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Abstract
Critical to perceiving an object is the ability to bind its constituent features into a cohesive representation, yet the manner by
which the visual system integrates object features to yield a unified percept remains unknown. Here, we present a novel
application of multivoxel pattern analysis of neuroimaging data that allows a direct investigation of whether neural
representations integrate object features into a whole that is different from the sum of its parts. We found that patterns of
activity throughout the ventral visual stream (VVS), extending anteriorly into the perirhinal cortex (PRC), discriminated between
the same features combined into different objects. Despite this sensitivity to the unique conjunctions of features comprising
objects, activity in regions of the VVS, again extending into the PRC, was invariant to the viewpoints from which the
conjunctions were presented. These results suggest that the manner in which our visual system processes complex objects
depends on the explicit coding of the conjunctions of features comprising them.
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Introduction

How objects are represented in the brain is a core issue in neuro-
science. In order to coherently perceive even a single object, the
visual systemmust integrate its features (e.g., shape, color) into a
unified percept (sometimes called the “binding problem”) and
recognize this object across different viewing angles, despite
the drastic variability in appearance caused by shifting view-
points (the “invariance problem”). These are the most computa-
tionally demanding challenges faced by the visual system, yet
humans can perceive complex objects across different view-
points with exceptional ease and speed (Thorpe et al. 1996).
The mechanism underlying this feat is one of the central un-
solved puzzles in cognitive neuroscience.

Twomain classes ofmodels have been proposed. The first are
hierarchical models, in which representations of low-level fea-
tures are transformed intomore complex and invariant represen-
tations as information flows through successive stages of the
ventral visual stream (VVS), a series of anatomically linked

cortical fields originating in V1 and extending into the temporal
lobe (Hubel and Wiesel 1965; Desimone and Ungerleider 1989;
Gross 1992; Tanaka 1996; Riesenhuber and Poggio 1999). These
models assume explicit conjunctive coding of bound features:
posterior VVS regions represent low-level features and anterior
regions represent increasingly complex and invariant con-
junctions of these simpler features. In contrast, an alternative
possibility is a non-local binding mechanism, in which the percep-
tion of a unitized object does not necessitate explicit conjunctive
coding of object features per se, but rather, the features are repre-
sented independently and bound by co-activation. Such a mech-
anism could include the synchronized activity of spatially
distributed neurons that represent the individual object features
(Singer and Gray 1995; Uhlhaas et al. 2009), or a separate brain re-
gion that temporarily reactivates and dynamically links other-
wise disparate feature representations (Eckhorn 1999; Devlin
and Price 2007). Thus, an explicit conjunctive coding mechanism
predicts that the neural representation for a whole object should
be different from the sumof its parts, whereas a nonlocal binding
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mechanism predicts that the whole should not be different from
the sumof the parts, because the unique conjunctive representa-
tions are never directly coded.

The neuroimaging method of multivoxel pattern analysis
(MVPA) offers promise for making more subtle distinctions
between representational content than previously possible
(Haxby et al. 2001; Kamitani and Tong 2005). Here, we used a
novel variant of MVPA to adjudicate between these 2 mechan-
isms. Specifically, we measured whether the representation of
a whole object differed from the combined representations of
its constituent features (i.e., explicit conjunctive coding), and
whether any such conjunctive representation was view-invari-
ant. We examined the patterns of neural activity evoked by 3 fea-
tures distributed across 2 individually presented objects during a
1-back task (Fig. 1). Our critical contrast measured the additivity
of patterns evoked by different conjunctions of features across
object pairs: A + BC versus B + AC versus C +AB, where A, B, and
C each represent an object comprising a single feature, and AB,
BC, and AC each represent an object comprising conjunctions
of those features (Fig. 2A,B). Importantly, in this “conjunction
contrast,” the object pairs were identical at the feature level (all
contained A, B, and C), but differed in their conjunction (AB vs.
BC vs. AC), allowing a clean assessment of the representation per-
taining to the conjunction, over and above any information re-
garding the component features. This balanced design also
ensured that mnemonic demands werematched across compar-
isons. A finding of equivalent additivity (i.e., if A + BC = B +AC = C
+ AB) would indicate that information pertaining to the specific
conjunctions is not represented in the patterns of activity—
consistent with a nonlocal binding mechanism in which the fea-
tures comprising an object are bound by their co-activation.
In contrast, if the pattern sums are not equivalent (i.e., if A + BC
≠ B +AC ≠ C +AB), then the neural code must be conjunctive, re-
presenting information about the specific conjunctions of fea-
tures over and above information pertaining to the individual
features themselves—consistent with an explicit conjunctive
coding mechanism.

An important potential benefit of explicit conjunctive coding
of whole objects is to provide stability of representation across
changes in viewpoints, and invariance to themanifestation of in-
dividual object features (Biederman 1987). To investigate
whether this was the case, in a second “viewpoint contrast,” we
measuredwhether the representation for the conjunctions chan-
ged when they were presented from a different viewpoint (i.e.,
were the conjunctive representations view-invariant?) (Fig. 2C,
D). Importantly, in both contrasts, our novel MVPA linearity de-
sign avoided making unbalanced comparisons (e.g., A + B + C vs.
ABC) where the number of object features was confounded
with the number of objects.

