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Abstract

By expressing prior distributions as general stochastic processes, nonparametric Bayesian methods 

provide a flexible way to incorporate prior knowledge and constrain the latent structure in 

statistical inference. The Indian buffet process (IBP) is such an example that can be used to define 

a prior distribution on infinite binary features, where the exchangeability among subjects is 

assumed. The phylogenetic Indian buffet process (pIBP), a derivative of IBP, enables the modeling 

of non-exchangeability among subjects through a stochastic process on a rooted tree, which is 

similar to that used in phylogenetics, to describe relationships among the subjects. In this paper, 

we study the theoretical properties of IBP and pIBP under a binary factor model. We establish the 

posterior contraction rates for both IBP and pIBP and substantiate the theoretical results through 

simulation studies. This is the first work addressing the frequentist property of the posterior 

behaviors of IBP and pIBP. We also demonstrated its practical usefulness by applying pIBP prior 

to a real data example arising in the field of cancer genomics where the exchangeability among 

subjects is violated.
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1 Introduction

Recently nonparametric Bayesian approaches have become popular methods in machine 

learning and other fields to learn structural information from data. By expressing prior 

distributions as general stochastic processes, nonparametric Bayesian methods provide 

flexible ways to incorporate prior knowledge and constrain the latent structure. The Indian 

buffet process (IBP) is such a stochastic process that can be used to define a prior 

distribution where the latent structure is presented in the form of a binary matrix with a finite 

number of rows and an infinite number of columns [18, 22]. The exchangeability among 

subjects is assumed in IBP, i.e., the joint probability of the subjects being modeled by the 

prior is invariant to permutation. In certain applications, exogenous information may suggest 

certain groupings of the subjects, such as studies involving cancer patients with different 

subtypes. In these cases, treating all subjects exchangeable using IBP is not appropriate. As 

an alternative, the phylogenetic Indian buffet process (pIBP) [26] provides a flexible 

framework to incorporate prior structural information among subjects for more accurate 
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statistical inference. In pIBP, the dependency structure among subjects is captured by a 

stochastic process on a rooted tree similar to that used in phylogenetics. As a derivative of 

IBP, pIBP inherits many of the nice features of IBP including inducing sparsity and 

allowance of a potentially infinite number of latent factors. In addition, pIBP provides an 

effective approach to incorporate useful information on the relationship among subjects 

without losing computational tractability.

Despite many successful applications of IBP and its variants in many areas [19], as far as we 

know, there has not been any theoretical investigation of their posterior behaviors. Suppose 

there is a true data-generating process, do the posterior distributions of IBP and pIBP 

concentrate on the truth? In the parametric setting where the number of parameters is fixed, 

the posterior distribution is well behaved according to the classical Bernstein-von Mises 

theorem [23]. However, when the prior charges a diverging or an infinite number of 

parameters, whether the posterior distribution still possesses such convergence properties is 

no longer guaranteed. IBP prior and pIBP prior belong to the second situation because they 

are stochastic processes on infinite binary matrices. Besides the issue of posterior 

convergence, we are also interested in the question whether the extra information in pIBP 

prior would lead to better posterior behavior than that of IBP prior.

In this paper, we study the theoretical properties of IBP and pIBP under a binary factor 

model. Posterior contraction rates are derived for both priors under various settings. By 

imposing a group structure on the true binary factor matrix, pIBP is proved to have faster 

convergence rates than IBP whenever the group structure is well-specified by the 

phylogenetic tree. Even when the group structure is mis-specified by pIBP, it still has the 

same convergence rate as that of IBP. To the best of our knowledge, this is the first work 

addressing the frequentist property of the posterior behaviors of both IBP and pIBP.

We further substantiated the theoretical results through simulation studies. Our simulations 

show that pIBP is an attractive alternative to IBP when subjects can be related through a tree 

structure based on some prior information. Moreover, even when the tree structure is mis-

specified in pIBP prior, the posterior behavior is still comparable to that of IBP prior, 

suggesting a robust property of pIBP. We further apply pIBP to analyze cancer genomics 

data to demonstrate its practical usefulness.

We organize the rest of the paper as follows. Section 2 introduces a binary factor model, 

which is the probabilistic setting of the paper. The definitions of IBP and pIBP are reviewed 

in Section 3. Section 4 presents our theoretical studies of the posterior contraction rates of 

IBP and pIBP. Simulation studies are carried out in Section 5. Sections 6 presents the 

analysis of a TCGA data set using pIBP. Section 7 discusses related work on factor models 

and an extension of our theoretical results. Proofs for theoretical results are collected in the 

supplementary materials.
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2 Problem Setting

2.1 Notation

We denote max(a, b) by  and min(a, b) by . For two positive sequences {an} and 

{bn}, an ≲ bn means there exists a C > 0, such that an ≤ Cbn for all n. For a matrix A = 

(aij)m×n, denote its matrix Frobenius norm by . For a set S, 

denote its cardinality by |S|. The symbol Π stands for the prior probability distribution 

associated with the mixture of IBP or pIBP defined in Section 3.4, and Π(·|X) is the 

corresponding posterior distribution.

