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Abstract

This study uses more than a decade’s worth of data across Arizona to characterize the 

spatiotemporal distribution, frequency, and source of extreme aerosol events, defined as when the 

concentration of a species on a particular day exceeds that of the average plus two standard 

deviations for that given month. Depending on which of eight sites studied, between 5% and 7% of 

the total days exhibited an extreme aerosol event due to either extreme levels of PM10, PM2.5, 

and/or fine soil. Grand Canyon exhibited the most extreme event days (120, i.e., 7% of its total 

days). Fine soil is the pollutant type that most frequently impacted multiple sites at once at an 

extreme level. PM10, PM2.5, fine soil, non-Asian dust, and Elemental Carbon extreme events 

occurred most frequently in August. Nearly all Asian dust extreme events occurred between 

March and June. Extreme Elemental Carbon events have decreased as a function of time with 

statistical significance, while other pollutant categories did not show any significant change. 

Extreme events were most frequent for the various pollutant categories on either Wednesday or 
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Thursday, but there was no statistically significant difference in the number of events on any 

particular day or on weekends versus weekdays.
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1. Introduction

Severe aerosol pollution events pose a major threat to society due to significant reductions in 

visibility and air quality, in addition to adverse impacts on public health and daily 

operations. Fine particulate matter (PM2.5) is linked to various health impacts regardless of 

whether there is chronic or acute exposure, with effects ranging from lung cancer to 

cardiovascular disease [1,2]. Extreme pollution events are thought to be especially important 

with regard to annual acute mortality [3], in addition to leading to temporary shutdown of 

daily activities such as school and work in parts of the world [4]. Semi-arid and arid regions 

are particularly vulnerable to such events due to dust emissions, and this is especially 

dramatic during haboob events [5–7]. In recent decades, the Southwestern United States 

(Southwest) has experienced significant population growth, land use change, and is moving 

towards a more arid regime with higher temperatures, less precipitation, and lower soil 

moisture [8]. These changes promote increased dust emissions [9,10] and wildfires [11,12], 

with a rapidly growing population left vulnerable to the effects of the emissions. These 

issues coupled to the impact of dust and wildfire emissions on the hydrologic cycle and 

snowpack behavior at higher altitudes in the Southwest [9,13] warrants an examination of 

extreme aerosol events.

An ideal location to study extreme aerosol events is Arizona, which represents a state in the 

Southwest that is impacted by both dust and wildfires, in addition to having one of the 

fastest growing populations in the United States that is prone to the effects of poor air 

quality. The absolute population growth between 2000 and 2009, in Tucson and Phoenix, the 

two largest cities in Arizona, rank as the 33rd and 4th largest in the United States, 

respectively (U.S. Census Bureau, 2009). Sources of wind-blown dust impacting this and 

other Southwest states include naturally un-vegetated or anthropogenically disturbed soil 

surfaces, such as dry lakes (“playas”), dry washes, gravel pits, construction sites, oil and gas 

development sites, fields (after harvest), and long-range transport of Asian dust [14–20].

Aside from the ubiquity of dust in the Southwest, the greater Western United States is 

becoming increasingly vulnerable to the effects of wildfires owing to both a warmer climate 

and fire-control strategies over past decades resulting in conditions that promote larger and 

more frequent fires [11,21]. Depending on the fuel type and burning conditions, biomass 

burning leads to extensive emissions of various gaseous (e.g., nitrogen oxides (NOx), ozone 

(O3), carbon monoxide (CO), Volatile Organic Compounds (VOCs)) and particulate species 

(e.g., Elemental Carbon (EC), Organic Carbon (OC), inorganics), but also soil emissions due 

to lofting of soil in areas of turbulent mixing surrounding flames [22–24].
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The goal of this study is to examine long-term data (2001—2014) from the EPA IMPROVE 

network across Arizona to characterize the frequency, spatial range, and origin of extreme 

aerosol events. The following questions are addressed: (i) what is the frequency of extreme 

aerosol events across Arizona and how many are due to EC-enriched air masses, Asian dust, 

non-Asian dust, or some other source? (ii) how frequently do these events occur at all or 

subsets of the study sites on the same day? and (iii) how are these events distributed between 

months of the year, days of the week, and inter-annually?