Indeed, an aspect of our design that should be emphasized is
that during the task, participants viewed objects displayed in iso-
lation. This is important, because presenting 2 objects simultan-
eously (e.g., Macevoy and Epstein 2009) could potentially
introduce a bias, particularly when attention is divided between
them (Reddy et al. 2009; Agam et al. 2010). Whereas objects were
presented in isolation during the task, responses to single objects
were then combined during analysis. On each side of every com-
parison, we combined across an equal number of objects (2), as
there will be activity evoked by an object that does not scale
with its number of features. So, for example, we rejected a
simpler design in which A + B = AB was tested, as there are an
unequal number of objects combined on the 2 sides of the
comparison (2 vs. 1).

We hypothesized that any observation of explicit conjunctive
coding would be found in anterior VVS, extending into anterior
temporal regions. In particular, one candidate structure that
has received intensified interest is the perirhinal cortex (PRC)—
a medial temporal lobe (MTL) structure whose function is trad-
itionally considered exclusive to long-term memory (Squire and
Wixted 2011), but has recently been proposed to sit at the apex of
the VVS (Murray et al. 2007; Barense, Groen et al. 2012). Yet to our
knowledge, there have been no direct investigations of explicit
conjunctive coding in the PRC. Instead, most empirical attention
has focused on area TE in monkeys and the object-selective

Figure 1. Stimuli and task. (A) Objects had 1, 2, or 3 attached features, and were shown from one of two possible viewpoints. For illustrative purposes, we schematize

objects with letters: “A” corresponds to a one-featured object and “AB” corresponds to a two-featured object consisting of features A and B. We included 2 feature sets

to ensure that our analysis did not yield results idiosyncratic to a particular feature set. (B) Participants completed a 1-back task in which they responded to a

sequentially repeating object, regardless of viewpoint (targets in red). Objects were always presented in isolation.
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Figure 2. Experimental questions and similarity contrastmatrices. (A) Our first contrast investigatedwhether neural patterns of activity demonstrated explicit conjunctive

coding (i.e., was thewhole different from the sumof its parts?). To this end,wemeasured patterns of activity (schematized by a hypothetical region of interest consisting of

13voxels) toeachof the objects thatwerepresented individuallyduring the1-back task.We thencomputed linear summationsof these patterns for 3 differentpairs of objects

(i.e.,A + BC, B +AC, and C +AB), whichwerematched terms of their individual features (A–C), but different in terms of their conjunction (i.e.,AB, BC,AC). (B) MVPA correlations

within and between these conjunctions were summarized in a matrix structure (the full 144× 144 matrix is shown in Supplementary Fig. 2). This contrast tested whether

correlations of repetitions of the same conjunctions (dark blue)weremore similar in their activation pattern comparedwith correlations of different conjunctions (light blue).

As shownby the zoomed-in cell, each cell in the conjunction contrast is in fact anaverage of a 12 × 12 correlationmatrix that computed correlations across the 4 experimental

runs and the 3 data subdivisions. (C) Our second contrast investigatedwhether the conjunctive representationswere view-invariant. Aswith the conjunction contrast (A), we

measured the patterns of activity evoked by individually presented objects and computed linear summations of these patterns for each object pair. We then tested whether

these patterns of activity were sensitive to the viewpoint at which the conjunction was presented. (D) MVPA correlations within and across the same conjunctions shown

fromdifferent viewpointswere summarized in amatrix structure. This contrast testedwhether correlations of repetitions of the same conjunctions presented fromdifferent

viewpoints (dark orange)weremore similar in their activation pattern comparedwith correlations between different conjunctions presented fromdifferent viewpoints (light

orange). Note that the gray cells in the zoomed-in depiction reflect hypothetical data for illustrative purposes only.
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lateral occipital complex (LOC) in humans—structures posterior
to PRC and traditionally thought to be the anterior pinnacle of
the VVS (Ungerleider and Haxby 1994; Grill-Spector et al. 2001;
Denys et al. 2004; Sawamura et al. 2005; Kriegeskorte et al.
2008). For example, single-cell recording in monkey area TE
showed evidence for conjunctive processing whereby responses
to the whole object could not be predicted from the sum of the
parts (Desimone et al. 1984; Baker et al. 2002; Gross 2008),
although these conjunctive responses might have arisen from
sensitivity to new features created by abutting features (Sripati
and Olson 2010). Here, with our novel experimental design, we
were able to directly measure explicit conjunctive coding of
complex objects for the first time in humans. We used both a
whole-brain approach and an region of interest (ROI)-based ana-
lysis that focused specifically on the PRC and functionally defined
anterior structures in the VVS continuum. Our results revealed
that regions of theVVS, extending into the PRC, contained unique
representations of bound object features, consistent with an ex-
plicit conjunctive coding mechanism predicted by hierarchical
models of object recognition.

Materials and Methods
Participants

Twenty neurologically normal right-handed participants gave
written informed consent approved by the Baycrest Hospital Re-
search Ethics Board and were paid $50 for their participation.
Data from one participant were excluded due to excessive head
movement (>10° rotation), leaving 19 participants (18–26 years
old, mean = 23.6 years, 12 females).

Experimental Stimuli and Design

Participants viewed novel 3D objects created, using Strata Design
3D CX 6. Each object was assembled from one of two feature sets
and was composed of a main body with 1, 2, or 3 attached fea-
tures (depicted as “A,” “B,” and “C” in Fig. 1A). There were 7 pos-
sible combinations of featureswithin a feature set (A, B, C, AB, AC,
BC, ABC). Features were not mixed between sets. Each object was
presented from one of two possible angles separated by a 70° ro-
tation along a single axis: 25° to the right, and 45° to the left from
central fixation. We ensured that all features were always visible
between angle changes. There were 28 images in total, created
from every unique combination of the experimental factors: 2
(feature sets) × 2 (viewpoints) × 7 (possible combinations of fea-
tures within a set). Figure 1A depicts the complete stimulus set.