2.2 Binary Factor model

Let X = (xij)n×p denote the observed data matrix, where each of the n rows represents one 

individual and each of the p columns represents one measurement. We hypothesize that the 

measurement profiles can be characterized by latent factors. We model the effects of these 

latent factors Z on X through the following model:

where Z = (zik)n×K is a binary factor matrix, and A = (akj)K×p is a loading matrix. The status 

of zik, which takes a value of 1 or 0, indicates the presence or the absence of the kth factor in 

the ith individual. The value of akj weighs the contribution to the jth measurement from the 

kth factor. We assume that each entry of E = (eij)n×p follows  independently. Let 

each entry of A follow  independently, and A is independent of E. Conditioning on 

A, (X | A) follows a matrix normal distribution with mean ZA. Integrating out A with 

respect to its distribution, each column of X follows

(1)

independently for j = 1, . . . , p. Formula (1) shows the covariance structure across 

individuals imposed by the binary factor model. From this representation, it is easy to see 

that the matrix ZZT and the variance components  and  uniquely determine the data 

generating process.

2.3 Feature Similarity Matrix ZZT

We name ZZT the feature similarity matrix because of its important statistical meaning as 

reflected in (1). An identifiability issue is that the distribution of (1) will not change if one 

reorder the columns of the factor matrix Z. Thus, Z is not identifiable in the model. 

However, the feature similarity matrix ZZT, according to (1), is identifiable. We denote each 

element of this matrix by ZZT = (ξij)n×n. Each row/column of this matrix ZZT describes the 

feature similarity between a particular individual and the other n – 1 individuals. Note that
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Thus, the diagonal element ξii denotes the number of factors possessed by the ith individual, 

and the off-diagonal entry ξij is the number of the factors shared between the ith and jth 

individuals. In short, the feature similarity matrix ZZT characterizes the latent feature 

sharing structure among samples. For the ith individual, we define di = Σj≠i ξij as its degree. 

When we have a group structure among the samples, the individual with the highest degree 

has the most shared factors among a group. That particular individual is a representative 

prototype for that group.

3 Tree Structured Indian Bu et Process Prior

3.1 A Bayesian Framework

To pursue a full Bayesian approach, we put a prior distribution on the triple . The 

choice of the prior on  is not essential, because for asymptotic purpose (when n and 

p are large), the prior e ect on the parametric part  is negligible. In contrast, the 

prior on the binary matrix Z is important. Since we do not specify the number of columns K 
in advance, the potential number of parameters in Z is infinite. It is well-known that when 

the number of parameters diverges, Bayesian method is no longer guaranteed to be 

consistent [11]. Thus, the choice of the prior on Z is important. According to the model 

representation (1), the order of the columns of Z is not identifiable. In other words, we 

cannot tell the first factor from the second. Instead of specifying a prior on Z, we specify a 

prior on the equivalent class [Z], where [Z] denotes the collection of matrices Z which are 

equivalent by reordering the columns.

We describe two priors on [Z] in this section, the Indian buffet process proposed by [18], and 

its tree-structured generalization, the phylogenetic Indian buffet process proposed by [26]. 

Both are priors on sparse infinite binary matrices.

3.2 Indian Buffet Process

We describe the Indian buffet process (IBP) on [Z] by its stick-breaking representation 

derived in [34]. Given some α > 0, first draw vk ~ Beta(α, 1) (k = 1, 2, . . . independently 

and identically distributed. Then, pk is

(2)

Given {pk}, zik is drawn independently from a Bernoulli distribution with parameter pk for i 
= 1, . . . , n and k = 1, 2, . . .. The final matrix Z drawn in this way has dimension n × K+, 

where K+ is the number of nonzero columns. According to [18], K+ follows a Poisson 

distribution with mean . Thus, it is finite with probability 1. The IBP prior on [Z] 
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is the image measure induced by the equivalence map . A larger α indicates a larger 

K+ in the prior modeling.

3.3 Phylogenetic Indian Buffet Process

The phylogenetic Indian buffet process (pIBP) also starts with drawing {pk} as in (2). 

Different from IBP, given pk, the entries of the kth column of Z are not independent in pIBP. 

Their dependency structure is captured by a stochastic process on a rooted tree similar to the 

models used in phylogenetics [26]. The n individuals are modeled as leaves of the tree. The 

total edge length from the root to any leaf is 1. Conditioning on pk, we describe the 

generating process of the kth column of Z. First, assign 0 to the root of the tree. Along any 

path from the root to a leaf, let the value of any node change to 1 along any edge of length t 
with probability 1 – exp(–γkt), where γk = – log(1 – pk). Once the value has changed to 1 

along any path from the root, all leaves below that point are assigned value 1. pIBP prior is 

defined to be the image measure on [Z].

