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Abstract

Nuclear distribution protein C (NudC) is a mitotic regulator that plays a role in cytokinesis.
However, how NudC is regulated during cytokinesis remains unclear. Here, we show that
NudC is phosphorylated by Aurora B, a kinase critical for cell abscission. NudC is co-local-
ized with Aurora B at the midbody and co-immunoprecipitated with Aurora B in mitosis. Inhi-
bition of Aurora B by ZM447439 reduced NudC phosphorylation, suggesting that NudC is
an Aurora B substrate in vivo. We identified T40 on NudC as an Aurora B phosphorylation
site. NudC depletion resulted in cytokinesis failure with a dramatic elongation of the intercel-
lular bridge between daughter cells, sustained Aurora B activity at the midbody, and
reduced cell abscission. These cytokinetic defects can be rescued by the ectopic expres-
sion of wild-type NudC. Reconstitution with T40A phospho-defective NudC was found to
rescue the cytokinesis defect. In contrast, reconstitution with the T40D phospho-mimetic
NudC was inefficient in supporting the completion of cytokinesis. These results suggest that
that dynamic phosphorylation of NudC by Aurora B regulates cytokinesis.

Introduction

Cytokinesis is the final stage of cell division. Cell abscission is a critical step in this process,
without which the daughter cells may fuse back together to form a single cell with an aberrant
amount of DNA or aneuploidy. Many proteins and protein complexes are known to be
involved in cytokinesis [1-5]. However, the process and regulation of cell abscission remains to
be fully understood.

One protein that plays a critical role in cytokinesis and cell abscission is the mitotic kinase
Aurora B, the catalytic component of the chromosomal passenger protein complex (CPC) [5-8].
Aurora B regulates many steps throughout mitosis, including DNA condensation during
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prophase, kinetochore-microtubule attachment during prometaphase and metaphase, cleavage
furrow formation during anaphase and telophase, and cell abscission to complete cell division
[7,9-11]. Aurora B has been shown to participate in these activities by switching binding partners
and substrates between early versus late mitosis [7,8,12,13]. By understanding Aurora B binding
partners and substrates during cytokinesis and abscission, a more detailed role of Aurora B in
regulating cytokinesis can be elucidated.

Nuclear distribution protein C (NudC) is a 42-kDa protein that is highly conserved from
fungus to man [14-19]. NudC was originally identified in the filamentous fungus Aspergillus
nidulans in a screen to identify temperature-sensitive nud mutants defective in the migration
of nuclei into the fungal hyphae [14]. All the nud genes encode components or regulators of
the dynein/dynactin motor complex [20]. As a dynein-associated protein, NudC is localized to
the Golgi [21], microtubule organizing center [21-24] and cell cortex [22], and plays an evolu-
tionarily conserved role in dynein-dependent functions, ranging from transport of intracellular
cargo [20,23] to the migration of neurons during neocortical brain development [22,25-27].

We identified mammalian NudC in a screen to identify genes upregulated in response to
mitogenic stimuli [18], suggesting that NudC may play a role in cell division. Elevated levels of
NudC mRNA and protein were found in tissues and cells with high proliferative potential.
These include multiple tissues and cell types in the developing C. elegans [16] and amphibian
[17] embryos, and mammalian hematopoietic cells [28,29], megakaryocytes [30], T lymphoma
cells [18], neuroblastoma cells [21], and prostate cancer cells [31]. During cell division, NudC
is localized to the centrosomes, kinetochores, mitotic spindle, central spindle, and midbody
matrix [32-35]. In mammalian cells, knockdown of NudC results in mitotic defects including
misattachment of microtubules to kinetochores during prometaphase [32,33], chromosome
congression errors in metaphase [32,33], and an inability to complete cytokinesis [34,35].
Thus, NudC also plays a critical role in regulating mitotic progression. To perform these
diverse functions, NudC is likely differentially regulated at various stages of mitosis and cytoki-
nesis. In this study, we identified NudC as a new substrate of Aurora B and examined whether
Aurora B plays a role in regulating NudC functions during cytokinesis.