2. Experimental Methods

2.1. EPA IMPROVE

This study utilizes aerosol composition data from the Interagency Monitoring of Protected 

Visual Environments (IMPROVE) network [25]. IMPROVE aerosol monitoring stations are 

located primarily in National Parks and Wilderness Areas and collect ambient aerosol on 

filters over a period of 24 h every third day. Samples are analyzed for ions, metals, Organic 

Carbon (OC) and Elemental Carbon (EC). Among the elemental measurements, X-Ray 

Fluorescence (XRF) is used for Fe and heavier elements while Particle-Induced X-Ray 

Emission (PIXE) is used for elements Na to Mn. Fine soil concentrations reported in this 

study are calculated using the following equation [25]:

(1)

with regard to this equation, the components and their contributions were previously 

confirmed in comparisons of local re-suspended soils and ambient particles in the Western 

United States [25]. As this study is concerned with extreme concentrations of fine soil, it is 

expected that this equation can successfully capture all soil-rich air masses regardless of 

whether minor variations exist in the factors used in Equation (1). Species mass 

concentrations discussed in this study are from the fine fraction of aerosols (PM2.5). 

Sampling protocols and additional details are provided elsewhere [26].

In this study, we use data from eight sites in Arizona (see map in Figure 1) and over time 

spans ranging from as early as data were possible starting in January 2001 until August 2014 

(Table 1). Three of the eight sites are impacted more significantly by urban emissions owing 

to their closer proximity to populated cities; the Phoenix site is centrally located in the 

metropolitan area of the most populated city in Arizona, while Saguaro National Monument 

and Saguaro West are separated by ~50 km and are on the east and west sides, respectively, 

of Tucson, which is the second largest city. Chiricahua National Monument is a high-altitude 

site that is in a remote vegetated area with the nearest major urban area being Tucson (~150 

km to the west). Nearby aerosol sources include the Willcox Playa and the Apache Power 

Plant, which are ~45 km to the west. This site is the closest to the Chihuahuan Desert. Tonto 

is ~90 km to the east/northeast of Phoenix and Queen Valley is ~60 km to the east of 

Phoenix, and thus these two sites are vulnerable to emissions transported from Phoenix. 

Organ Pipe is near the border of the United States and Mexico and is vulnerable to dust 

emissions and anthropogenic emissions from the nearby town of Sonoita, Mexico (~10,000 

inhabitants). Grand Canyon is in a remote site in Northern Arizona and is removed from 

anthropogenic emissions.
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2.2. NAAPS Aerosol Model

Simulation data providing information about long-range dust transport are obtained from the 

Navy Aerosol Analysis and Prediction system (NAAPS; http://www.nrlmry.navy.mil/

aerosol_web/). NAAPS relies on global meteorological fields from the Navy Operational 

Global Atmospheric Prediction System (NOGAPS) [27,28] analyses and provides output at 

a spatial resolution of 1° × 1°, at six hour intervals, and with 24 vertical levels reaching 100 

mb [29]. NAAPS has been used extensively to study intercontinental transport of dust to 

North America e.g., [18,29–32]. Sources of dust are defined in NAAPS using the USGS 

Land Cover Characteristics Database, which was created with Advanced Very High 

Resolution Radiometer (AVHRR) data. TOMS aerosol index data was used to further refine 

dust source regions. Dust emission occurs when the friction velocity exceeds a threshold 

value (value depending on land type) and when the surface moisture and snow depth are 

lower than a critical value (0.3 and 0.4 cm, respectively). The model operationally 

assimilates remotely-sensed aerosol optical depth (AOD) data from MODIS [33].

2.3. Satellite Data

Ultraviolet aerosol index (UV AI) data are obtained from the Ozone Monitoring Instrument 

(OMI). Data were obtained at a resolution 1° × 1.25° using a minimum threshold value of 

0.5 [34]. The UV AI parameter serves as a proxy for absorbing aerosol particles [35], which 

are predominantly comprised of smoke and dust. Figure 1 shows a spatial map of a four-year 

average of OMI data to provide a backdrop of where light-absorbing aerosol particles 

(primarily dust in study region) are most abundant relative to where the eight IMPROVE 

stations are located.