3.4 A Hyperprior on α

Both IBP and pIBP are determined by the hyper-parameter α, which can be tuned in 

practice. In this paper, we pursue a full Bayesian approach, and put a Gamma(1, 1) prior on 

α for both IBP and pIBP. Thus, the final prior on the equivalent class [Z] is a mixture of IBP 

or pIBP after α is integrated out.

4 Posterior Contraction Rates of IBP and pIBP

4.1 Convergence of the Feature Similarity Matrix

In this section, we establish the posterior convergence of both mixture of IBP and mixture of 

pIBP and characterize their difference by different convergence rates. Such theoretical 

comparisons are interesting because IBP can be viewed as a special case of pIBP with a 

default tree. These results will illustrate the impacts of tree structure imposed by the prior.

We define the triple  to be the true parameter generating the data matrix X, 

where Z0 is an n × K0 binary matrix and K0 is the number of factors. For the sake of clearer 

presentation, we assume , so that the only unknown parameter is Z0. Denote the 

data generating process of (1) by PZ, and let EZ be the associated expectation (and similarly 

define PZ0 and EZ0). The generalization to the case where  is unknown is covered in 

the supplementary materials. Let Π be the mixture of IBP or pIBP prior on [Z]. Note that the 

matrix ZZT does not depend on the order of columns of Z, and thus we have ZZT = [Z][Z]T. 

We consider the posterior convergence in the sense of

(3)

for some sequences ∈n,p, δn,p and constant M > 0. When δn,p → 0, this is called posterior 

contraction of feature similarity matrix with rate  under the squared Frobenius loss. We 
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choose to study the posterior contraction in terms of the feature similarity matrix ZZT 

because of both the identifiability issue and statistical interpretation described in Section 2.3.

4.2 A General Method for Discrete Priors

The theory of Bayesian posterior consistency was first studied by [32]. She proposed a 

Kullback-Leibler property of the prior and a testing argument to prove weak consistency in 

the parametric case. The first nonparametric posterior consistency result was obtained by 

[2], where the idea of testing on the essential support of the prior is used. Later, the same 

argument was modified to achieve rate of contraction by [17]. In the current setting of binary 

factor model, we propose the following general method to prove posterior rate of contraction 

for priors supported on a discrete set.

Theorem 4.1—For any measurable set U, and any testing function ϕ, we have

(4)

The theorem can be viewed as a discrete version of the Schwartz theorem [32]. We take 

advantage of the discrete nature of the problem, thus avoiding calculating the prior mass of 

the Kullback-Leibler neighborhood of PZ0. We specify U to be

Thus, in order to obtain (3), it is sufficient to upper bound the right hand side of (4). This can 

be done by lower bounding  and constructing a testing function for 

H0 : Z = Z0 and H1 : Z ∈ U with appropriate type 1 and type 2 error bounds. The existence 

of such testing function is guaranteed by the following lemma.

Lemma 4.1—For any ∈n,p > 0, there is a testing function ϕ such that the testing error 

 is upper bounded by

for some universal constant C > 0 and M introduced in (3).

Therefore, it is sufficient to lower bound the prior mass  to obtain 

(3).
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4.3 Two-Group Tree and Factor Decomposition

Before studying the prior mass lower bound of IBP and pIBP, we need to specify a non-

exchangeable structure among the subjects. To demonstrate the power of pIBP to model 

non-exchangeability, we study a special but representative tree structure, the two-group tree. 

Let n individuals be labeled by {1, . . . , n}. Without loss of generality, we assume n is even. 

Let , where S1 = {1, . . . , n/2} and S2 = {n/2 + 1, . . . , n}. The tree 

induced by the two-group structure (S1, S2) has one root, two group nodes and n leaves. The 

two group nodes are connected with the root by two edges of length η ∈ (0, 1). Then, the ith 

group node is connected with each member of Si by an edge of length 1 – η, where i = 1, 2. 

The parameter η is the strength of the group structure imposed by the prior Π. When η = 0, 

pIBP reduces to IBP.

Our theory covers three cases. The first case is IBP prior, with no group structure specified 

in the prior. The second case is the two-group pIBP prior with group structure correctly 

specified. The third case is the the two-group pIBP prior with group structure misspecified. 

Let Z0 have K0 columns, representing K0 factors. Given the two-group structure (S1, S2) by 

the prior Π, we have the following factor decomposition

(5)

where K01 is the number of factors unique to S1, K02 is the number of factors unique to S2, 

and  is the number of factors shared across S1 and S2. Decomposition (5) is determined 

by both the structure of Z0 and the prior Π. It characterizes how well the group structure is 

specified compared with the true Z0 (see Figure 6). Generally speaking, the smaller  is, 

the better the group structure is specified by Π.

4.4 Prior Mass

Under the two-group structure defined above, we obtain the following prior mass lower 

bound.