Materials and Methods
Antibodies and Inhibitors

The following antibodies were used for immunoprecipitation (IP) and immunoblotting (IB,
dilutions shown): NudC (70/1, rabbit, 1:1000) [32], NudC (G1, goat, 1:1000) [33], NudC (2D9,
mouse, 1:2000) [32], Aurora B (BD, mouse, 1:800), Aurora B (Abcam, rabbit, 1:2000), o-tubu-
lin (GeneTex, rabbit, 1:2000), a-tubulin (Sigma, mouse, 1:1000), B-tubulin(tub2.1) (Sigma,
mouse, 1:1000), and FLAG (Sigma, mouse, 1 ul/mg protein for IP). The following antibodies
were used for immunofluorescence (1:1000, unless otherwise indicated): NudC (Gl1, goat) [33],
pSerNudC (R2, rabbit) [32], Borealin (MBL International, mouse), PRC1 (Abcam, rabbit),
MKLP-1 (Cell Signaling, rabbit), and pTSS—INCENPSM’902 (gift of Dr. Michael Lampson, Uni-
versity of Pennsylvania; rabbit) [36], Spc25 (gift of Dr. P. Todd Stukenberg, University of Vir-
ginia Medical Center; rabbit; 1:700) [37], and CREST-SH autoserum (gift of Dr. Bill R.
Brinkley, Baylor College of Medicine; human; 1:10,000) [38]. Protease inhibitors and nocoda-
zole, the microtubule depolymerizing agent, were purchased from Sigma. ZM447439, an
Aurora B inhibitor, was purchased from Tocaris and used at a final concentration of 2 uM.

Cell Culture and Synchronization

HelLa cells were obtained from the Tissue Culture Core facility in the Department of Molecular
and Cellular Biology at Baylor College of Medicine and are free of mycoplasma. HeLa cells
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were cultured in DMEM (Invitrogen) supplemented with 10% fetal bovine serum (FBS)
(Atlanta Biologicals). Cells were synchronized using two protocols. In the first method, HeLa
cells were incubated with 100 ng/ml nocodazole, a microtubule depolymerizing agent, for 16 h
to enrich for cells in a prometaphase-like phase. Asynchronously growing (Asy) (no treatment)
and nocodazole-synchronized mitotic (M) cells were harvested with a cell scraper or by a
mitotic shake-off. In the second method, HelLa cells were treated with 2 mM thymidine for 15
h to block cells at the G1/S transition, released for 10.5 h to allow cells to enter into the next G1
phase, and then treated with a second thymidine block for 13.5 h. Cells were then released for
5.5 h and then incubated for 3 h in either 20 ng/ml nocodazole to enrich for early mitotic cells
(P, for prometaphase and metaphase) or 12 ng/ml nocodazole to allow efficient release of the
nocodazole-arrested cells to enter into the later stages of mitosis (A, for anaphase, telophase
and cytokinesis), and harvested. Cell pellets were lysed in ice-cold RIPA buffer (150 mM NaCl,
20 mM Tris pH 8, 1.5 mM EDTA, 5 mM EGTA, 0.1% Triton X-100, 5% glycerol) supple-
mented with 1 mM PMSF, mammalian protease-inhibitor cocktail (Sigma), 5 mM Na;VO,,
5mM NaF, and serine-threonine and tyrosine phosphatase inhibitor cocktails (Sigma).

Immunoprecipitation

Protein concentrations were determined by a Bradford assay (Bio-Rad). Total cell lysates were
pre-cleared with protein G sepharose beads (GE) for 1 h at 4°C, combined with fresh protein G
sepharose beads and primary antibody, and then rotated head over tail overnight at 4°C. Beads
were pelleted, washed 4 times in RIPA buffer, and boiled in LDS Sample Buffer (Invitrogen)
with 5% B-mercaptoethanol for 5 min at 95°C. Eluted proteins were resolved by SDS-PAGE
and transferred to a nitrocellulose membrane. Membranes were immunoblotted with anti-
Aurora B antibody (mAb 1:800) overnight, followed by anti-mouse HRP-coupled secondary
antibody for 1 h at room temperature, and developed by enhanced chemiluminescence as sug-
gested by the manufacturer (Thermo Scientific).