Image Similarity Analysis
Tomeasure the basic visual similarity between the objects in our
stimulus set, we calculated the root-mean-square difference
(RMSD) between each of the 24 objects (all one-featured and
two-featured objects) and compared this value to every other ob-
ject using the following function:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðImage1i � Image2iÞ2

n

s

where i is a pixel position in the image and n is the total number
of pixels in the image. Thus, this function compares all of the pix-
els in 1 image with the corresponding pixels in a second image
and yields a value that indicates the similarity between 2 images,
ranging from 0 (if the 2 images are identical) to 1 (if the 2 images
are completely different) (Fig. 3A). The purpose of this analysis

was to determine how similar 2 images are on the most basic of
levels—that is, how different the images would appear to the ret-
ina. Specifically, we conducted an analysis to ensure that our
viewpoint manipulation in fact caused a substantial change in
the visual appearance of the objects. For example, if our view-
point shifts were insignificant (e.g., 1° difference), any observa-
tion of view-invariance for this small visual change would not
be particularly meaningful. However, if we could show that our
shift in viewpoint caused a visual change that was as significant
as a change in the identity of the object itself, a demonstration of
view-invariance would be much more compelling. To this end,
we calculated a contrast matrix (Fig. 3B) that compared the
RMSD values of the same objects from different viewpoints
(dark orange) versus RMSD values of different object features
from the same viewpoint (light orange). Different objects from
the same viewpoint were compared only if they were matched
for the number of features. A t-test revealed that there was a sig-
nificant difference between RMSD values of the same features
shown from different viewpoints (M = 0.16, SD = 0.03) compared
with different features shown from the same viewpoint (M = 0.11,
SD = 0.02; t(34) = 6.11, P < 0.001), revealing that that our viewpoint
manipulation caused a change in visual appearance that was
more drastic thanmaintaining the same viewpoint but changing
the identity of the features altogether. Next, we conducted an
RMSD analysis that was very similar to the viewpoint contrast
(shown in Fig. 2D) used in our MVPA. Here, we compared the
RMSD values of a change in viewpoint (dark orange) with a
change in both viewpoint and feature type (light orange)
(Fig. 3C). A t-test revealed that therewas no significant difference
between RMSD values of the same features shown from different
viewpoints (M = 0.16, SD = 0.03) compared with different features
shown from different viewpoints (M = 0.17, SD = 0.02; t(70) = 1.28,
P = 0.20). This indicates that the shift in viewpoint within a fea-
ture set caused a change in visual appearance that was as drastic
as changing the features altogether. That is, our viewpoint ma-
nipulation was not trivial and caused a substantial visual change
of the appearance of the objects.

It is worth noting that because RMSD values constitute a dif-
ference score that reflects the visual differences between one ob-
ject with respect to another object, we could not calculate RMSD
difference scores to the pairs of objects as we did in the MVPA
(e.g., A + BC vs. B + AC). Put differently, in the MVPA we could
measure the patterns of activity evoked by the presentation of a
single object (e.g., A), add this pattern of activity to that evoked by
a different single object (e.g., BC), and then compare across differ-
ent pattern sums (e.g., A + BC vs. B + AC). In contrast, because an
RMSD value reflects the visual difference between 2 objects (rather
than to an object on its own), we could not measure an RMSD
value to object “A” and add that value to the RMSD value of object
“BC.”As such, it was not possible to calculate RMSD values for the
pattern sums.

Tasks

Experimental Task

We administered 4 experimental scanning runs during which
participants completed a 1-back task to encourage attention to
each image. Participants were instructed to press a button with
their right index finger whenever the same object appeared
twice in succession, regardless of its viewpoint (behavioral
results in Supplementary Table 1). Feedback was presented fol-
lowing each button press (correct or incorrect) and at the end of
each run (proportion of correct responses during that run). Trials
onwhich a responsewasmadewere not included in the analysis.
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Objectswere presented centrally on the screen and had a vis-
ual angle of 5.1° × 5.3°, which would likely encompass the recep-
tive fields of PRC (∼12°) (Nakamura et al. 1994), V4 (4–6° at an
eccentricity of 5.5°) (Kastner et al. 2001), LOC (4–8°) (Dumoulin
andWandell 2008), and fusiform face area (FFA), and parahippo-
campal place area (PPA) (likely >6°) (Desimone andDuncan 1995;
Kastner et al. 2001; Kornblith et al. 2013). The visual angle of the
individual object features was approximately 2.1° × 2.2°, which
would likely encompass the receptive fields of more posterior
regions in the VVS (2–4° in V2) (Kastner et al. 2001). Each image
was displayed for 1 s with a 2 s interstimulus interval. Each run

lasted 11 min 30 s, and for every 42 s of task time, there was an
8 s break (to allow blood oxygen level dependent (BOLD) signal
to reach baseline) during which a fixation cross appeared on
the screen. Each run comprised 6 blocks of 28 trials, which
were presented in a different order to each participant. The 14
images composing each feature set were randomly presented
twice within each block. Across consecutive blocks, the feature
sets alternated (3 blocks per feature set per run). Each block con-
tained between 1 and 4 target objects (i.e., sequential repeats),
such that the overall chance that an object was a target was
10%. In total, each imagewas presented 24 times (6 timeswithin

