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Abstract
Most proteins show changes in level across growth conditions. Many of these changes

seem to be coordinated with the specific growth rate rather than the growth environment or

the protein function. Although cellular growth rates, gene expression levels and gene regu-

lation have been at the center of biological research for decades, there are only a few mod-

els giving a base line prediction of the dependence of the proteome fraction occupied by a

gene with the specific growth rate. We present a simple model that predicts a widely coordi-

nated increase in the fraction of many proteins out of the proteome, proportionally with the

growth rate. The model reveals how passive redistribution of resources, due to active regu-

lation of only a few proteins, can have proteome wide effects that are quantitatively predict-

able. Our model provides a potential explanation for why and how such a coordinated

response of a large fraction of the proteome to the specific growth rate arises under different

environmental conditions. The simplicity of our model can also be useful by serving as a

baseline null hypothesis in the search for active regulation. We exemplify the usage of the

model by analyzing the relationship between growth rate and proteome composition for the

model microorganism E.coli as reflected in recent proteomics data sets spanning various

growth conditions. We find that the fraction out of the proteome of a large number of pro-

teins, and from different cellular processes, increases proportionally with the growth rate.

Notably, ribosomal proteins, which have been previously reported to increase in fraction

with growth rate, are only a small part of this group of proteins. We suggest that, although

the fractions of many proteins change with the growth rate, such changes may be partially

driven by a global effect, not necessarily requiring specific cellular control mechanisms.

Introduction
A fundamental system biology challenge is to understand and predict changes in gene expres-
sion levels. Early on it was found that the expression of some genes is coordinated with growth
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rate, rather than with the specific environment. Classic experiments in bacteria have shown
that ribosome concentration increases in proportion to the specific growth rate [1]. The
observed increase in concentration has been interpreted as an increased need for ribosomes at
faster growth rates [2–5]. The search for underlying mechanisms in E.coli yielded several candi-
dates [6] such as the pools of ppGpp and iNTP [7, 8], and the tRNA pools through the strin-
gent response [9, 10].

In the last two decades, with the ability to measure genome-wide expression levels, it was
found that changes in gene expression as a function of growth rate are not limited to ribosomal
genes. In E.coli, the expression of catabolic and anabolic genes is coordinated with growth rate,
and suggested to be mediated by cAMP [11–13]. In S.cerevisiae, it was shown that most of the
genome changes its expression levels in response to environmental conditions in a manner
strongly correlated with growth rate [10, 14–16]. Studies examining the interplay between
global and specific modes of regulation, suggested that global factors play a major role in deter-
mining the expression levels of genes [14, 16–26].

In E.coli, this was mechanistically attributed to changes in the pool of RNA polymerase core
and sigma factors [27]. In S.cerevisiae, it was suggested that differences in histone modifications
around the replication origins [28] or translation rates [10] across conditions may underlie
the same phenomenon. Taken together, these studies suggest that the expression of all genes
changes with growth rate, with different factors and architectures of regulatory networks yield-
ing differences in the direction and magnitude of these changes [18, 19].

Despite these advancements, many gaps remain in our understanding of the connection
between gene expression and growth rate, primarily regarding the underlying mechanisms.
Are there unique factors controlling specific groups of genes, as is suggested by [8, 12, 13, 25]
and others, or is there a more global phenomenon shared across most genes in the genome?
What fraction of the variability observed in gene expression patterns across different growth
conditions results from active adaptation to the specific condition? To what extent are large
clusters of genes regulated by “master regulator” factors such as cAMP, and how much by
global, gene and condition-independent, response? Genome-wide proteomic data sets, which
take a census of the proteome composition at different growth rates, offer potential insights
into these questions and can serve as a basis to explore and compare different models of regula-
tion [13, 24, 25, 29].

Here we present a parsimonious model that quantitatively predicts the relationship between
protein abundance and specific growth rate in the absence of gene-specific changes in regula-
tion. Our model provides a baseline for the behavior of genes in conditions between which they
are not differentially regulated, without the need for condition-specific parameters. The model
predicts an increase in protein expression with specific growth rate as an emerging property
that is the result of passive redistribution of resources, without need for specific regulation
mechanisms such as those detailed above. On top of this baseline model, different regulatory
aspects, that are definitely at play, can be added. We tested the model against recently pub-
lished proteomic data sets of E.coli spanning different growth conditions [13, 24, 25, 29]. We
find a coordinated, positive correlation between the specific growth rate and the fraction of
many proteins, from diverse functional groups, out of the proteome. Although this response
accounts for a relatively small part of the total variability of the proteome it is highly relevant
for understanding proteome wide studies, as it describes the behavior of about 50% of the pro-
teome genes. The well-studied ribosomal proteins are found to be a small subset of this group
of proteins that increase their fraction with the specific growth rate. Our analysis suggests that,
even if changes in the proteome composition are complex, for a large number of proteins and
under many conditions such changes take the form of a linear, coordinated, increase with
growth rate. An increase that can result from cellular resources being freed by down-regulated
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proteins. The well studied scaling of ribosome concentration with growth rate can be consid-
ered one manifestation of this more general phenomena. While we present no proof that the
mechanism causing the increase in concentration of many proteins with the growth rate is
indeed the passive redistribution of bio-synthetic resources, we find the simplicity of this expla-
nation to be a strong evidence for it being at least a partial factor at play.

Results

Simple considerations predict passively driven increase in the fraction of
proteins as a function of the specific growth rate
What is the simplest way to model the differences in the proteome composition of two popula-
tions of cells, one growing in a permissive environment, and the other facing a more challeng-
ing growth condition? In an attempt to parsimoniously analyze such differences, we have
constructed a minimalistic model that predicts the behavior of non-differentially regulated
genes across different growth conditions. Before presenting the model mathematically, we give
a brief intuitive depiction.