Theorem 4.2—For any constant η ∈ [0, 1), there exists some constant C > 0 such that the 

prior mass  can be lower bounded by

for any κ ≥ 0.

Theorem 4.2 provides an explicit characterization of the prior mass lower bound as a 

function of . For a larger , the prior mass will be at a smaller order due to an increased 

level of misspecification. The prior mass lower bound directly determines the posterior 

contraction rate according to Theorem 4.1 and Lemma 4.1. In the following, we consider η = 

0 and η ∈ (0, 1), separately.
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When η = 0, pIBP and IBP are equivalent. The prior does not impose any group structure. 

Thus, in the decomposition (5), we have . By letting κ= 0, Theorem 4.2 can be 

written as

(6)

The prior mass lower bound for IBP in (6) is the benchmark for us to compare IBP with 

pIBP in various situations.

When η ∈ (0, 1), the tree structure plays a role in the prior. In practice, η = 1/2 is often used 

to characterize moderate group structure belief in the prior [26]. We say the group structure 

is e ectively specified if  for some β ∈ (0, 1). In this case, the result of Theorem 

4.2 can be optimized for  for any κ ≥ 0. That is, for n su ciently large , we 

have

(7)

which is lower bounded by

This rate is superior to (6). Thus, pIBP is advantageous over IBP as long as the tree structure 

captures any group-specific features in the sense that .

On the other hand, the group structure is mis-specified if . In this case, we reduce to 

(6), so that

Thus, a mis-specified tree structure does not compromise the results, compared to a default 

tree structure of IBP. One may wonder whether this is due to a possibly loose bound in 

Theorem 4.2. By scrutinizing the proof, we found that the slack is at most at a constant level 

independent of . Thus, the prior mass lower bounds of pIBP with a mis-specified 

tree and of IBP are essentially the same.

4.5 Posterior Contraction Rates

Combining Theorem 4.1, Lemma 4.1 and Theorem 4.2, we can derive the posterior 

contraction rates in the sense of (3) for both IBP and pIBP.

Theorem 4.3—For the mixture of IBP prior or pIBP prior Π on [Z], let Z0 be the true 

factor matrix. Then, for the binary factor model, there exist M > 0 and C′ > 0, such that
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as long as .

Theorem 4.4: For the mixture of pIBP prior Π on [Z] with η ∈ (0, 1), let Z0 be the true 

factor matrix. When  and K2β ≲ n for β ∈ (0, 1), for the binary factor model, 
there exist M > 0 and C′ > 0, such that

as long as .

The above two theorems establish rates of contraction for the posterior distributions of IBP 

and pIBP. The posterior probabilities on the neighborhood of the truth can be arbitrarily 

close to 1 in expectation under the true model for sufficiently large n, p and K0. The 

contraction rate is faster for larger p and smaller n, because more variables are helpful to 

identify the feature similarity of a group of individuals.

Compared with the rate of IBP in Theorem 4.3, when the tree structure is effectively 

specified, the upper bound of the rate of pIBP in Theorem 4.4 is faster by a factor of . 

Such difference is significant if the number of features K0 is large. Moreover, Theorem 4.3 

also suggests that even when the tree structure of pIBP is mis-specified, the rate of 

contraction is the same as that of IBP, implying the robust property of pIBP. Although our 

theoretical study is carried out in the simple two-group structure model, similar conclusions 

can also be obtained under a more complicated structural assumption using the same 

method.

5 Simulation Studies

In this section, we perform simulations to evaluate the performances of IBP and pIBP. We 

implemented the Markov chain Monte Carlo algorithm proposed in [26] to perform posterior 

inference of the feature similarity matrix ZZT. In the algorithm, the sampling process on the 

tree structure is expressed as a graphical model, where the prior probabilities can be 

calculated effciently by a sum-product algorithm. All the parameters σA, σX, α and {pk} 

(marginal probabilities of a latent feature equaling 1) are sampled as part of the overall 

Markov chain Monte Carlo procedure.

In the first simulation, we evaluated the performance of IBP, pIBP with a correctly specified 

tree structure, and pIBP with a mis-specified tree structure (mispIBP). We constructed a set 

of samples with a clear subgroup structure on Z0. Specifically we simulated data with eight 

subgroups characterized by six latent factors as illustrated by Figure 2. Twelve models 
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presented in Table 1 are considered. For each model, we generated an n × p matrix X = Z0A 
+ E with (σA,0, σX,0) = (1,0·5). For IBP, we let η = 0 so that pIBP is equivalent to IBP. For 

pIBP, we let η = 0·8 and a proper tree structure is given. For the mispIBP, we let η = 0·5 and 

the prior is a mis-specified tree with samples within a subtree assigned to different groups. 

