials in SST1 and SST2 tasks), in high cognitive control trials (i.e., Incongruent trials in Flanker task, Stop trials in SST1 and SST2

tasks), and significantly greater causal interaction in high cognitive control trials than in low cognitive control trials (all Ps < 0.05, FDR corrected). Green edges indicate

significant causal interactions along the direction of the arrow (i.e., MDSrAI−>dACC); red edges indicate significant bidirectional causal interactions (i.e., MDSrAI−>dACC

and MDSdACC−>rAI).
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Sridharan et al. 2008; Wen et al. 2012; Cole et al. 2013). The AI,
dACC, DLPFC, VLPFC, and PPCnodes of this networkwere consist-
ently activated in the three datasets, with a right hemisphere
dominant profile of brain activation. Importantly, we found that
across each of the three tasks, the right AI exerts strong causal in-
fluences over the dACC and the right PPC. This common causal
mechanism within the Frontal-Cingulate-Parietal network was
affirmed by two different quantitative methods for estimating
causal interactions. Both analyses also revealed that the AI had
greater Net Causal Outflow than any other nodes in the network.
Furthermore, trial-specific MDS analysis revealed that the
strength of causal interactions between the right AI and dACC
was modulated by cognitive control demands. More strikingly,
the strength of causal influence from the right AI to dACC was
correlated with individual cognitive control capacity. Additional
analyses revealed that these results were specific to the dorsal
subdivision of the AI (Supplementary Material). Taken together,
our findings suggest that causal interactions from the AI, and
more specifically its dorsal subdivision, to dACC play a key role
in implementing cognitive control in the human brain and help
elucidate fundamental aspects of Frontal-Cingulate-Parietal net-
work function.

AI: an Important, but Oft-Neglected, Brain Area
for Cognitive Control

The AI is involved in a wide range of cognitive processes (Craig
2009), but its role in cognitive control remains unclear. Although
many neuroimaging studies have reported activation of the AI in
awide range of cognitive control tasks, including the Stop-signal,
Flanker, and Go/NoGo tasks (Buchsbaum et al. 2005; Wager et al.
2005; Levy and Wagner 2011; Swick et al. 2011), the AI has often
been sidelined in favor of adjacent lateral prefrontal cortex,
most notably the VLPFC. The mechanistic role of the AI in cogni-
tive control tasks has been poorly understood, and, furthermore,
despite its theoretical importance (Levy and Wagner 2011), no
studies have attempted to disambiguate causal interactions be-
tween the AI and VLPFC.

An alternate line of research has suggested that the AI plays
an important role in detecting salient events and recruiting cog-
nitive resources for effortful implementation of control processes
(Dosenbach et al. 2006; Menon and Uddin 2010; Ullsperger et al.
2010; Cai et al. 2014), but evidence for a direct causal role in imple-
menting cognitive control has been missing. The current study
provides strong evidence for a key role of the right AI in cognitive
control across multiple task paradigms. We found that the right
AI exerts a significant causal influence on the dACC, and it is
the predominant source of Net Causal Outflow within the Front-
al-Cingulate-Parietal network (Fig. 4). Furthermore, the strength
of causal interaction between the right AI and dACC was modu-
lated by cognitive control demands (Fig. 5). These results suggest
that the right AI implements a core mechanism in some of the
mostwidely used cognitive control tasks. One candidate function
of the right AI is bottom–up detection of salient or behaviorally
relevant stimuli. Corbetta and Shulman (2002) have suggested
that the ventral frontal-parietal network including the right AI
is actively engaged in detecting behaviorally relevant stimuli
and other studies have more directly associated the right AI
with saliency detection (Seeley et al. 2007; Sridharan et al.
2008). Detection of salient behaviorally relevant stimuli is an es-
sential process inmany cognitive control tasks, including the Go/
NoGo and Stop-signal tasks. Once a salient stimulus is detected,
the AI iswell positioned to generate control signals that influence
or switch on other brain areas (Menon and Uddin 2010).

Anterior Insula Triggers the Salience Network During
Cognitive Control

The AI and dACC constitute key nodes of the salience network
(Seeley et al. 2007), and prior research has suggested that these re-
gions formpart of a “core” task setwithin the fronto-opercular cor-
tex (Dosenbach et al. 2006; Menon and Uddin 2010). Yet, previous
studies have not systematically examined causal interactions
within the salience network during cognitive control tasks. Across
all three tasks, we found that the right AI exerts significant causal
influences on the dACC. Critically, trial-specific MDS analysis re-
vealed that the strength of causal interactions between the right
AI and dACC was modulated by cognitive control demands
(Fig. 5) and was correlated with individual differences in cognitive
control capacity (Fig. 6). Our findings are consistent with and ex-
tend previous research suggesting an important role for a dedi-
cated AI-dACC network in implementing cognitive control. First,
the AI and dACC are structurally connected (van den Heuvel
et al. 2009; Allman et al. 2010) with strong connections along the
uncinate fasciculus (Uddin et al. 2011). Second, the AI and dACC
are often coactivated across a variety of cognitive tasks (Buchs-
baum et al. 2005; Wager et al. 2005; Dosenbach et al. 2006). Third,