The model assumes that under a favorable growth condition, the cell actively down-regu-
lates some proteins that are only needed in harsher conditions, as illustrated in Fig 1. The
down regulation of the lac operon in the presence of glucose is a prominent example for this
phenomenon. As a result of only that specific change, the fraction of all other proteins out of
the proteome is increased compared to the harsher (e.g. growth on lactose) condition. In our
baseline model, all the other proteins increase their levels and are expected to show the same
relative ratios between each other in all conditions. Specifically, the levels of the proteins form-
ing the bio-synthetic machinery increase, increasing the ratio of the bio-synthetic machinery to
the proteome. The growth rate is dependent on the amount of protein bio-synthesis a cell per-
forms. The increase in ratio of bio-synthetic machinery to proteome thus results in an expected
increase in the growth rate, as depicted in Fig 1. In our example of the lac operon, in the pres-
ence of glucose, the down regulation of lactose metabolism genes leads to faster growth as
more bio-synthetic genes are expressed instead. Therefore, in our model, the effect of growing
in high quality media is the down regulation of unnecessary genes, leading to the freeing up of
resources that are then redistributed among the genes that are still expressed in this favorable
condition.

The expression level of a protein can be decomposed into gene specific control and
global expression machinery availability. The composition of the proteome can in principle
be determined by a large number of parameters. For example, given that an organism expresses
1000 genes across 10 different growth conditions, one could imagine that controlling the
expression pattern of all genes across all conditions will require 10,000 parameters (setting the
level of every gene in every condition). Our model proposes an underlying architecture that
drastically reduces this amount of parameters, implying that cells control most of the composi-
tion of their proteome through fewer degrees of freedom than might be naively expected.

The model separately considers the resulting fraction of every protein out of the proteome
as the product of two control mechanisms: (A) Protein/gene specific controls which only affect
the individual protein under a given condition. These include the gene associated promoter
affinity, 5’-UTRs, ribosomal binding site sequence, as well as the presence of specific transcrip-
tion/translation factors that react with the relevant gene. We note that while a given transcrip-
tion factor may affect many genes, the presence or absence of its relevant binding sequence is
gene specific, making this control mechanism gene specific in the context of our analysis.
While some of these controls (such as the ribosomal binding sites) are static, and therefore
condition independent, others are dynamic and will differ across different environmental

AMinimalistic Resource Allocation Model to Explain Increase in Protein Expression with Growth Rate

PLOS ONE | DOI:10.1371/journal.pone.0153344 April 13, 2016 3 / 21



conditions (such as transcription factors state, for genes that are affected by them). (B) Global
expression control based on the availability of bio-synthetic resources, including RNA poly-
merase, co-factors, ribosomes, amino-acids etc. All of these factors can potentially differ across
different environmental conditions and no gene can avoid the consequences of changes in
them.

In the model, every gene is given an ‘affinity-for-expression’ (or ‘intrinsic-affinity’) score
that encapsulates its tendency to attract the bio-synthetic machinery, as was first suggested in
[30]. This gene-specific value can in principle change across conditions but a key feature is that
the gene intrinsic affinity tends to have the same value across many conditions. Often two val-
ues are enough across all conditions, an “off” and “on” value.

While the intrinsic affinity is a lumped up parameter, combining effects on transcription,
translation and other factors together, it can be formally defined in units of protein molecules
produced per unit time under standard growth condition c. The use of intrinsic affinities in our
model does not require inferring their absolute values and does not require teasing apart the
effect of each of their components. We compare and take ratios of intrinsic affinities to show
how they can be used to understand changes in specific growth rate as a result of expression
modulation. Conceptually, intrinsic affinities resemble standard Gibbs free energies of chemi-
cal reactions, they integrate many parameters, are given under some standard condition,

Fig 1. A minimalistic model predicts that low expression of condition-dependent genes under a permissive growth environment, compared with a
restrictive environment, implies larger fraction of all other proteins out of the proteome.With this, the ratio of bio-synthesis genes to the rest of the
proteome is higher in permissive environments, resulting in faster growth.

doi:10.1371/journal.pone.0153344.g001
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represent tendencies of processes to occur, and can be used in different contexts without know-
ing their exact values.

The notion of intrinsic affinities facilitates the representation of the expression pattern
under a given condition. Assuming each gene has only a finite set of affinities, possibly only
one or two (for example, on and off states of the lac operon), the expression pattern is reduced
to selecting which, out of the total gene-specific small set of possible affinities, each gene gets
under the relevant condition. Given that the selection of expression level for a given gene is
driven by some specific environmental cues (translated to, for example, activation of specific
transcription factors), the description can be further reduced to determining what cues are
present at each condition.

We denote the affinity of gene i under growth condition c by wi(c). To determine the result-
ing fraction of every protein, our model assumes that the bio-synthetic resources are distrib-
uted among the genes according to those affinities. Therefore, the fraction of a specific protein
out of the proteome is equal to the specific affinity of the corresponding gene under the condi-
tion, divided by the sum of the affinities of all genes under that same condition, as is stated in
Eq (1). Intuitively, one can think of a competition between the genes and transcripts over the
bio-synthetic resources, where each gene/transcript attracts resources according to its intrinsic
affinity. To illustrate: if two genes have the same affinity under some condition, their corre-
sponding proteins will occupy identical fractions out of the proteome. If gene A has twice the
affinity of gene B under a given condition, then the fraction protein A occupies will be twice as
large as the fraction occupied by protein B under that condition, etc. The division by the sum
of the affinities of all genes under the condition normalizes the fractions such that the sum of
the fractions of all proteins under the condition will be 1.

This relationship can be simply formulated as follows:

piðcÞ ¼
PiðcÞ
PðcÞ ¼ wiðcÞP

jwjðcÞ ð1Þ

where pi(c) denotes the fraction out of the proteome of protein i under condition c, Pi(c)
denotes the mass of protein i under condition c per cell, P(c) denotes the total mass of proteins
per cell under condition c, and the sum, ∑j wj(c), is taken over the intrinsic affinities of all the
genes the cell has.

This equation emphasizes that the observed fraction of a protein is determined by the two
factors mentioned above: the specific affinity of the protein/gene, that is present in the numera-
tor, and also, though less intuitive, the affinity of all other genes under the growth condition
(affecting the availability of bio-synthetic resources), as reflected by the denominator.

For simplicity, the model refers to the fraction of each specific protein in the proteome and
not to the protein concentration. The corresponding concentration in the biomass can be cal-
culated using the concentration of total protein in the biomass. In E.coli, this concentration is
known to slightly decrease in a linear manner with the specific growth rate [22, 24, 31]. As the
decrease in total proteome mass per cell dry weight is relatively small, it will not cause a qualita-
tive difference in our findings even when considering specific protein concentration and not
protein fraction out of the proteome (for further discussion see Methods).