Estimation error on Z is evaluated in terms of the normalized Frobenius norm of the feature 

similarity matrix . We further evaluated the latent structure recovery 

by the number of estimated latent factors. We observed that both IBP and pIBP 

overestimates the number of latent factors because of the presence of many factors with only 

a few samples. This is similar to what was proved for Dirichlet and Pitman-Yor processes 

where the posterior is inconsistent for estimating the number of clusters [25]. Therefore, we 

reported a truncated estimator of the number of latent factors counting only those factors 

shared by at least 5 samples.

The algorithm of [26] is implemented for 1000 MCMC steps. We observe that it guarantees 

convergence in the problem sizes that are considered in this simulation.

Generally, the reported twelve models represent two scenarios: the small p scenario and the 

large p scenario. Remember in our setting, the larger the value of p is, the more accurately 

we can recover the latent features. In the models with a small p (p = 30 and 20), the 

information from data is limited and the inference relies more heavily on the prior 

information. We found pIBP performs better than the other two methods in both cases. 

Besides, mispIBP has comparable performance with IBP, implying that pIBP is robust to 

mis-specified tree structure. The simulation results substantiate the conclusions we have 

from Theorem 4.3 and Theorem 4.4. In the models with large p (p = 100 and 200), there is 

adequate information from the data and the priors play a less important role. Inferences 

using different priors lead to similar results.

In the second simulation, we used the similarity data to construct pIBP prior. Nine models 

presented in Table 2 are considered. For each model, we generated an n × K0 binary matrix 

Z0 with 4 columns sampled from a Bernoulli(0·3) and 5 columns with fixed structure. For 

IBP, no prior of the group structure is given. For pIBP, we first apply a hierarchical cluster 

analysis with complete linkage on the rows of Z0 and then use its output dendrogram as the 

tree in the pIBP prior (see Figure 3). In our analysis, we constructed our prior based on the 

true knowledge of Z0 in order to investigate whether the correct structural information will 

improve the performance through pIBP priors. In practice, such trees need to be constructed 

from external sources. For mispIBP, the tree prior was constructed in the same way as pIBP 

but using a random permutation of Z0 on rows in the clustering. In this setting, mispIBP 

represents totally incorrect information. Similar as the previous simulation, we evaluated the 

performance by  and the truncated number of estimated latent 

features (Table 2). When p is small, pIBP outperforms IBP in all cases. When p is 

adequately large (p = 60 in this setting), the inference is less influenced by the prior 

information.
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6 Applications of pIBP in the Integrative Cancer Genomics Analysis

Cancer research has been revolutionized by recent advances in high through-put 

technologies. Diverse types of genomics data, e.g., DNA, RNA, and epigenetic, have been 

profiled for different tumor types [28, 27, 3, 33]. These data have revealed that substantial 

heterogeneities exist across tumor types, across individuals within the same tumor types and 

even within an individual tumor. However, the tumor heterogeneity at somatic level has not 

been explicitly explored in the integrative analysis.

Here we propose to use binary factor model to integrate somatic mutation and gene 

expression data based on pIBP prior. Our working hypothesis is that gene expression profiles 

of a cancer patient may be predicted by a set of latent factors that represent distinct 

molecular drivers. With this hypothesis, the more similar the somatic mutation profiles are 

between two cancer patients, the more similar their gene expression profiles are. Therefore, 

we build a pIBP prior based on somatic mutation data then specify it on the latent factors of 

gene expression data. Using this approach, we can investigate the gene expression data by 

taking into account the heterogeneities across cancer patients at somatic level.

We consider studies on a specific cancer type/subtype, which collects somatic mutations 

from whole exome sequencing and gene expressions either from sequencing or microarrays 

for each sample. Somatic mutations can either be more narrowly defined as single nucleotide 

changes and small insertions/deletions, or more broadly defined to include changes at the 

copy number level. We denote the detected somatic mutations for a group of samples by a 

binary matrix S = (sil)n×m, with sil indicating the mutation status of the lth gene on the ith 

individual, as an external resource to construct the tree prior. When subclonality information 

is available, sil may be expressed as a continuous measure between 0 and 1, representing the 

percentage of the cells containing mutations at the lth gene.

As for using a tree structure to express the relationships of individuals using the somatic 

mutation data, we propose to construct either logic tree or dendrogram tree. The logic tree 

prior is constructed as a logic tree based on the presence/absence of a set of somatic 

mutations. In this case, each node represents the status of a specific mutation. The 

dendrogram tree prior is adapted from the dendrogram tree of a hierarchical clustering on 

the somatic profiles S = (sil)n×m. In such a tree, the non-leaf nodes have no explicit meaning 

but represent a local cluster of individuals. When the order of mutation acquisitions and the 

effects of specific mutations are unknown, the dendrogram tree provides a measure of the 

overall similarities between individuals.