Figure 3. An analysis of visual differences across objects using a root-mean-square difference (RMSD) measure on the RGB values of all images used in the experiment

indicated that the viewpointmanipulation produced a substantial change in the visual appearance of the object that was as drastic as switching the identity of the object

altogether. (A) Raw RMSD values for all images used in the experiment. RMSD values range from 0 (if the 2 images were identical) to 1 (if the 2 images were completely

different, see bar on the right). (B) A contrast matrix that compared the RMSD values of the same objects from different viewpoints (dark orange) versus RMSD values of

different objects from the same viewpoint (light orange). Objects fromthe sameviewpointwere compared only if theywerematched for the numberof features. (C) Similar

to the viewpoint contrast (Fig. 2D) used in ourMVPA,we constructed a contrast matrix that compared the RMSD values of a change in viewpoint (dark orange) to a change

in both viewpoint and feature type (light orange).
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each run). Prior to scanning, each participant performed a 5-min
practice of 60 trials.

Localizer Task
After the 4 experimental runs, an independent functional locali-
zer was administered to define participant-specific ROIs (LOC,
FFA, and PPA, described next). Participants viewed scenes,
faces, objects, and scrambled objects in separate 15-s blocks
(there was no overlap between the images in the experimental
task above and the localizer task). Within each block, 20 images
were presented for 300 ms each with a 450-ms ISI. There were 4
groups of 12 blocks, with each group separated by a 15-s fixation-
only block.Within each group, 3 scene, face, object, and scrambled
object blocks were presented (order of block type was counterba-
lanced across groups). To encourage attention to each image, par-
ticipants were instructed to press a button with their right index
finger whenever the same image appeared twice in succession.
Presentation of images within blocks was pseudo-random: imme-
diate repeats occurred between 0 and 2 times per block.

Memory Task
Following scanning, participants were administered a memory
task in which they determined whether a series of objects were
shown during scanning (Supplementary Fig. 1 for description of
the task and results). Half of the objects were seen previously in
the scanner and half were novel recombinations of features from
across the 2 feature sets. In brief, the results indicated that parti-
cipants could discriminate easily between previously viewed ob-
jects and objects comprising novel reconfigurations of features,
suggesting that the binding of features extended beyond the im-
mediate task demands in the scanner, but also transferred into
longer-term memory.

fMRI Data Acquisition

Scanningwas performed using a 3.0-T SiemensMAGNETOMTrio
MRI scanner at the Rotman Research Institute at Baycrest Hos-
pital using a 32-channel receiver head coil. Each scanning
session began with the acquisition of a whole-brain high-reso-
lution magnetization-prepared rapid gradient-echo T1-weighted
structural image (repetition time = 2 s, echo time = 2.63 ms, flip
angle = 9°, field of view = 25.6 cm2, 160 oblique axial slices,
192 × 256 matrix, slice thickness = 1 mm). During each of four
functional scanning runs, a total of 389 T2*-weighted echo-planar
images were acquired using a two-shot gradient echo sequence
(200 × 200 mm field of view with a 64 × 64 matrix size), resulting
in an in-plane resolution of 3.1 × 3.1 mm for each of 40 2-mm
axial slices thatwere acquired along the axis of the hippocampus.
The interslice gap was 0.5 mm; repetition time = 2 s; echo time =
30ms; flip angle = 78°).

Multivoxel Pattern Analysis

Functional images were preprocessed and analyzed using SPM8
(www.fil.ion.ucl.ac.uk/spm) and a custom-made, modular tool-
box implemented in an automatic analysis pipeline system
(https://github.com/rhodricusack/automaticanalysis/wiki). Prior
to MVPA, the data were preprocessed, which included realign-
ment of the data to the first functional scan of each run (after 5
dummy scans were discarded to allow for signal equilibrium),
slice-timing correction, coregistration of functional and struc-
tural images, nonlinear normalization to the Montreal Neuro-
logical Institute (MNI) template brain, and segmentation of gray
and white matter. Data were high-pass filtered with a 128-s

cutoff. The data were then “denoised” by deriving regressors
from voxels unrelated to the experimental paradigm and entering
these regressors in a general linear model (GLM) analysis of the
data, using the GLM denoise toolbox for Matlab (Kay et al. 2013).
Briefly, this procedure includes taking as input a design matrix
(specified by the onsets for each stimulus regardless of its condi-
tion) and an fMRI time-series, and returns as output an estimate
of the hemodynamic response function (HRF) and BOLD response
amplitudes (β weights). It is important to emphasize that the
design matrix did not include the experimental conditions upon
which our contrasts relied; these conditions were specified
only after denoising the data. Next, a fitting procedure selected
voxels that are unrelated to the experiment (cross-validated R2

< 0%), and a principal components analysis was performed on
the time-series of these voxels to derive noise regressors. A
cross-validationprocedure thendetermined thenumberof regres-
sors that were entered into the model (Kay et al. 2013).