A change in growth condition triggers changes in expression of specific proteins that
indirectly affect the whole proteome. Different environmental conditions require the
expression of different genes. For example, the expression of amino-acids synthesizing
enzymes is required only in culture media lacking amino-acids [32, 33]. Therefore, the cell
can infer the presence or absence of amino-acids in the growth media and, regulate the
affinities of the synthesizing genes accordingly. If we consider a gene i, whose specific
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affinity is not dependent on the presence of amino-acids, we suggest that its fraction will still
change between the two conditions as the affinities of other condition specific genes change,
thereby redirecting the bio-synthetic capacity. In mathematical terms this will change the
denominator in Eq (1) and thus affect the distribution of resources between all of the
expressed genes.

Generalizing this notion, we can divide the proteins into those whose intrinsic affinity
remains constant across all of the considered conditions, and those whose intrinsic affinity
changes between at least some of the conditions (Fig 1). An interesting consequence is that pro-
teins whose intrinsic affinities remain constant also maintain their relative ratios across these
conditions with respect to each other, as observed experimentally in S.cerevisiae in [14].

Growth rate is the outcome of proteome composition which is dictated in turn by the
environmental conditions. While it is sometimes implied that different cellular components
are regulated by the growth rate, our model considers the growth rate as an outcome of the
environmental conditions that affect the proteome composition. Specifically, we assume that
the doubling time is proportional to the ratio of the total amount of proteins per cell and the
proteins involved in bio-synthesis in that cell. The larger the ratio of total proteins to bio-syn-
thesis proteins is, the longer these bio-synthesis proteins will need to duplicate the proteome,
resulting in a longer doubling time.

To illustrate this assumption concretely, one could think about the synthesis of polypep-
tides. If a cell has R actively translating ribosomes, each of which synthesizing polypeptides at
a rate of η� 20 amino acids per second, the bio-synthetic capacity of the cell will be limited
to� ηR amino acids per second. If the total amount of protein in that same cell is P (measured
in amino acids count), it follows that the time it will take the actively translating ribosomes to
synthesize the proteins for an identical daughter cell is t � P

ZR (up to a ln(2) factor resulting

from the fact that the ribosomes also synthesize more ribosomes during the replication process
and that these new ribosomes will increase the total rate of polypeptides synthesis).

The theoretical lower limit of the doubling time, TB, will be achieved when all of the prote-
ome of the cell is the bio-synthetic machinery. If the bio-synthetic machinery is only half of the
proteome, the doubling time will be 2TB etc.

To integrate the notion of total protein to bio-synthetic protein ratio into our model, we
make the following simplifying assumption: There is a group of bio-synthetic genes (e.g. genes
of the transcriptional and translational machineries) the affinities of which remain constant
across different growth conditions, that is, these genes are not actively differentially regulated
across different conditions. Furthermore, we assume that the machineries these genes are
involved in, operate at relatively constant rates and active to non-active ratios across conditions
[31]. We are aware that these values are estimated to change by up to 2 fold and, for now, con-
sider such changes to be negligible. We incorporate the effects of changes to synthesis rates
into our model below.

Formally, we define the group of bio-synthesis genes, GB, such that, for every gene that
belongs to this group, k 2 GB, its affinity, wk(c) is constant regardless of the condition, c.

wkðcÞ ¼ wk ð2Þ

To keep our notations short, we will define the condition independent sum over all of these
bio-synthesis genes as the constant:

WB ¼
X

k2GB

wk
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The doubling time under a given condition, τ(c), will be proportional to the ratio of total
protein to bio-synthesis protein under that condition, with the proportionality constant TB:

tðcÞ ¼ TB

PðcÞP
k2GB

PkðcÞ
¼ TB

P
jwjðcÞ
WB

ð3Þ

Therefore, the model reproduces an increase in the doubling time for conditions requiring
larger amounts of non-bio-synthetic proteins (i.e. higher values in the sum across wj).

The fraction of a non-differentially regulated protein is expected to increase with the
growth rate. Recalling that the connection between the growth rate and the doubling time is:

gðcÞ ¼ ln ð2Þ
tðcÞ , we now combine Eq (1) with Eq (3) to get a prediction for the single protein frac-

tions pi:

piðcÞ ¼
wiðcÞP
jwjðcÞ

¼ wiðcÞ
WB

WBP
jwjðcÞ

¼ wiðcÞ
WB

TB

ln ð2Þ gðcÞ ð4Þ

By incorporating all the condition-independent constants (WB, TB, ln(2)) into one term, A,
we can simplify to:

piðcÞ ¼ AwiðcÞgðcÞ ð5Þ

Hence, for every two conditions between which gene imaintains its affinity, (wi(c1) = wi(c2)),
the fraction pi(c) protein i occupies in the proteome scales in the same way as the growth rate
(g(c)) between these two conditions.

To summarize, the simplified model we have constructed predicts that, under no specific
regulation, the fraction a non-regulated protein occupies out of the proteome should scale pro-
portionally with the growth rate. A group of such proteins would therefore maintain their rela-
tive ratios across conditions.

Protein degradation differentiates between measured growth rate and biomass synthesis
rate. In the following two sections we analyze the effects of expanding our model to account
for two biological effects: protein degradation and changes in the rates at which molecular
machines operate.

The model we developed predicts that when the growth rate approaches zero, the fraction of
every protein with constant affinity also approaches zero. This approach to zero applies specifi-
cally to the bio-synthesis genes, that have constant affinities according to our assumptions.
However, it is known that the fractions of these proteins, and specifically of ribosomal proteins
does not drop to zero when the growth rate approaches zero [34, 35]. We can account for this
phenomenon by including protein degradation in our model.

We assume the degradation rate to be constant for all genes and conditions. Clearly the bio-
logical situation is much more complicated. We note that with the future availability of detailed
information on degradation rates, it will be straightforward to extend the model. Experimental
evidence in S.cerevisiae suggest that protein degradation occurs at relatively slow rates with
half lives of� 10 hours [36]. The observed growth rate, g, is the amount of proteins produced
minus the amount of proteins degraded. To illustrate, at zero growth rate, the implication is
not that no proteins are produced, but rather that proteins are produced at exactly the same
rate as they are degraded.