We analyzed the TCGA BRCA Level 3 dataset generated by [33] (downloaded from cBio 

[8]) using the dendrogram tree construction strategy. We focused on 134 samples 

categorized as HER2 or Basal-like subtypes. Among these two subtypes, HER2 subtype is 

relatively well characterized and has effective clinical treatments. The basal-like subtype, 

which is also known as triple-negative breast cancers (TNBCs, lacking expression of ER, 

progesterone receptor (PR) and HER2), is poorly understood, with only chemotherapy as the 

main therapeutic option [33]. Characterization of the basal-like subtype at the molecular 

level has important clinical implications. We built a tree prior from the dendrogram of a 
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hierarchical clustering analysis with the frequent mutations in breast cancer including 

AKT1, CDH1, GATA3, MAP3K1, MLL3, PIK3CA, PIK3R1, PTEN, RUNX1 and TP53. 

For expression data, genes having top 300 MAD across samples were kept and centered. We 

ran 10 Markov chains. No substantial difference was observed across runs and we chose the 

one with largest posterior probability as the final result. Figure 4 shows the input tree prior, 

subtype information and the inferred latent feature matrix [Z].

In our samples, the basal-like and HER2 samples display different and almost 

complementary patterns in their possession of the first two features. 74 of 81 Basal-like 

samples exhibit the first feature and 79 of 81 are deplete with the second feature. In contrast, 

43 of 53 HER2 samples are deplete with the first feature and 31 of 53 exhibit the second 

feature. For the first feature, the top 10 genes with the largest loadings include MRPL9, 

PUF60, SCNM1, EIF2C2, BOP1, MTBP, DEDD, PHF20L1, HSF1 and HEATR1. Among 

these, BOP1 is involved in ribosome biogenesis and contributes to genomic stability, 

deregulation of which leads to altered chromosome segregation [21]; MTBP inhibits cancer 

metastasis by interacting with MDM2 [10]; DEDD interacts with PI3KC3 to activate 

autophagy and attenuate epithelialmesenchymal transition in cancer [24]; and HSF1 has 

been proposed as a predictor of survival in breast cancer [35]. EIF2C2, PUF60 and 

PHF20L1 have been reported as prognostic markers in ovarian cancer [30, 38], which is 

consistent with the recent discovery that basal-like breast tumours with high-grade serous 

ovarian tumours share many molecular commonalities [33]. These basal-like specific genes 

may potentially become novel therapeutic targets or prognostic markers. For the second 

feature, the top 10 genes with the largest loadings include STARD3, MED1, PSMD3, 

GRB7, ORMDL3, WIPF2, CASC3, RPL19, SNF8 and AMZ2. Among these, 

overexpressions of STARD3, PSMD3, GRB7, CASC3 and RPL19 have been reported in 

HER2-amplified breast cancer cell lines [1]; MED1 is required for estrogen receptor-

mediated gene transcription and breast cancer cell growth [39]. As revealed by principal 

component analysis based on gene expression (Figure 4), these genes weighing high on first 

two latent features have discriminating power on Basal-like and HER2 samples.

Furthermore, we found that the status of the fifth and sixth features was strongly associated 

with disease recurrence in our samples as revealed by survival analysis (Figure 5 shows the 

Kaplan–Meier plot). Samples with the fifth feature have a higher probability of recurrence 

than those without it, with a p-value of 0·0068, whereas samples without the sixth feature 

have a higher probability of recurrence than those with it, with a p-value of 0·00084. 

Examinations of the loadings on these two features identified RMDN1, ARMC1, TMEM70, 

VCPIP1, TCEB1, MTDH, EBAG9, MRPL13, UBE2V2, FAM91A1 and RRS1 on the fifth 

feature and TRIM11, COMMD5, PYCRL, TIGD5, MRPL55, LSM1, SETDB1, CNOT7, 

PROSC, DEDD and HSF1 on the sixth feature. Among these, the prognosis significance of 

some has been discussed before, for example, MTDH activation by 8q22 genomic gain 

promotes chemoresistance and cetastasis of poor-prognosis breast cancer [20]; EBAG9 

(RCAS1) is associated with ductal breast cancer progression [31]. The other genes may 

serve as candidate tumor progression markers.

In comparison, we analyzed the same 134 breast cancer samples with the expression profiles 

of 300 genes and the mutation status of 11 genes with IBP prior. The resulting latent factor 
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matrix is less sparse than that of pIBP, which o ers compromised interpretability (See 

Supplementary Figure 1). Moreover, the above reported features were not recovered by IBP 

prior, suggesting the integration of somatic mutations might lead to better understanding of 

gene expression.

7 Discussion

7.1 Related Work on Factor Models

This paper attempts to provide a theoretical foundation for the widely used IBP and pIBP 

priors. We illustrate the performance of the priors through a simple binary factor model. To 

the best of our knowledge, there are only a few literatures on posterior rates of contraction 

for factor models and its alternative form principal component analysis (PCA). [29] is the 

first work to consider posterior contraction rates for sparse factor models. [15] derives rate-

optimal posterior contraction for sparse PCA. Both results achieve the frequentist minimax 

rates (up to a logarithmic factor for the first work). Frequentist estimation in factor models 

include [12], [13] and [14].