We specified the onsets for each individual object (i.e., A, B, C,
AB, BC, AC) for each of the 2 feature sets and 2 viewpoints. Our
model then created a single regressor for each of the three differ-
ent pairs of objects (i.e., A + BC, B + AC, and C +AB). Thiswas done
separately for each of the 2 feature sets and 2 viewpoints. For ex-
ample, events corresponding to the singly presented “A” object
from feature set 1 and viewpoint 2 and events corresponding to
the singly presented “BC” object from feature set 1 and viewpoint
2 were combined to create the single regressor for “A+ BC” from
feature set 1 and viewpoint 2. More specifically, within each
run, the voxel-wise data of each object pair were split into 3 sub-
divisions that were each composed of every third trial of a given
image (following Zeithamova et al. 2012) (Fig. 2B,D, zoomed-in
cells). The pattern similarity of each condition in each subdiv-
ision was compared with that of each condition in every other
subdivision. We designed the subdivisions so that our compari-
sons were relatively equidistant in time. For example, the first
subdivision for the A + BC regressor included A1st presentation +
BC1st presentation + A4th presentation + BC4th presentation; the second
subdivision included A2nd presentation + BC2nd presentation + A5th

presentation + BC5th presentation, etc. This resulted in 36 regressors
of interest per run [2 (feature sets) × 2 (viewpoints) × 3
(conjunctions) × 3 (subdivisions)]. We also modeled 8 regressors
of no interest for each run: trials of three-featured objects
(ABC), trials in which participants responded with a button
press on the 1-back task, and 6 realignment parameters to correct
formotion. Eventsweremodeledwith a delta (stick) function cor-
responding to the stimulus presentation onset convolved with
the canonical HRFas defined by SPM8. This resulted in parameter
estimates (β) indexing the magnitude of response for each
regressor. Multivoxel patterns associated with each regressor
were then Pearson-correlated. Thus, each cell in our planned
contrast matrices was composed of a 12 × 12 correlation matrix
that computed correlations within and across all runs and data
subdivisions (Fig. 2B,D, zoomed-in cells; see also Supplementary
Fig. 2 for the full data matrix). This process was repeated for each
cell in the contrastmatrix, and these correlation valueswere then
averaged and condensed to yield the 12 × 12 contrast matrix
(similar to Linke et al. 2011). We then subjected these condensed
correlation matrices to our planned contrasts (Fig. 2B,D).

In addition to an analysis that computed correlations both
across and within runs, we also conducted an analysis in which
we ignored within-run correlations and computed correlations
across runs only. Results from this across-run only analysis are
shown in Supplementary Figure 3. In brief, this analysis revealed
the same pattern of results as the analysis that computed corre-
lations both across and within runs.
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Searchlight Analysis
A spherical ROI (10 mm radius, restricted to gray matter voxels
and including at least 30 voxels) was moved across the entire ac-
quisition volume, and for each ROI, voxel-wise, unsmoothed
β-values were extracted separately for each regressor (Krieges-
korte et al. 2006). The voxel-wise data (i.e., regressors of interest)
were then Pearson-correlated within and across runs, and con-
densed into a 12 × 12 correlationmatrix (see Fig. 2B,D). Predefined
similarity contrasts containing our predictions regarding the
relative magnitude of pattern correlations within and between
conjunction types specified which matrix elements were then
subjected to a two-sample t-test. This analysis was performed
on a single-subject level, and a group statistic was then calcu-
lated from the average results, indicating whether the ROI
under investigation-coded information according to the similar-
ity matrix. Information maps were created for each subject by
mapping the t-statistic back to the central voxel of each corre-
sponding ROI in that participant’s native space. These single-
subject t-maps were then normalized, and smoothed with a
12-mm full width at half maximum (FWHM) Gaussian kernel to
compensate for anatomical variability across participants. The
resulting contrast imageswere then subjected to a group analysis
that compared the mean parameter-estimate difference across
participants to zero (i.e., a one-sample t-test relative to zero). Re-
sults shown in Figure 4A,C are superimposed on the single-sub-
ject MNI brain template.

ROI Analysis

We investigated 4 ROIs defined a priori. Three were functionally
defined regions well established as part of the VVS: LOC, FFA,
and the PPA. The fourth ROI was the PRC, which was defined by
an anatomical probability map created by Devlin and Price
(2007). We included areas, which had at least a 30% ormore prob-
ability of being the PRC, as done previously (Barense et al. 2011).
For our functional localizer, we used identical stimuli to those
employed in Watson et al. (2012). We defined the LOC as the re-
gion that was located along the lateral extent of the occipital
lobe and responded more strongly to objects compared with
scrambled objects (P < 0.001, uncorrected) (Malach et al. 1995).
We defined the FFA as the set of contiguous voxels in the mid-
fusiform gyrus that showed significantly higher responses to
faces compared with objects (P < 0.001, uncorrected) (Liu et al.
2010), and the PPA as the set of contiguous voxels in the parahip-
pocampal gyrus that responded significantlymore to scenes than
to objects (P < 0.001, uncorrected) (Reddy and Kanwisher 2007).
These regions were defined separately for each participant by a
10-mm radius sphere centered around the peak voxel in each
hemisphere from each contrast, using the MarsBar toolbox for
SPM8 (http://marsbar.sourceforge.net/). All ROIs were bilateral,
except for 3 participants in whom the left FFA could not be loca-
lized, and another participant inwhom the right LOC could not be
localized (Supplementary Table 2 displays the peak ROI coordi-
nates for each ROI for each participant). The ROI MVPAwas con-
ducted in an identical manner to the searchlight analysis; voxel-
wise data were Pearson-correlated and condensed into a 12 × 12
correlation matrix, except that here each ROI was treated as a
single region (i.e., no searchlights weremovedwithin an ROI). Be-
fore applying our contrasts of interest, we ensured that these cor-
relation values were normally distributed (Jarque–Bera test;
P > 0.05). We then applied our conjunction and viewpoint con-
trasts within each of the four ROIs and obtained, for each partici-
pant and each contrast, a t-value reflecting the strength of the
difference between our correlations of interest (Fig. 2B,D). From