Integrating this notion into the model means that the bio-synthesis capacity needs to suffice
to re-synthesize all the degraded proteins. Hence, where the equations previously referred to
the cellular growth rate, g, as the indicator of protein synthesis rate, they should in fact refer to
the cellular growth rate plus the degradation rate, as that is the actual rate of protein synthesis.
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If we denote by α the degradation rate, Eq (5) should thus be rewritten as:

piðcÞ ¼ AwiðcÞðgðcÞ þ aÞ ð6Þ

This equation predicts linear dependence of the fraction of unregulated proteins on the
growth rate, with an intercept with the horizontal axis occurring at minus the degradation rate
(S1 Fig). Thus, at zero growth rate, the fraction of non-differentially regulated proteins out of
the proteome is positive, equaling Awi(c)α.

Slower rates of biological processes in lower growth rates affect the relationship between
proteome composition and growth rate. The simplified model assumes that the doubling
time is proportional to the ratio of total protein to bio-synthetic protein. This assumption fails
if the rate at which each bio-synthetic machine operates changes across conditions. While ribo-
somal translation rates and mRNA transcription rates are relatively constant per synthesizing
machinery unit, they may change up to 2 fold across different conditions [31]. Replacing this
assumption by an interdependence of bio-synthesis rate with growth rate (such that, the faster
the growth, the faster the synthesis rates, per machine) [24, 31], will affect the resulting predic-
tions as well. This effect is formally analyzed in S1 Text. Slower bio-synthesis rates under
slower growth rates imply that, compared with the model prediction, higher fraction of bio-
synthesis proteins is needed to achieve a given growth rate. Thus, lower synthesis rates under
slower growth rates will be reflected by a lower slope and higher interception point for non-reg-
ulated proteins than those predicted by the constant-rate version of the model, as is depicted in
S1 Fig.

To summarize, our theoretical model predicts that the default behavior of non-differentially
regulated proteins between two conditions is to maintain a fraction that is proportional to the
growth rate. The faster the growth rate, the higher the fraction. Such proteins should maintain
their relative concentrations w.r.t. each other. Degradation and changes in rates of molecular
machineries at slow growth result in predicting non-zero fraction for such proteins even when
the growth rate is zero, resulting in a more moderate response of the fraction to the growth
rate.

Analysis of proteomic data sets
Our theoretical model predicts that the fraction of many proteins proportionally and coordi-
nately scales up with the specific growth rate across different growth conditions. To assess the
extent to which this prediction is reflected in actual proteome compositions, we present analy-
sis of two published proteomics data sets of E.coli, [13] and [29]. These data sets use mass
spectrometry to evaluate the proteomic composition of E.coli under 23 different growth rates
using an accelerostat [37], and 20 different growth conditions, spanning both different carbon
sources and chemostat-controlled growth rates, respectively. The data set from [29] contains
more conditions than those analyzed below, see Methods for further details.

Other proteomic data sets of E.coli have been published in recent years ([24] and [25]).
These data sets were measured under conditions that make them less adequate for our analysis
as is further discussed in S2 Text.

We note that continuously controlled growth rates (such as those obtained in chemostats
and accelerostats) tend to yield uniform results that roughly split the proteins to two groups, a
group of proteins the fraction of which increases with the growth rate, and a group of proteins
the fraction of which decreases with growth rate (S2 Fig). Such sets of conditions are generated
by modifying the growth rate using a single, continuous external parameter, such as the carbon
source concentration. Therefore, a relatively fixed set of genes is expected to be actively regu-
lated (up or down) across all of the conditions. As a result, such conditions are less adequate for
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the purpose of identifying differences between actively regulated genes and passively expressed
genes as they do not readily allow distinction between these two groups.

While we suggest that control states are discrete and finite, it is not a necessary condition
for our mathematical analysis to hold, and allowing for continuous modulation of affinities of
genes does not affect the model prediction of increased fraction with growth rate for un-modu-
lated affinities. We therefore include continuous growth conditions together with the distinct
conditions in our analysis, in the data sets that involve more than a single growth rate control-
ling factor.

A large fraction of the proteome is positively correlated with growth rate. Our model
predicts that proteins that are not differentially regulated between conditions should increase
in fraction with the growth rate. The identification presented here of a large number of pro-
teins, from unrelated functional groups and with unknown common regulating mechanism,
that increase in fraction with the growth rate, may serve as an indication that a passive, global
mechanism, such as that proposed by our model, is at play. To test this prediction, we calcu-
lated the Pearson correlation of every protein with the growth rate (Fig 2, panels A and B). We
find that about a third of the proteins (473 out of 1442 measured in the data set from [29], and
305 out of 1142 in the data set from [13]) have a strong positive (> 0.5, see also S4 Text) corre-
lation with the growth rate. These values are much higher than those obtained for randomized
data sets (12 and 5 strongly positively correlated proteins for the two data sets, respectively, as
is further discussed below and is seen in Fig 2C). Assessing the agreement between the two
data sets by comparing the correlation with the growth rate of every protein across the 4 glu-
cose limited chemostat growth conditions in [29] and the 9 glucose limited accelerostat condi-
tions in [13] gives a moderate covariance of� 0.4 (S3 Text and S3 Fig). Strong negative
correlation with growth rate is much less common in the data set from [29]. It is common in
the data set from [13], where we speculate that it results from the specific way by which growth
rate was controlled, namely by implicitly controlling nutrient concentration via an accelerostat,
as was discussed above. Notably, in both data sets, the proteins that have a high correlation
with the growth rate are involved in many and varied cellular functions and span different
functional groups (See S1 and S2 Tables).

Previous studies already found that ribosomal proteins are strongly positively correlated
with growth rate [27, 34, 35]. Our analysis agrees with these findings as we find the fraction of
the vast majority of the ribosomal proteins to be strongly positively correlated with growth rate
(47 out of 53 in the data set from [29] and 52 out of 53 in the data set from [13]). However, we
also find that the group of proteins strongly positively correlated with growth rate reach far
beyond the previously discussed group of ribosomal proteins (S1 and S2 Tables). Importantly,
the proteins that we find to be strongly positively correlated with growth rate are not generally
expected to be co-regulated, and their behavior does not seem to be the result of any known
transcription factor or regulation cluster response [38].