RNA Interference

The small interfering RNA (siRNA) for NudC (5" ~AACACCTTCTTCAGCTTCCTT- 3’ NM-
006600, nucleotides 204-224) (Dharmacon) was described previously [32-34]. Firefly (Photo-
nius pyralis) luciferase siRNA was used as a control (Dharmacon). In initial experiments, cells
were also co-transfected with siGLO RISC-free siRNA (Dharmacon), a fluorescent non-target-
ing control oligonucleotide, at a 10:1 siRNA:siGLO ratio, to mark siRNA uptake in transfected
cells. HeLa cells (3 x 10 cells) were plated onto poly-L-lysine coated 18-mm coverslips (Fisher
Scientific) in a 12-well dish for immunofluorescence, using antibiotic-free OptiMEM (Invitro-
gen) supplemented with 10% FBS for 24 h. Appropriate siRNA (120 pmol) was diluted in 24 pl
pure OptiMEM. In a separate tube, 6 pl Oligofectamine (Invitrogen) was diluted in 100 pl pure
OptiMEM, incubated at room temperature for 5 min, added to the diluted siRNA mixture, and
allowed to incubate for 20 min at room temperature. The siRNA mixture was then added to
the cells and incubated for 72 h to ensure a good knockdown of NudC.

Transient DNA Transfection

HeLa cells were cultured in antibiotic-free DMEM supplemented with 10% FBS to a density of
70-80% confluency in 12 well (or 10 cm) culture dishes and transfected using Lipofectamine
2000 (Invitrogen). Briefly, 0.7 ug (or 8-10 ug) of the appropriate plasmid DNA was diluted in
100 pl (or 1.5 ml) of pure OptiMEM. In a separate tube, 1.75 pl (or 25 pl) of Lipofectamine
were diluted in 100 pl (or 1.5 ml) pure OptiMEM and incubated for 5 min at room
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Table 1. PCR primers for GST-human NudC truncation constructs.

Forward Primers hNudC Constructs Reverse Primers

5’ -GGCggatccACCATGGGCGGAGAGCAG-3' N1 hNudC (1-49 aa) 5’ -CAGgcggccgcCCCCTTCTTCTCCTC-3!

5’ ~-GGCggatccACCATGGGCGGAGAGCAG-3' N2 hNudC (1-143 aa) 5’ -CAGgcggccgcCCTCCTTCCCTGG-3

5’ ~GGCggatccACCATGGGCGGAGAGCAG-3" N3 hNudC (1-212 aa) 5" —-CAGgcggccgcCCCTTGAGCCCCAC-3/

5 ~GGCggatccACCATGGGCGGAGAGCAG-3' N4 hNudC (1-276 aa) 5’ -CAGgcggccgcCTTCGTGTTGATCTCAGG- 3’
5’ -GGCggatccACCATGGGCGGAGAGCAG-3' FL hNudC (1-331 aa) 5" -CAGgcggccgcCCGTTGAATTTAGCCTTGG-3!
5’ ~CAGggatccACCATGGCAGAGAAGCTTATCACAC-3! C4 hNudC (50-331 aa) 5’ -CAGgcggccgcCCGTTGAATTTAGCCTTGG-3!
5’ ~CAGggatccACCATGGGGCCCCAGATC-3' C3 hNudC (101-331 aa) 5’ -CAGgcggccgcCCGTTGAATTTAGCCTTGG-3!
5’ ~CAGggatccACCATGGATACTGAGGAAGATGAGG-3’ C2 hNudC (144-331 aa) 5" -CAGgcggccgcCCGTTGAATTTAGCCTTGG-3
5’ - CAGggatccACCATGGACGGCAAGGTGG- 3 C1 hNudC (237-331 aa) 5" -CAGgcggccgcCCGTTGAATTTAGCCTTGG-3!

Note, BamHI (ggatcc) and Notl (gcggccgc) were used in the Forward and Reverse primers, respectively.

doi:10.1371/journal.pone.0153455.t001

temperature. The DNA and Lipofectamine mixtures were combined, incubated at room tem-
perature for 20 min, and added to the cells to incubate at 37°C for 24 h.

GST-NudC Fusion Proteins

The PCR primers for generating the Glutathione-S-transferase (GST)-human NudC truncation
series are shown in Table 1. Glutathione-S-transferase (GST) fusion protein cDNA constructs
were transformed into E. coli strain BL-21. Bacteria were grown in LB media until the ODgyo
reached between 0.6 and 0.8 that corresponded to mid-log phase, induced with 0.1 mM isopro-
pyl-beta-D-thiogalactopyranoside (IPTG) for 3 h at room temperature, pelleted, lysed in ice-
cold phosphate buffered saline (PBS) supplemented with a bacterial protease inhibitor, phos-
phatase inhibitors and PMSF, sonicated, and rocked at 4°C for 15 min with 1% Triton X-100.
Bacterial lysates were clarified and protein concentration was determined using a BSA stan-
dard. Glutathione-Sepharose 4B beads (GE Healthcare) were added to the clarified supernatant
and proteins were allowed to bind to the beads with rocking for overnight at 4°C.