Minimax rates for factor models usually appear in the literature in the form of principal 

component analysis. For example, minimax rates for sparse PCA are derived by [4], [5], [6] 

and [37] under various settings.

For binary factor models, minimax rates are not available in the literature, and it cannot be 

easily derived from the existing results. In the current binary factor model setting, there are 

two main points that deviate from the settings considered in the literature. First, the largest 

eigenvalue of the matrix  may diverge as n → ∞ in the extreme case, while most 

minimax rates in the literature for covariance estimation assume bounded spectrum. Second, 

the binary factor model only takes value in {0, 1}, which distinguishes itself from ordinary 

factor models. The results in this paper suggest at least two open problems. First, what is the 

minimax rate of the binary factor model? Second, is IBP or pIBP rate-optimal? If not, what 

is the best rate of contraction that can be achieved by the posterior distribution?

7.2 Approximate Group Structure

Theorem 4.4 states the posterior contraction rates of pIBP under the model of a two-group 

structure through the factor decomposition (5). Such characterization of group structure is 

exact in the sense that even only one person in S1 possesses a factor that is mostly possessed 

by people in S2, that factor is classified as a common factor, contributing to the total . 

Therefore, in many real cases the exact two-group structure is violated and we can easily get 

, thus losing the advantage of using pIBP.

In this section, we present a result to demonstrate that pIBP still gains advantage over IBP 

even when  but the two-group structure approximately holds. We say Z0 has an 

approximate two-group structure if there exists a binary matrix Z* of the same size such that 

the number  associated with Z* is bounded by  and  is 

small. In other words, Z0 may have a large , but it is close to a binary factor matrix whose 
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 is small. The following theorem is an oracle inequality for pIBP under the posterior 

distribution.

Theorem 7.1—Let Z0 ∈ {0,1}n×K0 be an arbitrary binary factor matrix, and let Z* ∈ {0, 

1}n×K0 be a binary factor matrix with a well specified group structure such that its 

 for β ∈ (0, 1). Under the assumption of Theorem 4.4,

for some constants M, C′ > 0.

In the case when Z0 has an exact two-group structure, we may choose Z* = Z0 so that 

. Then it reduces to the result in Theorem 4.4. Otherwise, we may 

choose a Z* with an exact two-group structure to approximate Z0. In this case, the posterior 

distribution contracts to the truth with a rate consisting of two parts. The first part can be 

viewed as the estimation error of a binary factor matrix Z* with an exact two-group 

structure. The second part is the approximation error for the true binary factor matrix Z0 by 

Z*. Note that the rate of convergence for IBP in Theorem 4.3 is . Therefore, as long as

pIBP still converges faster than IBP if the true binary factor matrix Z0 has an approximate 

two-group structure.

Let us consider the following example to illustrate Theorem 7.1. Let Z0 ∈ {0, 1}n×K0 be a 

binary factor matrix which generates the data. Among the  factors that 

possess approximate group structures, there are K01 factors belonging to S1 and K02 factors 

belonging to S2. In addition, for some small δ ∈ (0, 1), nδ people in S1 can possess a 

constant number of factors belonging to S2, and nδ people in S2 can possess a constant 

number of factors belonging to S1. We call this situation a δ-approximate two-group 

structure. By zeroing out these entries, we obtain a binary factor matrix Z* ∈ {0, 1}n×K0 

with an exact two-group structure, whose factor decomposition is . In 

other words, for Z*, there are K01 factors exclusively belonging to S1 and K02 factors 

exclusively belonging to S2. The approximation error is bounded by 

, where ∥ · ∥ denotes the spectral 

norm of a matrix, which is its largest singular value. We summarize this example in the 

following corollary.

Corollary 7.1—Under the setting of Theorem 7.1, let Z* have a factor decomposition 

satisfying , then as long as , we have
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for some positive sequence  and some constant C > 0.

The corollary provides an example that pIBP converges at a faster rate than that of IBP when 

Z0 satisfies the δ-approximate two-group structure. The quantity ∥Z0∥ quantifies the sparsity 

of the binary factor matrix Z0. In many applied situations, the true binary factor matrix Z0 

has a sparse structure [19, 22, 7]. This leads to a small ∥Z0∥.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An illustration of the two group tree and the factor decomposition.
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Figure 2. 
The illustration of IBP, pIBP with an appropriate tree structure and pIBP with a mis-

specified tree structure and the latent factor matrix Z0 used in the first simulation.
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Figure 3. 
The illustration of the latent factor matrix Z0 and tree prior constructed from the hierarchical 

clustering analysis of Z0 in the second simulation.
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Figure 4. 
A graph showing the dendrogram tree prior (left), the inferred latent factor matrix [Z] 

(middle, only first 20 columns shown) and PCA analysis of Basal-like (Red) and HER2 

(Green) based on genes with top loading on latent factors (topright, with a set of 10 genes 

from first factor; bottomright, with a set of 20 genes from first two factors) for TCGA 

BRCA dataset.
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Figure 5. 
A Kaplan–Meier plot for groups with different status of the fifth and sixth feature inferred 

from TCGA BRCA dataset.
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Figure 6. 
IBP result on TCGA breast cancer samples. This plot shows the dendrogram tree prior (left), 

the inferred latent factor matrix Z (right, only first 20 columns shown) and subtype status 

(middle, Basal-like as Red and HER2 as Green).
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Table 1

Simulation results: comparisons of IBP, pIBP with the appropriate tree prior and pIBP with the mis-specified 

tree prior (mispIBP).