Proteins positively correlated with growth rate share a similar response. Our model
predicts that non-differentially regulated proteins should preserve their relative ratios across
conditions. We refer to such proteins as being coordinated or coordinately expressed. We have
shown above that many proteins are positively correlated with growth rate. However, we note
that having similar correlation with growth rate for different proteins does not imply that such
proteins are coordinated, i.e. that they share the same scaling with growth rate. Theoretically,
proteins with identical correlation with growth rate may have very different slopes or fold
changes with increasing growth rate.

In order to examine how similar the behavior with growth rate is for the group of strongly
positively correlated proteins, we normalized each of them to its mean abundance (see Methods)
and calculated the slope of a linear regression line for the normalized fraction vs. the growth
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rate (Fig 3). This normalization procedure elucidates how the amount of each protein scales
across different conditions, relative to its mean fraction out of the proteome. The slopes of� 2

3

of the proteins lie in the range (0.5, 2) with the highest slopes being� 5. A slope of 0.5 means
that the fraction of the protein changes by ±12% around its average fraction in the range of

Fig 2. A strong positive Pearson correlation between the fraction out of the proteome and the growth rate is observed for a large number of
proteins in two data sets. (A-B) Shown are histograms displaying the correlations of all proteins to growth rate in the data from [29] (A) and [13] (B).
Functional protein groups are denoted by different colors. Thresholds defining high correlation are marked in dashed lines and further discussed in S4 Text.
(C) Shuffling the amounts of every protein across conditions for the data set from [13] reveals the bias towards positive correlation with growth rate is non-
trivial.

doi:10.1371/journal.pone.0153344.g002

Fig 3. Histogram of the slopes of regression lines for the highly correlated with growth proteins (473
and 305 proteins in the left and right panels respectively). Ribosomal proteins are stacked in green on top
of the non ribosomal proteins, marked in blue. Proteins fractions were normalized to account for differences in
slopes resulting from differing average fractions (Methods). The expected distribution of slopes given the
individual deviations of every protein from a linear regression line, assuming all proteins are coordinated, is
plotted in gray. Dashed vertical lines at 0.5 and 2 represent the range at which the slopes of� 2

3
of the

proteins lie. Left panel—data from [29], right panel—data from [13]. High correlation proteins share similar
normalized slopes, implying they are coordinated, maintaining their relative ratios across conditions (see text
for further details). Ribosomal proteins, shown in green, scale with growth rate in a manner similar to the rest
of the high correlation proteins (see text and S7 Fig).

doi:10.1371/journal.pone.0153344.g003
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growth rates measured, whereas a slope of 2 indicates a change of ±50%. Hence, the relative
amounts of proteins with slopes in the range of (0.5, 2) change by at most just over 2-fold over
the range of growth rates measured.

To understand whether the observed distribution is coordinated, and can result from the
noise levels present in the data, we calculated, for every protein, the standard error with respect
to the regression line that best fits its fractions. Given these standard errors we generated the
expected distribution of slopes that would result by conducting our analysis on proteins that
share a single, identical slope, but with the calculated noise in measurement. The expected dis-
tribution is shown in gray line in Fig 3 (Further details on the calculation as well as the devia-
tion in maximum between the expected and observed distributions are discussed in S5 Text).
The two data sets show different characteristics of the expected distribution. While the
expected distribution corresponding to the data set from [29] coincides with the observed vari-
ability in calculated slopes, supporting the notion of a coordinated response, for the data from
[13] the expected distribution is much narrower, suggesting a bi-modal distribution. Future
studies may uncover the factors underlying the difference between the distributions of the two
data sets.

Next we examined how the response of the strongly correlated proteins relates to the well-
studied response of ribosomes concentration. To that end, we performed the same analysis of
slopes, restricting it to ribosomal proteins alone, as is shown by the stacked green bars in Fig 3.
We find that strongly correlated proteins and ribosomal proteins scale in similar ways (slope of
1.37 with R2 = 0.89 for the sum of ribosomal proteins vs. 1.24 and R2 = 0.91 for the sum of all
strongly correlated proteins, in the data from [29], and slope of 1.49 with R2 = 0.97 for ribo-
somal proteins vs. 1.0 and R2 = 0.97 for all strongly correlated proteins, in the data from [13].
See also S7 Fig), implying that the observed response of ribosomal proteins to growth rate is
not unique and is coordinated with a much larger fraction of the proteome, thus encompassing
many more cellular components.

Our results support the notion that a large number of proteins maintain their relative con-
centrations across different growth conditions and thus extend the scope of similar results
obtained for S.cerevisiae in [14] and for expression levels in E.coli under stress conditions [39].
In contrast to other approaches, our model suggests a mechanism for this coordinated expres-
sion changes that is not based on shared transcription factors but rather is a result of passive
redistribution of resources.

Changes in the proteome across environmental conditions are dominated by proteins
that are positively correlated with growth rate. To assess the significance of the positive cor-
relation of proteins with growth rate, out of the total change in proteome composition across
conditions, we summed the fractions of all of the proteins that are strongly correlated with
growth rate across the conditions measured and plotted their total fraction against the growth
rate in Fig 4. Both data sets show that the fraction of these proteins change� 2 fold across
a� 5 fold change in the growth rate under the different growth conditions. This change is
smaller than the 1:1 change predicted by our basic model and the deviations may partly result
from the effects of degradation and varying bio-synthesis rates, as is discussed above. Most of
the variability of the total fraction of these proteins can be explained by the growth rate (R2 of
0.91 in the data set from [29] and 0.97 in the data set from [13]). Importantly, the strongly cor-
related proteins form a large fraction of the proteome, exceeding 50% of the proteome by
weight, at the higher growth rates. This is a much higher fraction than the one obtained for
randomized data sets (< 4%, as is further discussed below) Thus, when considering the
changes in proteome composition across conditions, we find that, at higher growth rates, more
than 50% of the proteome composition is affected by the coordinated response of the same
group of proteins with growth rate. In the extreme case that all of the change in the expression
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of the strongly positively correlated with growth rate proteins results from passive redistribu-
tion of resources, this change implies that, across the conditions used,� 25% of the proteome
by mass changed from being dedicated to condition specific proteins, to being dedicated to the
� 1/3 of the proteins that are strongly positively correlated with growth rate.