2.4. Criteria for Events

In past work, criteria to define an extreme aerosol event have included the use of a cutoff 

threshold of a parameter value (i.e., average ± i × standard deviation, with i starting at 1 and 

increasing; e.g., [36]) or when parameter values were below and above specific quantile 

values (e.g., 3). Here we take a similar approach to define an extreme event for specific 

aerosol parameters (e.g., PM2.5, PM10, and fine soil) as when the measured concentration on 

a given day at any of the eight sites exceeds the average concentration plus two times the 

standard deviation for the month in which the event occurred over the time range of data 

used for that particular site. This criterion leads to concentrations that exceed the 90th 

percentile of mass concentrations in each category. The choice of this criterion reflects a 

balance between removing sensitivity to month-dependent factors and being sufficiently 

strict to isolate only a few cases that were the most polluted. The conclusions of this study, 

especially the number of extreme days in the various categories presented, are sensitive to 

the criteria definition. The numerical threshold criteria values (i.e., average + 2 × standard 

deviation) for each site and month are shown in Table S1 (Supplementary Material).

Those events with extreme fine soil concentrations are referred to hereafter as extreme dust 

events. However, it is noted that extreme PM10 events that did not reach extreme fine soil 

levels could have also been due to dust that was concentrated in coarse aerosol (Dp ≥ 2.5 

µm). Extreme fine soil events are further classified as having influence from Asia or not 

using output from the NAAPS model to validate long-range transport to the study region. 
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The criteria for Asian dust was to observe a clear aerosol plume being advected from Asia to 

Arizona with multiple repeated NAAPS output plots as depicted in Figure S1 of the 

Supplement. It is cautioned that this classification scheme using NAAPS has limitations in 

that (i) the dust transport results are driven by a model rather than fully by observations, and 

(ii) the relative influence of Asian dust versus local sources is uncertain. Thus, although the 

term “Asian dust” is used subsequently, this is not meant to indicate that the fine soil 

measurement is fully due to long-range transport of dust from Asia. A suite of previous 

studies discussing source attribution of aerosol to long-range transport from Asia to North 

America have relied on NAAPS. For example, Cottle et al. [31] used NAAPS with 

HYSPLIT back-trajectories, and sunphotometer and lidar data to show that springtime dust 

plumes from Asia reached North America. Wu et al. [32], more recently, used NAAPS and 

remotely-sensed data from CALIPSO to study a trans-Pacific Asian dust event and its 

impact on the east coast of the United States. McKendry et al. [30] relied on the internal 

consistency between NAAPS and variety of other tools such as another global chemical 

model (GEOS-Chem) and surface and satellite observations to trace large dust plumes to 

their sources in areas, such as North Africa. The consistency between NAAPS and the other 

aforementioned resources provides confidence in the former for the purposes of source 

attribution of dust to Asia.

A category termed “High EC” is defined as when both PM2.5 and EC exhibit extreme levels. 

These events likely stem from anthropogenic sources and biomass burning events owing to 

the high levels of EC (as compared to other emission sources) and predominantly 

accumulation mode particles in wildfires [37]. Events that do not qualify as being extreme 

fine soil or High EC events are considered as “Other”.

It is cautioned that the number of extreme events reported between 2001 and 2014 represents 

an underestimate since data is used only up through August 2014 and only starts in January 

2001 for three sites with the most delayed start time being for Organ Pipe in December 

2002.

3. Results and Discussion

3.1. Frequency and Categorization of Events

Of the total number of days when data were available in the time ranges in Table 1 (i.e., 
1431–1664 depending on site), between 76 and 120 total days were characterized by some 

type of extreme event (i.e., PM10, PM2.5, and/or fine soil) depending on the site (Table 2). 

This number of days of extreme events corresponds to between 5% and 7% of the total days 

examined. Grand Canyon exhibited the most extreme event days (120, i.e., 7% of its total 

days), which is coincident with it being one of the most recognized tourism spots in the 

Southwest.

Relative to the total days with extreme PM2.5 levels, Grand Canyon exhibited the highest 

percentage in the High EC category (47% versus 13%–25% for other sites). Of the total 

number of days with extreme fine soil (54–69 days depending on the site), the number of 

these events being linked to Asian dust ranged from 19% to 29% (i.e., 10–20 days). The 

total number of days with extreme events classified as Other (i.e., not High EC or fine soil 
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events) ranged from 17 to 30 days, which represents between 21% and 33% of the total 

extreme days depending on the site. The fact that the highest percentage of Other days were 

at Phoenix (31%) and Saguaro West (33%), the most urban-impacted sites among those 

studied, suggests that anthropogenic pollution, including anthropogenic dust, contributes to 

these events. Queen Valley also reached 31%, reflective of possible impact from transported 

pollution from the major nearby urban center Phoenix. Between 7 and 22 days in the Other 

category also registered extreme values of Coarse Mass (CM = PM10 − PM2.5), supporting 

the possibility of influence from locally generated dust.