(n, p) IBP pIBP mispIBP

F-norm K̂ F-norm K̂ F-norm K̂

(192,20) 18.9 (15.2) 8.1 (3.8) 6.8 (2.3) 6.7 (1.1) 16.2 (9.1) 6.6 (0.8)

(288,20) 20.3 (8.9) 7 (1.9) 10 (2.2) 7 (0.9) 19.3 (14.6) 7 (0.9)

(384,20) 27.8 (7.4) 7.5 (1.8) 16 (7.7) 7.9 (2.4) 32.3 (5.8) 7.8 (1.3)

(192,30) 9.5 (6.9) 6.6 (0.8) 4.9 (3) 6.1 (0.3) 14.4 (15.3) 6.8 (1.6)

(288,30) 14.2 (5.2) 6.6 (0.5) 7.9 (6.1) 6.6 (1.4) 13.2 (12.5) 6.4 (0.6)

(384,30) 14.5 (8.2) 6.7 (0.9) 8 (4.8) 6.4 (0.7) 13.9 (9.7) 6.7 (0.8)

(192,100) 3.8 (2.3) 5.9 (0.6) 4 (2.2) 5.8 (0.6) 3.8 (2.2) 5.9 (0.6)

(288,100) 5.5 (2.3) 5.8 (0.5) 5.2 (2) 5.8 (0.6) 5.3 (2.1) 5.8 (0.5)

(384,100) 6 (3.4) 6 (0.6) 5.5 (3.9) 6.2 (0.9) 5.7 (3.4) 6 (0.8)

(192,200) 3.8 (1.8) 5.8 (0.6) 3.8 (1.9) 5.5 (1.1) 3.8 (1.9) 5.5 (1.1)

(288,200) 4.8 (2.3) 5.7 (0.5) 4.8 (2.3) 5.7 (0.5) 4.9 (2.4) 5.7 (0.5)

(384,200) 5 (2.4) 5.6 (0.6) 4.7 (2.6) 5.6 (0.5) 4.6 (2.5) 5.7 (0.6)

The performance is measured by estimation errors in terms of the normalized Frobenius norm of the feature similarity matrix 

 (F-norm), and the number of estimated latent factors K̂. Numbers in parentheses are the standard deviations 

across the 40 independent replicates. In the above models, , , K0 = 9, results are based on 1000 Markov chain Monte Carlo 

steps.
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Table 2

Simulation results: comparisons of IBP and pIBP with the tree prior from the dendrogram of a hierarchical 

clustering on Z0.

(n, p) IBP pIBP mispIBP

F-norm K̂ F-norm K̂ F-norm K̂

(120, 15) 28.5 (6) 22.5 (1.6) 11.4 (6.4) 17 (3.9) 31.1 (10.5) 23.6 (3.4)

(180, 15) 30.4 (3.9) 21.5 (1.4) 11.9 (4.7) 15.5 (2.9) 31.2 (7.1) 23.1 (3.1)

(240, 15) 35 (7.2) 18.5 (4.9) 13.4 (2.3) 17.8 (2.5) 32.6 (4.3) 24.6 (2)

(120, 30) 11.8 (7.7) 11.9 (3.6) 7 (2.3) 11.7 (2.5) 8.1 (3.5) 11.6 (1.5)

(180, 30) 13.9 (6.9) 12.3 (3) 9.2 (2.9) 13.3 (2.7) 12.1 (3.3) 12.4 (1.8)

(240, 30) 15.9 (10.4) 12.2 (3.3) 10.7 (3) 13.2 (2.2) 18.2 (8.4) 11.1 (1.4)

(120, 60) 7.3 (2.8) 11.2 (1.5) 6.7 (2.3) 10.6 (1.5) 7.6 (2.5) 10.6 (1.5)

(180, 60) 9.6 (2.5) 11.7 (2.2) 8.1 (2.5) 11.1 (2.3) 9.4 (3.9) 10.8 (1.2)

(240, 60) 9.4 (3.2) 11.5 (2.4) 9.3 (2.2) 10.8 (1.6) 11.7 (4.2) 11.3 (1.7)

The performance is based on 40 independent replicates, each with 1000 Markov chain Monte Carlo steps.
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