Despite the magnitude of this phenomena, the fraction of the total variability in the prote-
ome that is accounted for by this linear response is only� 8% in the data set from [29] and
even lower in [13] (S4 Fig). While this fraction is low, it is still much higher than the equivalent
2% obtained for a randomized data set based on the data from [29], as is described below. This
relatively low explained variability fraction is primarily the result of two factors: the linear
response applies only to< 0.4 of the proteins, leaving the rest of the proteins with no predic-
tion, and experimental noise in whole proteome measurement techniques, estimated at� 20%.
Further discussion of the fraction of variability explained can be found in S4 Text.

The statistical features we find do not naturally rise in randomized data sets. We per-
formed two tests to verify that the trends we find, namely, the large fraction of proteins with a
strong correlation with growth rate, the coordination among these proteins, their large accu-
mulated fraction out of the proteome, and the fraction of variability explained by a single linear
regression approximation of their fractions, are all non-trivial characteristics of the data set
that do not naturally rise in randomly generated data but that do arise if our model is correct.
To this extent we repeated our analysis on two simulated data sets:

• A data set at which the amount of every protein was shuffled across the different conditions.

• A synthetic, simulated data set, based on the conditions and growth rates of the data set from
[29], assuming half the proteins being perfectly coordinated and linearly dependent on
growth rate, with parameters similar to those found in our analysis, and the other half having
no correlation with growth rate, and with a simulated normally distributed measurement
noise of 25%.

Fig 4. Fraction of the proteome occupied by proteins that are strongly positively correlated with
growth rate. The accumulated sum of the proteins that are strongly positively correlated with growth rate
(defined as having a correlation above 0.5), as a fraction out of the proteome, with linear regression lines is
shown. These proteins form a large fraction (� 50%) out of the proteome at higher growth rates. The
accumulated fraction of the strongly correlated proteins doubles as the growth rate changes by about 5-fold.
Assuming constant degradation rates, the trend lines correspond to protein half life times of� 1.7 hours.
Randomized data sets result in much fewer strongly positively correlated with growth rate proteins, implying a
much smaller accumulated fraction (hollow circles).

doi:10.1371/journal.pone.0153344.g004

AMinimalistic Resource Allocation Model to Explain Increase in Protein Expression with Growth Rate

PLOS ONE | DOI:10.1371/journal.pone.0153344 April 13, 2016 12 / 21



We find that in the shuffled sets the number of proteins being significantly positively corre-
lated with growth rate is much smaller than found in the real data sets (12 vs. 473 in the data
set from [29] and 12 vs. 473 in the data set from [13]) as is shown in Fig 2C. As a consequence,
these proteins now occupy a much smaller fraction out of the proteome mass-wise (< 4% on
average across conditions vs.� 40% in the real data sets) as is shown in Fig 4. Finally, the frac-
tion of variability in the proteome that can be explained by a single linear regression to these
proteins is smaller for the shuffled data sets than that obtained for the real data set (2% vs. 8%
for a threshold of R� 0.5 for the data from [29] and 1% vs. 3.5% for the data set from [13]), as
is seen in S8 Fig.

We find that the simulated (second) set does display similar characteristics to those we find
in the real data, confirming that if, indeed, our model is valid, experimental measurements
would overlap with those that we obtained as is seen in S9 Fig.

Discussion
We presented a parsimonious model connecting the fraction of proteins out of the proteome
and the growth rate as an outcome of the limited bio-synthesis resources of cells. The notion of
intrinsic affinity for expression, first presented in [30], and rarely used ever since, was re-intro-
duced as a key determinant for the differences in expression of different proteins under a given
growth condition. The integration of the notion of intrinsic affinity for expression with the
limited bio-synthesis capacity of cells was shown to result in a simple mechanism predicting
increased fraction of many proteins with the growth rate, without assuming regulation by spe-
cific transcription factors for these proteins.

The framework we present emphasizes the importance of accounting for global factors, that
are reflected in the growth rate, when analyzing gene expression and proteomics data, as was
noted before [10, 13, 14, 16, 18–26, 30]. Specifically, we suggest that the default response of a
protein (that is, the change in the observed expression of a protein, given that no specific regu-
lation was applied to it) is to linearly increase with growth rate. We point out that, as non-
differentially regulated proteins maintain their relative abundances, one can deduce the param-
eters of the linear increase with growth rate of any non-differentially regulated protein by
observing the scaling of other such proteins and fixing the ratio between the protein of interest
and the reference proteins.

We analyze two recent whole proteome data sets to explore the scope and validity of our
model. We characterize a coordinated response in E.coli between many proteins and the spe-
cific growth rate. This response spans proteins from various functional groups and is not
related to the specific medium of growth. A similar phenomena is observed for S.cerevisiae as
was reported in [14] and may thus be conserved across various organisms and domains of life.
Our analysis suggests that, while changes in the proteome composition may seem complex, for
a large number of proteins and under many conditions, they can be attributed to a linear, coor-
dinated, increase with growth rate, at the expense of other, down-regulated proteins. The well
studied scaling of ribosomes concentration with growth rate can be considered one manifesta-
tion of the more general phenomena we describe here. We find that this response is not unique
to ribosomal proteins but is, in fact, shared with many other proteins spanning different func-
tional groups. Furthermore, the linear dependence slope and explained variability of fraction
levels of proteins explained by linear correlation with growth rate is similar among the ribo-
somal proteins versus all the proteins with high correlation with the growth rate.

Many studies monitored the ribosome concentration in cells and its interdependence with
growth rate [1, 4, 13, 20, 24, 25, 31](many of them indirectly). While in all of these studies
a linear dependence of ribosome concentration with growth rate was observed, in some cases
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different slopes and interception points were found to describe this linear dependence, com-
pared with the observations in our study. A discussion of various reasons that may underlie
these differences is given in S7 Text.