GST Pulldown Assay

HelLa cells were synchronized as described above into asynchronously cycling (Asy), P (early
prometaphase and metaphase) or A (anaphase, telophase and cytokinesis) population, and lysed
in ice-cold RIPA buffer as described above. Cell lysates (400 pug at 1 mg/ml) were pre-cleared
with Glutathione-Sepharose beads for 1 h at 4°C and incubated with either 20 pg of GST alone
or GST-NudC fusion protein for overnight at 4°C with head over tail rotation. The beads were
washed 3 times in RIPA buffer and then boiled in LDS sample buffer, resolved by SDS-PAGE
and transferred to a nitrocellulose membrane. Membranes were blotted for anti-Aurora B anti-
body followed by anti-mouse HRP-coupled secondary antibody as described above.

In vitro IP Kinase Assay

HeLa cells were co-transfected with 3 ug FLAG-tagged wild type or kinase dead (K109R)
Aurora B construct and 7 pg Myc-tagged INCENP construct for 24 h. Cells were lysed in
Kinase Lysis Buffer (20 mM Tris, pH 7.5, 1% NP-40, 250 mM NaCl, 2 mM EGTA, 1 mM
EDTA) supplemented with both protease and phosphatase inhibitors. Aurora B was immuno-
precipitated using anti-FLAG antibody (4 pug/ml lysates). In vitro IP kinase assays were per-
formed as previously described [39]. Briefly, each kinase reaction contained 5 uCi 32P-y-ATP
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(25 Ci/mmol; MP Biomedicals) in Kinase Reaction Buffer (20 mM Tris, pH 7.5, 1 mM EGTA,
10 mM MgCl2, 50 uM ATP, protease and phosphatase inhibitors). Substrates were used in
equimolar concentrations, including 4.8 pg of GST-NudC proteins, 1 pig histone H3 (Sigma) as
a positive control and 1pug GST alone as a negative control. Aurora B was added last to the reac-
tions to prevent substrate-mediated kinase inhibition [40], and the reactions were incubated at
30°C for 30 min with agitation every 10 min. Reaction products were resolved by SDS-PAGE,
and the gel was stained with Coomassie brilliant blue, dried down and developed by autoradi-
ography. In some experiments, labeled proteins were transferred to a nitrocellulose membrane,
developed by autoradiography, and further analyzed by immunoblotting for Aurora B. In sam-
ples using ZM447439 to inhibit Aurora B activity, 2 pM ZM447439 was added to all of the buft-
ers during Aurora B immunoprecipitation and kinase reaction.

Immunofluorescence Imaging

HeLa cells plated on poly-L-lysine coated coverslips in 12-well plates were rinsed with 37°C
PHEM buffer (60 mM 1,4-Piperazinediethanesulfonic acid dipotassium salt [K-PIPES], 25
mM HEPES [pH 6.9], 10 mM EGTA, and 4 mM MgSO4) (all from Sigma) and then fixed in
fresh 4% paraformaldehyde (Electron Microscopy Sciences) in PHEM buffer for 20 min at
room temperature. The coverslips were then washed with ice-cold PBS, extracted with 0.5%Tri-
ton X-100 diluted in cold PHEM bulffer, incubated for 20 min at room temperature, blocked
overnight at 4°C in antibody solution (0.1 M PIPES, 1 mM MgSO4, ImM EGTA, 1.83% L-
lysine, 1% BSA, 0.1% NaN3, pH 7.2 with KOH and 2% milk), washed 2 times in cold PBS, and
incubated with the primary antibody diluted in antibody solution overnight at 4°C. Following
primary antibody incubation, the coverslips were washed 3 times in cold PBS, incubated with
the secondary antibody diluted in antibody solution for 3 h at 4°C, washed 3 times in cold PBS,
and mounted using ProLong Gold antifade reagent with DAPI (Invitrogen). Slides were visual-
ized on a Nikon TE2000 widefield microscope system (Nikon, Lewisville, TX), and images
were acquired using a Photometrics Cool Snap ES camera, analyzed using NIS-Elements AR
3.2 software (Nikon), and presented using Adobe PhotoShop CS (Adobe Systems Inc.).