Figure 6. Brain-behavior relations in three cognitive control tasks. The strength of

causal interactions between the right AI and dACC was correlated with individual

measures of cognitive control ability. Data from SST1 (A), Flanker (B), and SST2 (C)

tasks.Congruency Effect = (Incongruent RT−CongruentRT)/CongruentRT. *P < 0.05.
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functional parcellation studies have demonstrated strong func-
tional covariance between the AI and dACC (Cauda et al. 2011;
Deen et al. 2011; Chang et al. 2013). Fourth, resting-state fMRI stud-
ies have revealed strong intrinsic connectivity between the AI and
dACC (Seeley et al. 2007; Sridharan et al. 2008; Taylor et al. 2009;
Uddin et al. 2011; Supekar and Menon 2012; Cai et al. 2014). Fifth,
it was the dorsal, rather than ventral, AI, which showed stronger
intrinsic connectivity to thedACCandstrongermodulationof cau-
sal interactions with cognitive control demands (Supplementary
Material). Our study provides robust evidence for the involvement
of a common core intrinsically connected AI-ACC network across
cognitive control tasks.

Although the AI and dACC have both been implicated in error
detection (Menon et al. 2001; Li et al. 2008; Hendrick et al. 2010;
Ham et al. 2013; Ide et al. 2013), our results suggest that causal in-
teractions between theAI anddACC found in the current study do
not arise primarily from error processing. First, task accuracywas
uniformly high approaching 98% for incongruent trials on the
Flanker task. Second, analysis of correctly performed trials
revealed stronger interactions between the AI and dACC for in-
congruent, compared with congruent, trials. Therefore, greater
causal interactions from the AI to dACC were unlikely to arise
from error-related processing in our study.

A further insight here relates to the precise direction of causal
mechanisms underlying AI-dACC interactions. Although the
dACC has been the focus of many studies of cognitive control, its
role relative to the AI has been less clear. The dACChas been asso-
ciated with a broad range of high-order cognitive processes, in-
cluding error processing, conflict monitoring, decision-making,
and overriding prepotent responses (Botvinick et al. 2004; Rush-
worth et al. 2004). Our analysis of causal interactions revealed
that even though the AI and dACC form part of the same intrinsic
brain network, it is the AI that has the dominant and behaviorally
relevant causal influence on the dACC during cognitive control,
and not the other way around. These results are consistent with
anatomicalmodels that emphasize the AI as a locus of sensory in-
puts and theACCasthe locusofmotoroutputs (Butti andHof 2010;
Menon and Uddin 2010). Our findings further support and corrob-
orate a neurocognitive model (Menon and Uddin 2010) of the AI-
ACC network in which the AI detects increased sensory demands
forcognitive control and then signals theACC to initiate,maintain,
and implement actions necessary for appropriate goal-directed
behaviors during cognitive control tasks.

Interestingly, previous studies have suggested that the AI and
ACC are also engaged by interoceptive and affective processes
(Damasio et al. 2000; Seeley et al. 2007; Craig 2009), and more
broadly by a wide range of cognitive tasks (Buchsbaum et al.
2005; Wager et al. 2005; Rushworth et al. 2007; Levy and Wagner
2011; Swick et al. 2011; Cai et al. 2014). A common link here is
that these processes all require detection of, and attention to, sa-
lient events, both internal and external. The cognitive control
tasks used in the present studyallowedus to investigate causal in-
teractions of the salience andexecutive network in amore precise,
and load-dependent, manner. Whether similar processes operate
in other domains and how causal interactions change with task
and context remain open and important questions for future
research.

Parallel Processes in Left Frontal-Cingulate-Parietal
Network

Another noteworthy finding of our study is that despite relatively
weaker activation profiles in the left hemisphere, the left Frontal-
Cingulate-Parietal network showed a surprisingly similar profile