Interestingly, our model suggests that a linear correlation between ribosomal proteins and
the growth rate might be achieved without special control mechanisms. Nonetheless, many
such mechanisms have been shown to exist [6, 22] (for a comparison to the models suggested
in [20–22] and [25] see S8 Text). We stress that the existence of such mechanisms does not
contradict the model. Mechanisms for ribosomal proteins expression control may still be
needed to achieve faster response under changing environmental conditions or a tighter regula-
tion to avoid unnecessary production and reduce translational noise. Furthermore, such mech-
anisms may be crucial for synchronizing the amount of rRNA with ribosomal proteins as the
two go through different bio-synthesis pathways. The well known and widely studied ppGpp is
one example of a regulatory mechanism that, while affecting the expression of various proteins,
seems to be mainly targeted at stable RNA synthesis (rRNA and tRNA) and not at ribosomal
proteins [40]. Nevertheless, the fact that many non-ribosomal proteins share the same response
as ribosomal proteins do, poses interesting questions regarding the scope of such control mech-
anisms, their necessity and the trade-offs involved in their deployment.

The findings in this study support and broaden the findings in other recent studies. Specifi-
cally, for S.cerevisiae a few recent studies found that the concentration of the majority of the
proteins is coordinated across conditions and increases with growth rate [10, 14, 17]. In princi-
ple, the model we suggest here can be applied to any exponentially growing population of cells
and may thus also serve as a potential explanation for the phenomena observed in these studies
and others.

Modeling of cellular metabolism is an advanced field and whole cell models are built in con-
siderable numbers. Future models can explicitly include the role of passive redistribution
according to the lines presented here and thus allow testing the improvement in model predic-
tion as well as model robustness and need for free parameters with versus without taking it into
account. Moreover, passive redistribution of resources can then be compared with active regu-
lation of specific genes to pin-point where such regulation is needed according to the model,
and where it is redundant.

Other recently published studies in E.coli have suggested different models and in some cases
have results and predictions that do not coincide with those presented in this study. Notably,
in [18, 19] a decreased protein concentration for unregulated genes is predicted. Theoretically,
the two models differ in one key assumption. Whereas the models in [18–21] consider the
‘growth driving’ proteins to be actively up regulated under favorable conditions, our model
suggests that the higher concentration of these ‘growth driving’ proteins can be a byproduct of
the down regulation of unnecessary proteins under favorable conditions. This difference in
assumptions leads to differing predictions regarding the response in expression to growth
rate under the two models. The models from [18–21] predict that unregulated proteins will
decrease in concentration with the growth rate, whereas our model predicts an increase in their
concentration with growth rate.

Other aspects may also play a role in the differing predictions and observations of the two
models. The calculation in [18] relies on data collected under higher growth rates than those
available in the data sets analyzed here. The predictions of the model are based on the deduced
dependence of various bio-synthesis process rates and physiological properties of the cells on
the growth rate, properties that are, in turn, used to calculate the expected protein concentra-
tion for unregulated proteins under the different growth rates. The model in [18] refers to pro-
tein concentration and not to protein fraction out of the proteome. These quantities may differ
due to changes in the ratio of total protein mass to cell dry weight, or cell volume, as a function
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of the growth rate. Thus, this approach is markedly different than the approach we take, which
assumes relatively small changes in bio-synthetic rates as a function of growth rate and focuses
on the limited bio-synthesis resources as the main driver of changes in the resulting fraction of
proteins out of the proteome. We find the amount and variety of proteins that display similar
response to the ‘growth driving’ proteins with respect to the growth rate to be a significant,
albeit circumstantial, evidence that the assumption our model makes may be valid. As the
model in [18] was only tested against a handful of proteins, further data collection is required
to decide which of the two models better describes the global effects of growth rate on prote-
ome composition.

The expected availability of increasing amounts of whole proteome data sets, with higher
accuracy levels, will enable further investigation of the details of cellular resource distribution.
With our model serving as a baseline, the analysis of such future data sets will shed more light
on the relative roles of carefully tuned response mechanisms versus global, passive effects in
shaping the proteome composition under different growth environments.

Materials and Methods

Data analysis tools
All data analysis was performed using custom written software in the Python programming
language. The data analysis source code is available through github at: http://github.com/uriba/
proteome-analysis Analysis was done using SciPy [41], NumPy [42] and the Pandas data analy-
sis library [43]. Charts where created using the MatPlotLib plotting library [44].

Normalizing protein fractions across conditions
Our analysis aims at identifying proteins that share similar expression patterns across the dif-
ferent growth conditions. For example, consider two proteins, A and Bmeasured under two
conditions, c1 and c2. Assume that the measured fractions out of the proteome of these two pro-
teins under the two conditions were 0.001 and 0.002 for A under c1 and c2 respectively, and
0.01 and 0.02 for B under c1 and c2 respectively. These two proteins therefore share identical
responses across the two conditions, namely, they double their fraction in the proteome in c2
compared with c1.

The normalization procedure scales the data so as to reveal this identity in response. Divid-
ing the fraction of each protein out of the proteome by the average fraction of that protein
across conditions yields the normalized response. In the example, the average fraction of A
across the different conditions is 0.0015 and the average fraction of B is 0.015. Thus, dividing
the fraction of every protein by the average fraction across conditions of that same protein
yields:

A0
c1
¼ Ac1

�A
¼ 0:001

0:0015
¼ 2

3
¼ 0:01

0:015
¼ Bc1

�B
¼ B0

c1

for c1 and:

A0
c2
¼ Ac2

�A
¼ 0:002

0:0015
¼ 4

3
¼ 0:02

0:015
¼ Bc2

�B
¼ B0

c2

for c2 showing A and B share identical responses across c1 and c2.
The general normalization procedure thus divides the fraction of protein i under condition

c, pi(c) by the average fraction of protein i across all of the conditions in the data set, �pi, to give

the normalized fraction under condition c, p0iðcÞ ¼ piðcÞ
�pi
.
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This normalization procedure has been applied prior to calculating the slopes of the regres-
sion lines best describing the change in fraction out of the proteome of every protein as a func-
tion of the growth rate. Furthermore, when analyzing the variability explained by linear
regression on the sum of fractions of all proteins presenting a high correlation with the growth
rate, the same normalization procedure was made in order to avoid domination by the high
abundance of a few proteins in that group.

Calculation of protein concentration
In this study, we use the mass ratio of a specific protein to the mass of the entire proteome, per
cell, as our basic measure for the bio-synthetic resources a specific protein consumes out of the
bio-synthetic capacity of the cell. We find this measure to be the best representation of the
meaning of a fraction a protein occupies out of the proteome. However, we note that if initia-
tion rates are limiting (e.g. if RNA polymerase rather than ribosomes become limiting), and
not elongation rates, then using molecule counts ratios (the number of molecules of a specific
protein divided by the total number of protein molecules in a cell) rather than mass ratios may
be a better metric. We compared these two metrics and, while they present some differences in
the analysis, they do not qualitatively alter the observed results.