To gain a sense of the spatial extent of pollution registering as extreme events, Table 3 shows 

how many sites experienced an extreme event for a specific pollutant category on the same 

day. Locally produced aerosol would not be expected to impact multiple sites at an extreme 

level as compared to a transported plume such as from Asia. Grand Canyon is farther 

removed from the other seven sites that are clustered closer in Southern Arizona, and, thus, 

Grand Canyon exhibits the highest number of days where an extreme event only impacted 

that site. Computed as a percentage of all extreme days registered for a particular pollutant 

type, Grand Canyon was the only site impacted out of 65%, 64%, 51%, 100%, and 84% of 

its extreme events for PM10, PM2.5, fine soil, High EC, and Other, respectively. The 

categories with the least number of extreme events impacting five or more sites were High 

EC (0 days for all sites) and Other (0–1 day depending on site). This result is thought to be 

due to locally generated pollution from either (i) some combination of biomass burning and 

anthropogenic activity (for High EC) or (ii) dust (for Other) that was not regional in nature. 

Fine soil events conversely impacted five or more sites on between 13 and 23 days, 

accounting for between 16% and 38% of all fine soil extreme events, depending on the site. 

Therefore, for the study region, fine soil is the pollutant type that most successfully impacts 

multiple sites at once at an extreme level.

The region-wide average for the PM2.5:PM10 ratio was 0.37, 0.35, and 0.23 for non-Asian 

dust, Asian dust, and Other-CM, respectively. Unexpectedly, the ratios for non-Asian dust 

events exceeded those for Asian dust events for half the sites (i.e., Chiricahua, Phoenix, 

Saguaro National Monument, Saguaro West). Also of interest is that non-Asian dust event 

averages for PM2.5:PM10 were well above 0.35 at the two sites in Tucson, Arizona (Saguaro 

National Monument = 0.57 ± 0.36; Saguaro West = 0.46 ± 0.26). Aplausible explanation for 

these unexpected results is interference of background anthropogenic emissions at these 

urban-impacted sites in Tucson (Saguaro National Monument and SaguaroWest), in addition 

to Phoenix which exhibited an average ratio of 0.35. The same explanation can be applied to 

the Fe:Ca results, which do not show a clear reduction in value for Asian dust events as 

compared to the more locally-relevant pollution categories for Chiricahua, Saguaro National 

Monument, and Saguaro West. However, the region-wide average for Fe:Ca was lowest for 

Asian dust (0.88), followed by non-Asian dust (0.96), and Other-CM (1.03). The values 

were generally low and close to the threshold value applied by past work to classify dust as 

purely Asian dust. These results suggest that caution should be exercised with the use of 

such ratios to distinguish between dust sources owing to mixing between distant and local 

sources.
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Due to the nature of Asian dust pollution being more geographically widespread than other 

forms of pollution, this category registered the highest frequency of its events impacting ≥5 

sites. Depending on the site, 30%–57% of extreme Asian dust events (i.e., 3–8 days) 

impacted ≥5 sites.

It is of interest to compare the Asian dust extreme event data to criteria used previously to 

distinguish Asian dust events in the study region, including mass concentration ratios of both 

Fe:Ca and PM2.5:PM10. Previous work showed that Fe:Ca ratios below 1 are considered to 

be 100% Asian dust and values above 2 are 100% local dust [38]. A threshold ratio value of 

0.35 for PM2.5:PM10 has been applied in other work to remove contamination of non-local 

dust sources in the study region [39]. This ratio generally increases with dust plume age and, 

thus, values higher than 0.35 are assumed to be contaminated with sources such as 

transported Asian dust. Values between 0.15 and 0.26 are associated with soil dust emissions 

from human activities according to the EPA [39]. Table 4 examines statistics associated with 

the two aforementioned ratios for non-Asian dust, Asian dust, and also the subset of Other 

extreme events that also had extreme values of CM (PM10−PM2.5). The latter are presumed 

to be due to locally generated dust.

3.2. “Other” Events

The Other category was investigated in more detail to gain insight about the source of these 

extreme events (Table 5). Between 47% and 84% of the Other events exhibited extreme 

PM10 levels, which is suggestive of the presence of locally-generated coarse matter (i.e., 
dust) since fine soil levels did not reach extreme levels. To gain confidence in this reasoning, 

the percent frequency of extreme CM days was calculated and is similar to the percent 

frequency of extreme PM10 days (i.e., within two days) with the exception of Grand Canyon 

and Phoenix, which had nine and seven fewer extreme CM days as compared to PM10, 

respectively. Since the ratio of extreme CM:Other days ranges from 41% (Organ Pipe) to as 

high as 74% (Chiricahua), with the average among all sites being 56%, locally generated 

CM (i.e., dust) accounted for a significant amount of the Other events.