Quantification of Aurora B at Kinetochores in siNudC Cells

For measuring the immunofluorescence intensity of Aurora B at kinetochores, HeLa cells were
transfected with siLuc or siNudC for 72 h, and cells undergoing unperturbed mitosis were
fixed and stained with the CREST autoserum to mark the inner centromere region and either
Aurora B or Spc25. Widefield images were acquired as z-stacks with a step size of 0.3 pm using
a 100X oil/1.45 NA objective. Identical exposure times were used between siLuc and siNudC
samples. Images were deconvolved using AutoDeblur/AutoVisualize software (Media Cyber-
netics, Silver Spring, MD), and maximum projections of deconvolved images were made.
Intensity measurements were made essentially as described [41]. Briefly, individual kineto-
chores were identified by CREST staining and marked by a region of interest (ROI). The aver-
age intensity of signals in both the CREST channel and the channel of the co-staining antibody
were obtained, and background signals for each channel were subtracted from the measure-
ments. For each condition, 10 kinetochores in at least 10 prometaphase cells were measured.
Fluorescence intensity measurements were normalized to the CREST signals, and the average
and standard deviation (s.d.) were plotted.

Metabolic Cell Labeling

HeLa cells were synchronized using 100 ng/ml nocodazole for 16 h. For the last 4 h, cells were
incubated with phosphate free DMEM supplemented with 5% FBS (dialyzed to remove
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phosphates) in the continued presence of nocodazole. Cells were then labeled with 330 uCi **P
orthophosphate (5 mCi/ml H3PO4, MP Biomedicals) in 1 ml of phosphate free DMEM plus 5%
FBS for another 4 h in the presence of nocodazole. Half of the mitotic cells were also incubated
with 2 uM ZM447439 to inhibit Aurora B kinase activity. Cells were harvested and immunopre-
cipitated with 1 pl rabbit anti-NudC 70/1 antibody [32]. Inmunoprecipitated proteins were
resolved on a 4-12% gradient gel, transferred to a nitrocellulose membrane, subjected to autora-
diography and then immunoblotted with goat anti-NudC peptide antibody [33].

Statistical Analysis

A student’s t-test was performed on sample sets with two groups and ANOVA was performed
on sample sets with more than three independent groups. p values less than 0.05 were consid-
ered to be statistically significant.

Results

NudC Colocalizes with Aurora B at the Midbody and Co-
Immunoprecipitates with Aurora B in Mitosis

To determine if NudC associates with Aurora B during mitosis, we examined whether the two
proteins colocalize at mitotic structures. Using indirect immunofluorescence, we found that
NudC and Aurora B co-localize at the kinetochore in prometaphase and metaphase cells in
early mitosis (Fig 1A). As cells progress into late mitosis, NudC and Aurora B co-localize as
two foci at the midbody located in between the two dividing daughter cells (Fig 1A). The cen-
tral region of the midbody is not accessible to antibodies due to the an electron-dense matrix of
unknown composition [42,43] and thus appears as a “dark zone” [2]. To examine if NudC
interacts biochemically with Aurora B, we first co-transfected cells with Myc-NudC and FLA-
G-Aurora B [44] for 24 h. By immunoprecipitation of NudC with anti-Myc antibody, we
found that FLAG-Aurora B was present in the NudC immunoprecipitated complex (Fig 1B,
left). We next co-transfected EGFP-NudC and FLAG-Aurora B and performed a reciprocal
immunoprecipitation and found that immunoprecipitation of Aurora B with anti-FLAG anti-
body brought down EGFP-NudC (Fig 1B, right). As negative controls, we performed immuno-
precipitations using anti-tag antibodies with lysates from non-transfected cells (Fig 1B). The
absence of Aurora B from the anti-Myc immunoprecipitation or NudC from the anti-FLAG
immunoprecipitation showed the specificity of NudC association with Aurora B and vice
versa. Taken together, our studies show that NudC interacts with Aurora B in an immunopre-
cipitable complex, in addition to their co-localization on mitotic structures in mitotic cells.