of significant causal interactions between the AI and dACC as in
the right hemisphere (Supplementary Fig. S1). The left AI showed
strong causal influences on the dACC, and the strength of causal
influences was modulated by cognitive control demand (Supple-
mentary Fig. S2), similar to the patterns found in the right hemi-
sphere. This result is consistent with previous research and
extends them in novel ways. First, although the right hemisphere
dominance is emphasized in the class of cognitive control tasks
examined here, many previous studies have demonstrated con-
sistent, albeit weaker, activations in the left hemisphere (Levy
and Wagner 2011; Swick et al. 2011; Boehler et al. 2012). Second,
patients with left frontal-insula lesions have shown impaired
cognitive control abilities, but previous studies have not disam-
biguated behavioral impairments arising from the left AI or
VLPFC lesions (Swick et al. 2008). Third, similar causal interaction
patterns between the left AI and other left hemisphere ROIs have
been reported during a problem-solving task (Supekar and
Menon 2012). Importantly, our findings suggest that strong
causal control signals consistent with task demands can be gen-
erated even when activation levels are weak. However, the rela-
tionship between the strength of causal interaction within the
left hemisphere salience network and cognitive control ability
was less robust than in the right hemisphere (Supplementary
Fig. S3). Overall, our analysis of the left Frontal-Cingulate-Parietal
network suggests that the left AImayplayan important, but hith-
erto unappreciated, causal role in cognitive control. One possibil-
ity suggested by a recent study is that the left AI may facilitate
behavioral adaptation after errors (Ham et al. 2013).

Right AI Mediates Interaction Between the Salience
and Central Executive Networks

The salience network, anchored in the AI and dACC, and the cen-
tral executive network, anchored in the DLPFC and PPC, form two
dissociable systems based on their patterns of intrinsic brain
connectivity.While some studies have pointed out functional in-
dependence of these two systems (Nomura et al. 2010), the sali-
ency and central executive networks are almost universally
coactivated during cognitive control tasks (Dosenbach et al.
2007; Menon and Uddin 2010). No studies to date have examined
the nature of causal interactions between these two networks
during cognitive control and almost nothing is known about
the robustness of putative signaling mechanisms across tasks
and datasets. Our analysis revealed common causal interactions
between the right AI and right PPC in all three cognitive control
tasks (Fig. 4). The PPC has been implicated in planning and con-
trolling goal-directed behavior (Andersen andCui 2009) and coac-
tivation of the PPC with AI is often observed during cognitive
control tasks (Buchsbaum et al. 2005;Wager et al. 2005). However,
functional interactions between the AI and the PPC in cognitive
control have rarely been examined. Consistent with our findings,
a recent study found that phasic activity of the AI, PPC, and ACC
increasedwith demand formoment-to-moment tuning of cogni-
tive control (Wilk et al. 2012). Our findings reveal that such adjust-
ments are driven by the AI, which exerts strong causal influences
on the PPC region across multiple cognitive control tasks (Fig. 4).
Furthermore, the AI also exhibited dominant causal influences
on DLPFC and VLPFC nodes in the majority of tasks tested here
(Fig. 4). The right VLPFC has been widely implicated in cognitive
control, especially the class of studies requiring response inhib-
ition (Levy and Wagner 2011; Swick et al. 2011).

Inmany previous studies of cognitive control, the right AI and
VLPFC are strongly coactivated (Levy andWagner 2011),making it
difficult to disentangle their primacy in cognitive control.
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Interestingly, several recent studies offered strong evidence for
functional dissociation of the right AI and VLPFC in cognitive
control (Cai et al. 2014; Erika-Florence et al. 2014). Our study over-
comes this limitation by defining nodes within the right AI and
VLPFC independent of the task activations and reveals that the
right AI has stronger causal effects on the right VLPFC. Thus, cau-
sal interactions functionally differentiate the right AI and VLPFC
during cognitive control. The dominant causal influence from the
right AI to each node in the Frontal-Cingulate-Parietal network is
consistent with its role as a causal control hub. Together, our
findings suggest that the right AI is a key hub thatmediates inter-
actions between the salience and central executive networks
during cognitive control. More broadly, they illustrate how the
right AI facilitates behaviorally meaningful dynamic cooperation
between segregated brain systems during cognitive control.

Summary
We have uncovered a common Frontal-Cingulate-Parietal net-
work in three different cognitive control tasks. Critically, our ap-
proach has focused on causal interactions within this network,
rather than increased levels of regional activation that have
been the mainstay of brain imaging studies of cognitive control.
The approachwe have used here is useful in disentangling causal
interactions from adjacent brain structures within the fronto-in-
sular cortex and is a highly valuable and complementary ap-
proach for understanding causal mechanisms underlying key
aspects of cognitive control. Our findings are consistent with a
two-stage cognitive control model in which the AI first detects
events that require great engagement of cognitive control and
then signals the dACC to implement trial-specific cognitive con-
trol processes (Menon and Uddin 2010). The reliable identifica-
tion of a common and fundamental control process involving
the AI will serve as a useful template for understanding deficits
in cognitive control that are prominent in many psychiatric and
neurological disorders including autism, attention deficit hyper-
activity disorder, schizophrenia, and fronto-temporal dementia
(Menon 2011).
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