PM2.5 levels reached extreme levels in 30%–76% of the Other extreme events, with Organ 

Pipe being the only site with a higher percentage for PM2.5 being extreme versus PM10. The 

PM2.5 constituents only reached extreme levels in an average of 10% (OC), 11% (K), 17% 

(nitrate), and 22% (sulfate) of the Other events. Among these four PM2.5 constituents, 

sulfate reached extreme levels in 48% and 35% of the Other events in Tonto and Organ Pipe, 

respectively, which were the highest values among all species and sites. This is likely due to 

anthropogenic emissions near those two sites such as from smelting [40–42]. Between 0% 

and 28% of Other events exhibited extreme levels of nitrate, OC, and potassium, which are 

all associated with wintertime pollution and fine soil emissions. These relatively low 

percentages for PM2.5 constituents are consistent with the majority of the Other events being 

due to CM.

3.3. Temporal Nature of Events

Figure 2 displays the monthly distribution of cumulative (i.e., summed for all years and 

sites) extreme events broken into the various pollutant categories. The month of August 
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experienced the highest number of extreme events in the study region for PM10, PM2.5, fine 

soil, non-Asian dust, High EC, and Other (also had an equal peak in June). In contrast to all 

other pollutant categories, Asian dust events mainly occurred in the spring months of 

March–June (41 out of 42 days, i.e., 98%) with only one event in February. The Other 

category exhibited a relatively constant amount in each month (12–16 days). Unlike PM10, 

PM2.5 exhibited a secondary mode in the winter month of January, driven mostly by High 

EC and Other events, suggestive of the importance of anthropogenic emissions and biomass 

burning, and secondary production of aerosol species that are favorably produced in 

wintertime conditions such as ammonium nitrate.

Figure 3 represents the interannual distribution of extreme events for different pollutant 

categories. It is cautioned that the time range with full years of data at all eight sites is from 

2003 to 2013 (refer to Table 1 for data time ranges for each site). All categories exhibited the 

most events in either 2002 or 2003 with the exception of Asian dust which reached 10 events 

in 2007 and followed a distinctly different temporal pattern than all other categories due to 

its distant source. An interesting feature of Figure 3 is the cyclical pattern of there being a 

peak every few years for PM10, PM2.5, fine soil, non-Asian dust, and Other, specifically in 

the years 2002–2003, 2006–2007, 2009, and 2011–2012. It is unclear with the dataset as to 

what explains these recurring peaks, and future work is warranted, with a longer term 

record, to identify what an explanation could be for these features in the data.

A simple linear regression was used to obtain the best-fit line for each pollutant type in 

Figure 3 using data between 2003 and 2013 when data were available for all sites for full 

years. Most all slopes were negative except for the Other category, which was only barely 

positive. The slopes, reported in units of number of events per year, and p values (in 

parenthesis) are as follows: PM10 = −0.19 (0.80), PM2.5 = −1.13 (0.23), fine soil = −0.95 

(0.29), High EC = −0.83 (0.03), non-Asian dust = −0.85 (0.25), Asian dust = −0.11 (0.76), 

Other = 0.03 (0.97). The only statistically significant trend at 95% confidence was for the 

High EC category. This is thought to be due to reduced anthropogenic emissions since other 

work for the study region examining 2005–2009 has shown that the fastest rate of decline in 

EC levels was in Phoenix [43], which is the most populated area. Another study analyzing 

IMPROVE data between 1990 and 2004 across the United States, including the Southwest, 

showed that there has been a ~25% reduction in EC attributed mostly to emissions controls, 

with the reduction being most dramatic in the winter as compared to summer [44].

The distribution of extreme events across days of the week is of interest for a few reasons. 

For example, EC rooted in anthropogenic emissions is thought to lead to higher 

concentrations around Thursday with minimum values on the weekend [44], and thus 

examining the frequency of High EC events as a function of the day of the week could help 

determine if the source of these events is anthropogenic in nature versus biomass burning. 