NudC Shows Binding to Aurora B in Mitosis

To analyze at which stage in mitosis NudC interacts with Aurora B, we synchronized HeLa cells
using a double thymidine block and release protocol followed by nocodazole treatment to enrich
for cells in early mitosis, including prometaphase and metaphase (labeled as “P”), versus late
mitosis, including anaphase, telophase and cytokinesis (labeled as “A”) [45] (Fig 2A). Immuno-
blot of cyclin B1 confirmed that the cells were properly synchronized, as cyclin B1 levels peak in
metaphase and decline during metaphase-to-anaphase transition due to degradation by the
APC/C proteasome pathway (Fig 2A) [46]. Similarly, total Aurora B protein levels were found
to decline as expected at the metaphase-to-anaphase transition (Fig 2B, input). We found that
Aurora B binds GST-NudC in both early and late mitosis in GST-NudC pulldown assays (Fig
2B). We further examined endogenous NudC interaction with Aurora B in early and late mito-
sis, using P and A cell lysates prepared as in (Fig 2A), in co-immunoprecipitation assays. We
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Fig 1. NudC co-localizes with Aurora B in mitosis. (A) Unperturbed mitotic HelLa cells were stained for
NudC (green), Aurora B (red) and counterstained with DAPI (blue). Bar, 10 um. (B) HeLa cells were
transfected with Myc-NudC and FLAG-Aurora B (left) or EGFP-NudC and FLAG-Aurora B (right) for 24 h. Cell
lysates (1 mg in 250 pl) were immunoprecipitated with anti-Myc antibody and blotted for Aurora B followed by
reblotting for NudC (left). A reciprocal immunoprecipitation was performed, in which cell lysates (500 pg in
250 pl, 1 mgin 250 pl or 2 mg in 500 pl) were immunoprecipitated with anti-FLAG antibody followed by
blotting for NudC and reblotting for Aurora B (right). Immunoprecipitation with either anti-Myc or anti-FLAG
antibody using non-transfected cell lysates was used as a negative control. B-tubulin was used as a loading
control. Input, 20 ug total cell lysates. Data are representative of n = 5 independent experiments.

doi:10.1371/journal.pone.0153455.g001

detected Aurora B in the NudC immunoprecipitated complex in both the P and A lysates, but
not in the Asy lysates (Fig 2C). Although the Aurora B signal was weak, it was reproducibly
observed in the NudC immunoprecipitated complex using a different batch of A cell lysates (Fig
2D). The absence of Aurora B when preimmune serum (IgG) was used in the immunoprecipita-
tion showed the specificity of Aurora B interaction with NudC (Fig 2C and 2D). These studies
show that NudC and Aurora B associate in both early and late stages of mitosis.

NudC is a Substrate of Aurora B

Given the interaction between NudC and Aurora B, we asked if NudC might be phosphory-
lated by Aurora B. HeLa cells were transfected with either wild-type FLAG-Aurora B (WT) or
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Fig 2. NudC interaction with Aurora B in mitosis. (A) HelLa cells were synchronized by a double thymidine block and release protocol as indicated. “P”
(prometaphase and metaphase) and “A” (anaphase, telophase and cytokinesis) lysates were prepared from early versus late mitotic cells. Synchronization
efficiency was confirmed by a cyclin B1 western blot. a-tubulin was used as a loading control. (B) Lysates from asynchronously cycling (Asy), P or A cells
were incubated with GST-NudC fusion protein in GST pulldown assays. GST-NudC bound proteins were immunoblotted for Aurora B. GST binding to lysates
from either Asy (this experiment), P or A cells (not shown), served as a negative control. Ponceau S staining showed equal GST-NudC fusion protein used in
the pulldown assay. Aurora B binding was quantified as Aurora B signal/input Aurora B normalized against the P sample (mean * s.e.m.) from 3 independent
experiments. *, p < 0.05. (C) Lysates (2 mg in 500 pl) from Asy, P or A cells prepared as in (A) were immunoprecipitated with G1 goat NudC antibody, blotted
for Aurora B and reblotted for NudC using 2D9 monoclonal antibody. Asy lysates were also immunoprecipitated with preimmune goat serum (IgG) as a
negative control. B-tubulin was used as a loading control. (D) An immunoprecipitation using a different batch of A cell lysate (500 pg in 250 pl) was performed

asin (C).