There are different, alternative ways to assess the resources consumed by a specific protein
out of the resources available in the cell. On top of the measures listed above, one could con-
sider either the total mass or molecule count of a specific protein out of the biomass, rather
than the proteome, or out of the dry weight of the cell, both of which vary with the ratio of total
protein to biomass or dry weight which was neglected in our analysis. Moreover, one can con-
sider specific protein mass or molecule count per cell, thus reflecting changes in cell size across
conditions. Our analysis focuses on the relations between different proteins and resource distri-
bution inside the proteome, and thus avoids such metrics.

Filtering out conditions from the data set from Schmidt et. al.
The [29] data set contains proteomic data measurements under 22 different environmental
conditions. However, our model assumes exponential growth, implying that measurements
taken at stationary phase are expected to differ from simple extrapolation of the model to zero
growth rate. Therefore, the two measurements of stationary phase proteomics were excluded
from our analysis.

Out of the conditions measured in the [29] data set, two conditions included amino acids in
the media and presented much faster growth rate than the rest of the conditions (growth in LB
media and in glycerol supplemented with AA, with growth rates of 1.9[h−1] and 1.27[h−1]
respectively, compared with a range of 0.12–0.66 for the other conditions). This asymmetry in
the distribution of growth rates caused inclusion of these conditions to dominate the analysis
due to its effect on the skewness of the distribution of growth rates (γ1 = −0.5 for the growth
rates excluding LB and AA supplemented glycerol vs. γ1 = 2.3 with LB and AA supplemented
glycerol) reducing the statistical power of the other conditions. While including the data on
growth in these conditions does not qualitatively change the observed results, such analysis is
much less statistically robust. We have therefore omitted growth in LB and in AA supple-
mented glycerol in the main analysis. We present the analysis including these conditions in
S6 Text.

Supporting Information
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S1 Fig. The predictions of the model for the fraction of unregulated proteins as a function
of the growth rate. The effects of accounting for protein degradation (green) and Michaelis-
Menten like dependence of bio-synthesis rates on growth rate (red) are shown. For non-con-
stant bio-synthesis rate, a growth rate of 0.2 was selected as the growth rate at which the bio-
synthesis rate is half of its maximal value.
(EPS)

S2 Text.
(PDF)

S2 Fig. Histograms of the correlation with growth rate of proteins in data sets obtained by
gradually modifying the growth rate with constant input media. All such data sets present
similar characteristics with very high correlation or anti correlation of protein fraction out of
the proteome with the growth rate. Such data sets make it hard to distinguish between specific
regulation mechanisms and passive effects and are therefore inadequate for testing the passive
resource allocation model. (A) 4 chemostat growth conditions from [29]. (B) 9 glucose accel-
erostat conditions from [13]. (C) 5 glucose accelerostat conditions from [24]. (D-F) different
growth rate modification methods from [25].
(EPS)

S3 Text.
(PDF)

S3 Fig. Pair-wise comparison of the data sets used in this work. Each panel compares the
correlation with growth rate of all proteins between two data sets. The conditions used from
each data set utilize similar growth conditions, except for the data sets from [25] (see text).
(EPS)

S4 Text.
(PDF)

S4 Fig. Statistics on the explained variability in the normalized data set as a function of the
threshold used for defining strong correlation with growth rate. An optimal threshold is a
threshold that maximizes the fraction of explained variability in the proteome by linear regres-
sion on proteins that have a correlation with growth rate that exceeds the threshold (blue line).
The maximal fraction of explained variability in each data set is marked as a horizontal dashed
line and is 0.082 (obtained given a threshold of 0.25) for the data set from [29], and 0.25
(obtained given a threshold of 0.2) in the data from [13].
(EPS)

S5 Text.
(PDF)

S6 Text.
(PDF)

S5 Fig. Including growth in LB and AA supplemented glycerol media in the analysis of the
data set from [29]. Fewer proteins are strongly positively correlated with growth but these pro-
teins form more than 50% of the proteome in fast growth.
(EPS)

S7 Text.
(PDF)
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S6 Fig. The fraction out of the proteome of proteins that are not differentially regulated
between conditions can be predicted by referencing other such proteins. A selection of ran-
dom predictions of protein fractions from the highly correlated with growth rate group, taken
from the data set of [29]. Each panel shows the average fraction of 10 random proteins that are
highly correlated with growth (blue dots), a regression line that best fits the data, and the frac-
tion of a different random protein (green dots). The R2 value for the trend line and the different
protein is given.
(EPS)

S1 Table. Breakdown by function of strongly positively correlated with growth rate pro-
teins in the data set from [29].
(PDF)

S2 Table. Breakdown by function of strongly positively correlated with growth rate pro-
teins in the data set from [13].
(PDF)

S7 Fig. Ribosomal proteins scale similarly to non-ribosomal proteins that are strongly posi-
tively correlated with growth rate. The scaling with growth rate of ribosomal proteins and
non-ribosomal, but highly correlated with growth rate proteins is shown. Comparing the nor-
malized sum of ribosomal proteins to the normalized sum of the positively correlated with
growth rate proteins that are non-ribosomal shows that these two groups scale in a similar way
with the growth rate. Trend lines for the two groups of proteins are plotted.
(EPS)

S8 Text.
(PDF)

S8 Fig. Fraction of explained variability by linear regression on the group of strongly posi-
tively correlated with growth rate proteins for the shuffled data sets. The maximal explained
variability in these data sets is significantly smaller than in the real data sets.
(EPS)

S9 Fig. A simulated data set, assuming half of the proteins are perfectly correlated with
growth rate and half are fixed, with simulated noise level of 25%. Average protein fractions,
growth rates and normalized slope of the correlated proteins are based on the data set from
[29]. The normalized intercept of the correlated proteins was set to 0.5 in accordance with the
intercept found in the original data analysis. The results are similar to those obtained for the real
data set, showing that, given the experimental noise, identical coordination with growth rate of
half of the proteins would result in similar outcomes to those observed in the data sets we use.
(EPS)
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