When normalized by total number of days on either the weekend (Saturday–Sunday) or 

weekday (Monday–Friday), High EC events occurred more frequently during weekdays 

(13.2 versus 10.5). All other categories exhibited more events during weekdays too. No air 

pollutant category exhibited a statistically significant difference in the number of events 

(normalized by number of either weekend or weekday days) on either the weekend or 

weekdays (or on any specific day) using a chi-square statistical test at the 95% confidence 
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level. The day of the week with the most extreme events for the various pollutant categories 

was either Wednesday or Thursday.

4. Conclusions

The study examined long-term aerosol data for the Arizona region to describe the frequency 

and character of extreme aerosol events. The results are as follows in order of the questions 

raised at the end of Section 1:

i. Between 5% and 7% of the total days (i.e., 1431–1664 depending on site) examined 

at the various sites exhibited an extreme aerosol event due to either extreme levels 

of PM10, PM2.5, and/or fine soil. Grand Canyon exhibited the most extreme event 

days (120, i.e., 7% of its total days), which is coincident with it being one of the 

most recognized tourism spots in the Southwest. Relative to the total number of 

extreme days, Grand Canyon exhibited the highest percentage in the High EC 

category (47% versus 13%–25% for other sites). “Other” events accounted for 

between 2% and 33% of the total extreme days, with most of these being associated 

with extreme PM10 levels (i.e., locally-generated dust). Of the total number of days 

with extreme fine soil (54–69 days depending on the site), the number of these 

events being linked to Asian dust, based on NAAPS analysis, ranged from 19% to 

29% (i.e., 10–20 days). The analysis highlighted the complexity of using NAAPS 

and various mass concentration ratios to distinguish between transported and local 

dust owing to likely mixing effects, especially in urban-impacted areas, such as 

Tucson and Phoenix.

ii. Fine soil is the pollutant type that most frequently impacted multiple sites 

simultaneously on the same day at an extreme level. Five or more sites reached 

extreme fine soil levels on the same day for 16%–38% of all possible fine soil 

extreme events depending on the site. Within the fine soil category, Asian dust 

events impacted five or more sites between 30% and 57% of the time when they 

occurred. The pollutant categories with the least number of extreme events 

impacting five or more sites on the same day were High EC (0 days for all sites) 

and Other (0–1 day depending on site) due to locally generated emissions that were 

not regional in nature. Grand Canyon exhibited the highest number of days where 

an extreme event only impacted that site since it is farther removed from the other 

seven sites that are clustered closer in Southern Arizona.

iii. Most pollutant categories (PM10, PM2.5, fine soil, non-Asian dust, High EC, Other) 

exhibited the highest number of extreme events in August. The Asian dust category 

was unique in its monthly pattern with its events occurring in the spring months of 

March–June (41 out of 42 days, i.e., 98%) with only one event in February. Unlike 

the other pollutant categories, High EC was the only one to show a statistically 

significant change in frequency of occurrence between 2003 and 2013. While 

extreme events were most frequent for the various pollutant categories on either 

Wednesday or Thursday, there was no statistically significant difference in the 

number of events on any particular day or on weekend days versus weekdays.
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Figure 1. 
Spatial map of the eight EPA IMPROVE stations examined in Arizona overlaid on a four 

year average (2005–2008) of OMI ultraviolet aerosol index data, which includes influence 

from light-absorbing aerosol constituents, such as dust and smoke.
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Figure 2. 
Monthly distribution of extreme events (cumulative for all years and sites) for different 

pollution categories.
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Figure 3. 
Time series of total extreme events as a function of year for different pollution categories. It 

is cautioned that the time range with full years of data at all eight sites is from 2003 to 2013 

(refer to Table 1 for data time ranges for each site).
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Table 1

Summary of IMPROVE sites and date ranges over which data are analyzed.

Site Name Latitude (°) Longitude (°) Altitude (m) Date Range

Chiricahua (Chi) 32.0994 −109.389 1554 January 2001–August 2014

Grand Canyon (GC) 35.9731 −111.9841 2267 January 2001–August 2014

Organ Pipe (OP) 31.9506 −112.8016 504 December 2002–August 2014

Phoenix (Ph) 33.5038 −112.096 342 April 2001–August 2014

Queen Valley (QV) 33.2939 −111.2858 661 April 2001–August 2014

Saguaro NM (SNM) 32.1746 −110.737 941 April 2001–August 2014

Saguaro West (SW) 32.2486 −111.2178 714 October 2001–August 2014

Tonto (Ton) 33.6548 −111.1068 775 January 2001–August 2014
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