these t-values, we calculated standard r-effect sizes that allowed
us to compare the magnitude of effects across the ROIs
(Rosenthal 1994) (Fig. 4B,D). Specifically, we transformed the
r-effect sizes to Fisher’s z-scores (as they have better distribution
characteristics than correlations, e.g., Mullen 1989). We then
conducted t-tests on the z-scores effect sizes obtained for each
region, which provided a measure of the statistical significance
between our cells of interest in each of our two contrast matrices
(i.e., dark- and light-colored cells). We then compared the
z-scores in each ROI to zero using Bonferroni-corrected one-
sample t-tests, and conducted for each of the two contrasts
paired-samples t-tests to compare the effect sizes observed in
the PRC to the 3 more posterior ROIs (Fig. 4B,D).

Control Analysis to Test for Subadditivity of the BOLD
Signal

To test the possibility that our results (Fig. 4)were driven by signal
saturation due to nonlinearities in neurovascular or vascular MR
coupling, we conducted a univariate ANOVA to test whether
there were differences in the overall signal evoked by different
single features (Fig. 5). A standard univariate processing pipeline
was then followed, comprising the preprocessing steps described
for the MVPA, but also smoothing of the imaging data with a 12-
mm FWHM Gaussian kernel. We then conducted first-level stat-
istical analyses. Within each run, there were 12 regressors of
interest [2 (feature sets) × 2 (viewpoints) × 3 objects (A, B, and C)]
and 8 regressors of no interest corresponding to trials of three-
featured objects (ABC), trials in which participants responded
with a button press on the 1-back task, and 6 realignment para-
meters to correct for motion. Within each regressor, events
were modeled by convolving a delta (stick) function correspond-
ing to the stimulus presentation onset with the canonical HRF as
defined by SPM8. Second-level group analyses were conducted
separately for each of the two feature sets by entering the param-
eter estimates for the 6 single-featured objects (i.e., A, B, and C
from each viewpoint) of each subject into a single GLM, which
treated participants as a random effect. This analysis was con-
ducted using a factorial repeated-measures ANOVA, in which
a model was constructed for the main effect of condition (i.e.,
the 6 single features). Within this model, an F-contrast was
computed to test for areas that showed a significant effect of
feature type for each feature set. Statistical parametric maps
(SPMs) of the resulting F-statistic were thresholded at P < 0.001,
uncorrected.

Results and Discussion
Our primary analyses involved 2 planned comparisons. The first
comparison, the conjunction contrast, determined whether the
neural patterns of activity demonstrated explicit conjunctive
coding (i.e., whether activity patterns represented information
specific to the conjunction of features comprising an object,
over and above information regarding the features themselves)
(Fig. 2A,B). The second comparison, the viewpoint contrast,
investigated whether the conjunctive representations were
view-invariant (Fig. 2C,D). For each of these two contrasts, we
performed 2 independent planned analyses—a “searchlight ana-
lysis” to investigate the activity across the whole brain and an
“ROI analysis” to investigate activation in specific VVS ROIs.
Both contrasts were applied to a correlation matrix that included
all possible correlations within and across the different conjunc-
tions (Fig. 2B,D). The novelty of this design ensured that our com-
parisons were matched in terms of the number of features that
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needed to be bound. That is, our comparison terms (e.g., A + BC vs
B + AC) included both a combination of a single-featured object
and a two-featured object, and thus, binding and memory re-
quirements werematched—what differedwas the underlying re-
presentation for the conjunctions themselves.

For the conjunction contrast, awhole-brain searchlight MVPA
(Kriegeskorte et al. 2006) revealed conjunctive coding in the VVS,
with a globalmaxima in V4 (Rottschy et al. 2007) and activity that
extended laterally into the LOC and posteriorly into V3 and V1
(peak x,y,z = 32,−80,−4, Z-value = 5.93), as well as conjunctive
coding that extended anteriorly to the right PRC (Fig. 4A; peak x,
y,z = 30,−6,−30, Z-value = 5.47) (all results reported are whole-
brain FWE-corrected at P < 0.05; Supplementary Table 3 sum-
marizes all regions). We next performed an ROI-based MVPA
that applied the same contrast matrices and methods used for
the searchlight analysis, except was focused only on the PRC
and 3 functionally defined regions (LOC, FFA, and PPA) that are
posterior to the PRC and are well established as part of the VVS.

This analysis allowed direct comparison of conjunctive coding
strength across regions (Fig. 4B). The conjunction contrast in
this ROI MVPA revealed conjunctive coding in PRC (t(18) = 3.89, P <
0.01, reffect size = 0.24) and the LOC (t(18) = 3.85, P < 0.01, reffect size =
0.10), but not in FFA (t(18) = 1.80, P = 0.35, reffect size = 0.06), or PPA
(t(18) = 2.66, P = 0.06, reffect size = 0.10) (all one-sample t-tests Bon-
ferroni-corrected). Comparisons across ROIs demonstrated
stronger conjunctive coding in the PRC relative to each of the
three more posterior VVS ROIs (P’s < 0.05). Thus, consistent with
recent hierarchical models proposing explicit conjunctive coding
in regions not traditionally associated with the VVS (Murray et al.
2007; Barense, Groen, et al. 2012), we found that PRC representa-
tions explicitly coded information regarding the object’s con-
junction, over and above its individual features.