doi:10.1371/journal.pone.0153455.g002

a kinase-dead (K109R) mutant FLAG-Aurora B [44], along with the Aurora B coactivator/CPC
scaffold protein Myc-INCENP [47], for 24 h. Aurora B was then immunoprecipitated with
anti-FLAG antibody. Incubation of GST-NudC with wild type (WT) or kinase-dead (KR)
Aurora B showed that GST-NudC was phosphorylated by WT Aurora B (Fig 3A, lane 4) but
not by kinase-dead mutant Aurora B (Fig 3A, lane 5). The lower molecular weight band
observed in the GST-NudC lanes (Fig 3A, lanes 4-6, asterisk) is likely a breakdown product.
The phosphorylation of NudC by Aurora B was inhibited by the small molecule inhibitor
ZM447439 [48-50] (Fig 3A, lane 6), indicating that the phosphorylation of NudC is due to
Aurora B kinase activity. An IP kinase assay performed with Aurora A did not generate phos-
phorylated NudC (data not shown), further supporting that the phosphorylation of NudC by
Aurora B is specific. Histone H3, a well-known substrate of Aurora B, was used as a positive
control (Fig 3A, lane 1), while GST alone served as a negative control (Fig 3A, lane 7). Note
that under our experimental condition, Aurora B autophosphorylation signal is weaker than
signals from Aurora B substrate phosphorylation of H3 and GST-NudC, and thus it is not visi-
ble in the IP kinase assays. These results show that NudC is a substrate of Aurora B in vitro.
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Fig 3. NudC is phosphorylated by Aurora B in vitro and in vivo. (A) HelLa cells were transfected with FLAG-Aurora B wild type (WT) or a kinase dead
(K106R) mutant Aurora B for 24 h. Aurora B was immunoprecipitated using anti-FLAG antibody and used in IP kinase assays. Substrates used were
GST-NudC (lanes 4-6), histone H3 (lanes 1-3) as a positive control, and GST (lane 7) as a negative control. Aurora B WT was also incubated with 2 uyM of
ZM447439 as a specificity control (lanes 3 and 6). Samples were transferred to a filter, stained by Ponceau S (lower panel) and analyzed by autoradiography
(upper panel). *, degradation product. Data are reproducible in 3 independent experiments. (B) HeLa cells were synchronized by an overnight incubation
with 100 ng/ml nocodazole (M, mitotic) as indicated. Cells (1 X 10°) were labeled with 2P orthophosphate for 4 h in the presence or absence of 2 uM
ZM447439 (ZM). Cell lysates (300 pg at 1 mg/ml) were immunoprecipitated for NudC, transferred to a filter, analyzed by autoradiography, and immunoblotted
for NudC. ®*P-NudC was quantified as *P-NudC/total immunoprecipitated NudC and normalized against NudC signals in asynchronously cycling (Asy) cells.

doi:10.1371/journal.pone.0153455.g003

We further examined whether NudC is phosphorylated by Aurora B in vivo. Asychronoulsy
cycling (Asy) HeLa cells as well as cells synchronized in mitosis (M) were pulse-labeled with
*P_orthophosphate for 4 h. >*P-labeled NudC was immunoprecipitated with an anti-NudC
antibody, analyzed by autoradiography following transfer to a filter, and further immuno-
blotted for total NudC. We found that the phosphorylation level of endogenous NudC was
higher in mitotic cells compared with that in asynchronously cycling cells (Fig 3B). When
mitotic cells were treated with the Aurora B inhibitor ZM447439, there was ~ 60% decrease in
*?P_labeled NudC compared to that in the mitotic population, suggesting that NudC is phos-
phorylated by Aurora B during mitosis. Together, these results show that NudC is an in vitro
and in vivo substrate of Aurora B.

NudC Is Phosphorylated by Aurora B on Residue T40

We determined Aurora B phosphorylation site(s) on NudC using a series of GST-NudC trun-
cations. The truncations were generated to delete potential functional domains in NudC,
including coiled-coil domains 1 and 2 (CC1 and CC2), an acidic residue-rich domain (AR), the
p23-like CHORD-Sgt (p23/CS) domain [51] and the nuclear movement domain [14,18,32,52],
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from either the C terminus (NudC-N1 to NudC-N4) or the N terminus (NudC-C1 to
NudC-C4) (Fig 4A). We found that all of the NudC truncations that contained the N terminal
49 amino acids were phosphorylated by Aurora B in IP kinase assays (Fig 4B, lanes 2-5, arrow-
heads). GST-NudC-N1, containing the first 49 amino acid of NudC, was efficiently phosphory-
lated by Aurora B (Fig 4B, lane 3). Quantification showed that GST-NudC-N1 and
GST-NudC-N2 exhibited a ~4-fold increase in **P labeling relative to that in the GST-NudC
full-length protein (Fig 4B, lower panel). GST-NudC-N3 and GST-NudC-N4 truncations
showed a decline in phosphorylation by Aurora B, suggesting that protein sequences within
the nuclear movement domain at the C terminus of NudC may block Aurora B phosphoryla-
tion of the N terminus of NudC. All of the NudC truncations that lacked the N terminal 49
amino acids were poorly phosphorylated by Aurora B (Fig 4B, lanes 6-9). Taken together,
these data suggest that the N terminus of NudC may contain a major Aurora B phosphoryla-
tion site. Thus, we focused on analyzing the N terminus of NudC.