In addition to the PRC, we also observed conjunctive coding in
V4 as well as in LOC, indicating that the conjunctive coding
mechanism is not selective to PRC. Indeed, there is evidence to
suggest that V4 and LOC are important for representing feature

Figure4.Regions demonstrating explicit conjunctive codingwithin andacross viewpoints. (A) Regionswhere the representation for the conjunctionwas different from the

sum of its parts (P < 0.05, whole-brain FWE-corrected; results at P < 0.001, uncorrected shown in Supplementary Fig. 5). Broadly speaking, these regions included the PRC

and earlier VVS regions (with the local maxima in V4). (B) The strength of conjunctive coding in the LOC, FFA, PPA, and PRC ROIs (shown at bottom are ROIs from a

representative participant superimposed on that individual’s structural scan). (C) Regions demonstrating view-invariant conjunctive representations (P < 0.001,

uncorrected; no VVS regions survived whole-brain FWE correction). Broadly speaking, these regions included the PRC, as well as V4 and lateral IT cortex. (D) The

strength of view-invariant conjunctive coding within and across ROIs. Error bars indicate SEM; *P < 0.05 for comparisons across ROIs (paired-samples t-tests indicated

by brackets) and comparisons relative to zero within an ROI (one-sample t-tests indicated by an asterisk above a bar).
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conjunctions. For example, recent studies showed that learning-
induced performance changes on a conjunctive visual search
were correlated with increasing activity in V4 and LOC (Frank
et al. 2014), and that these regions are important for conjoined
processing of color and spatial frequency (Pollmann et al. 2014).
In support of a causal role for both LOC and PRC in representing
feature conjunctions, patients with selective LOC damage
(Behrmann and Williams 2007; Konen et al. 2011) and those
with PRC damage (Barense et al. 2005; Barense, Groen, et al.
2012) were impaired on tasks that tax integrating object features
into a cohesive unit. Nonetheless, we did observe clear differ-
ences in conjunctive versus single-feature coding across our
ROIs, with PRC demonstrating stronger conjunctive coding than
LOC, FFA, and PPA (Fig. 4B), and LOC demonstrating stronger
single-feature coding than PRC, FFA, or PPA (Supplementary
Fig. 4). Although the current study lacks the temporal resolution
to address this directly, one possibility is that this more posterior
activity may also reflect higher level feedback, such as from PRC.
Indeed, bidirectional interactions exist throughout the VVS
(Hochstein and Ahissar 2002; Coutanche and Thompson-Schill
2015), and previous work has suggested that feedback from the
PRCmodulates familiarity responses to object parts in V2 (Barense,
Ngo, et al. 2012; Peterson et al. 2012). An alternative possibility is
that the PRC activity reflects a feedforward cascade from structures
such as the LOC (Lamme and Roelfsema 2000; Bullier 2001).

Next, we investigated whether the conjunctive representa-
tions of the object features were view-invariant. The extent to
which the human visual system supports view-invariant versus

view-dependent representations of objects is unresolved
(Biederman and Bar 1999; Peissig and Tarr 2007). Much research
in this area has focused on VVS regions posterior to the MTL
(Vuilleumier et al. 2002; Andresen et al. 2009) but some work
has indicated that, for very complex stimuli, structures in the
MTL may be central to view-invariance (Quiroga et al. 2005;
Barense et al. 2010). Despite this, to our knowledge, no study
has directly probed how the specific conjunctions comprising
complex objects are neurally represented across viewpoints to
support object recognition in different viewing conditions. That
is, as the representations for objects become increasingly precise
and dependent on the specific combinations of features compris-
ing them, can they also become more invariant to the large
changes in visual appearance caused by shifting viewpoints?

To investigate this question, we presented the objects at 70°
rotations (Fig. 1), a manipulation that caused a more drastic vis-
ual change than changing the identity of the object itself (Fig. 3).
To assess view-invariance, our viewpoint contrast compared the
additivity of patterns (i.e., A + BC vs. B + AC vs. C +AB) across the 2
viewpoints (Fig. 2C,D). At a stringent whole-brain FWE-corrected
threshold of P < 0.05, our searchlight MVPA revealed limited
activity throughout the brain (2 voxels, likely in the orbitofrontal
cortex, Supplementary Table 4A). However, at a more liberal
threshold (P < 0.001 uncorrected), we observed view-invariant
conjunctive coding in the VVS, with maxima in V4 (Rottschy
et al. 2007); peak x,y,z = 32,−70,−4, Z-value = 4.07), lateral IT cortex
(peak x,y,z = −52,−28,−20, Z-value = 4.15), as well as activity that
extended anteriorly to the left PRC (peak x,y,z = −36,−4,−26,

Figure 5. Control analysis to test for subadditivity of the blood oxygen level dependent (BOLD) signal. (A) Saturation of the BOLD signal could produce nonlinearities that

could bemisinterpreted as a conjunction—when in fact the codingwas linear—if therewere stronger activation for some featuresmore than others (e.g., illustrated in the

earlier hypothetical scenario for feature B). In this instance, adding another feature (e.g., A, C) to the feature that already produces strong activity (B) could cause the BOLD

signal to saturate (AB, BC: dotted line). The BOLD response to the feature pairs would be a nonlinear addition of that to the component features—not because of a

conjunctive neural representation, but rather due to sub-additivity of the BOLD signal. (B) Regions identified by our univariate ANOVA as showing a difference in

terms of overall signal evoked by the different single features in either feature set 1 (warm colors) or feature set 2 (cool colors). This analysis revealed activity in

posterior visual regions, but not in PRC (see Supplementary Table 5). Searchlight MVPA results from the (C) conjunction contrast (all regions from Fig. 4A shown here

in blue) and (D) viewpoint contrast (all regions from Fig. 4C shown in blue), displayed with regions from the combined results of the univariate ANOVA for feature sets

1 and 2 (shown in purple). Overlapping regions between the 2 analyses are shown in orange.
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Z-value = 3.25) (Fig. 4C and Supplementary Table 4B). The ROI
MVPA of the viewpoint contrast revealed view-invariance in the
PRC (t(18) = 3.04, P < 0.05, reffect size = 0.21), but not the LOC, FFA, or
PPA (t’s < 0.75, P’s > 0.99, all reffect size < 0.03; Fig. 4D) (all tests Bon-
ferroni-corrected). A direct comparison across regions confirmed
that this view-invariant conjunctive coding was stronger in the
PRC compared with the 3 more posterior VVS ROIs (P’s < 0.05).

Taken together, results from the conjunction and viewpoint
contrasts provide the first direct evidence that information cod-
ing in PRC simultaneously discriminated between the precise
conjunctions of features comprising an object, yet was also in-
variant to the large changes in the visual appearance of those
conjunctions caused by shifting viewpoints. These coding princi-
ples distinguished the PRC from other functionally defined re-
gions in the VVS that are more classically associated with
perception (e.g., LOC, FFA, and PPA). It is important to note that
our results were obtained in the context of a 1-back memory
task, and thus, one might be cautious to interpret our results in
the context of a perceptual role for the PRC. Indeed, we prefer
to consider our results in terms of the representational role for
any given brain region, rather than in terms of the cognitive pro-
cess it supports—be it either memory or perception. To this end,
our experimental design ensured that memory demands were
matched in our comparisons of interest—all that differed was
how the same 3 features were arranged to create an object.
With this design, explicitmemory demandswere equated, allow-
ing a clean assessment of the underlying object representation.
That said, one might still argue that these object representations
were called upon in the service of a 1-back memory task. How-
ever, awealth of evidence suggests that PRC damage impairs per-
formance on both perceptual (e.g., Bussey et al. 2002; Bartko et al.
2007; Lee and Rudebeck 2010; Barense, Ngo, et al. 2012; Barense
et al. 2012) and explicit memory tasks (Bussey et al. 2002;Winters
et al. 2004; Barense et al. 2005; Bartko et al. 2010; McTighe et al.
2010). The critical factor in eliciting these impairments was
whether the task required the objects to be processed in terms
of their conjunctions of features, rather than on the basis of
single features alone. We argue that these seemingly disparate
mnemonic and perceptual deficits can be accounted for by
the fact that both the mnemonic and perceptual tasks recruited
the conjunctive-level representations we have measured in the
current study.

Finally, it is important to rule out the possibility that the re-
sults we obtained were driven by signal saturation due to nonli-
nearities in neurovascular or vascular MR coupling (Fig. 5). Such
signal saturation could produce nonlinearities that could bemis-
interpreted as a conjunction, when in fact the coding was linear,
if there were stronger activation for some features more than
others (Fig. 5A). To evaluate whether our data fell within this re-
gime, we conducted a univariate ANOVA to test whether there
were differences in the overall signal evoked by different features
when these features were presented alone. These analyses re-
vealed activity predominately in early visual areas that were
largely nonoverlapping with the results from our critical con-
junction and viewpoint contrasts (Fig. 5C,D and Supplementary
Table 5). Importantly, there were no significant differences be-
tween the basic features in terms of overall activity in the PRC,
or in the LOC typically observed in our participants (even at a lib-
eral uncorrected threshold of P < 0.001). Thus, there was no evi-
dence to suggest our observation of conjunctive coding is
driven by spurious BOLD signal saturation.

In conclusion, this study provides newevidence regarding the
functional architecture of object perception, demonstrating
neural representations that both integrated object features into

a whole that was different from the sum of its parts and were
also invariant to large changes in viewpoint. To our knowledge,
this constitutes the first direct functional evidence for explicit
coding of complex feature conjunctions in the human PRC, sug-
gesting that visual-object processing does not culminate in IT
cortex as long believed (e.g., Lafer-Sousa and Conway 2013), but
instead continues into MTL regions traditionally associated
with memory. This is consistent with recent proposals that
memory (MTL) and perceptual (VVS) systems aremore integrated
than previously appreciated (Murray et al. 2007; Barense, Groen,
et al. 2012). Rather than postulating anatomically separate sys-
tems for memory and perception, these brain regions may be
best understood in terms of the representation they support—
and any given representation may be useful for many different
aspects of cognition. In the case of the PRC, damage to these com-
plex conjunctive representations would not only impair object
perception, but would also cause disturbances in the recognition
of objects and people that are critical components of amnesia.
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oxfordjournals.org
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