The specificity of Aurora B phosphorylation of GST-NudC-N1 was examined by using
kinase-dead Aurora B or ZM447439 in an IP kinase assay. GST-NudC-N1 was found to be
phosphorylated by wild-type Aurora B (Fig 4C, lane 4), but not by kinase-dead Aurora B (Fig
4C, lane 5) or wild-type Aurora B that was treated with the inhibitor ZM447439 (Fig 4C, lane
6). Similar to Fig 3, histone H3 served as a positive control (Fig 4C, lane 1) while GST served as
a negative control (Fig 4C, lane 7). These results indicate that the N terminus of NudC contains
an Aurora B phosphorylation site.

Sequence analysis of the N terminus of NudC revealed a sequence FLRRKTDFF that is evo-
lutionarily conserved from Drosophila to man [17] (Fig 4D), where the RKT motif has been
shown to be phosphorylated by Aurora B in other proteins [12,53,54]. Site-directed mutagene-
sis was performed to mutate the T40 residue to generate T40A phospho-defective or T40D
phospho-mimetic NudC mutants. Using the GST-NudC-N1 T40A mutant in an IP kinase
assay, we found that GST-NudC-N1 wild-type was phosphorylated by Aurora B (Fig 4E, lane
2) but not the GST-NudC-N1 T40A mutant (Fig 4E, lane 3). Thus, T40 in NudC is an Aurora
B phosphorylation site.

NudC Knockdown Does Not Affect Aurora B Localization at the
Kinetochore

Given that NudC interacts with Aurora B (Figs 1 and 2), we asked whether NudC plays a role
in Aurora B localization in early mitotic cells, where Aurora B is localized on kinetochores dur-
ing prometaphase [7,9,39,55]. To examine this, HeLa cells were transfected with Luciferase or
NudC siRNA oligos for 72 h. Western blot analysis showed a reduction of NudC protein levels
in siNudC cells but not in siLuc control cells (Fig 5A). Next, siLuc and siNudC cells undergoing
unperturbed mitosis were stained for NudC and Aurora B. Using pSer326-NudC antibody that
specifically recognizes NudC at the kinetochore [32], we found that NudC staining at the outer
kinetochore flanked that of Aurora B staining at the inner kinetochore (Fig 5B, inset). NudC
knockdown resulted in a depletion of NudC signals at the kinetochore while Aurora B staining
at kinetochores remained unchanged in siNudC cells relative to that in siLuc cells (Fig 5B). As
a control, we examined the presence of another outer kinetochore protein Spc25, a subunit of
the kinetochore-based Ndc80 complex [37], at the kinetochore. To quantify the levels of
Aurora B and Spc25 at the kinetochore, cells were co-stained with the human CREST auto-
serum to identify the inner region of kinetochores. We then measured the relative fluorescence
intensity of Aurora B or Spc25 normalized to that of CREST staining at individual kinetochores
using confocal microscopy. The levels of Aurora B and Spc25 at the kinetochores were not sig-
nificantly affected by NudC depletion in prometaphase cells (Fig 5C). These results show that
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are representative of 3 independent experiments.

doi:10.1371/journal.pone.0153455.g004
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Fig 5. Aurora B localization at the kinetochore is not affected in NudC-deficient cells. (A) HeLa cells
were transfected with siLuc or siNudC oligos for 72 h. NudC knockdown was examined by western blotting for
NudC. B-tubulin was used as a loading control. (B) Prometaphase cells treated with siRNAs as in (A) were
stained for pS326-NudC (red) and Aurora B (green) (enlarged in inset), or with Spc25 (green), and
counterstained with DAPI for DNA (blue). In initial experiments, siGLO was co-transfected as an indicator for
siRNA oligo uptake. (C) For quantification, cells treated as in (B) were also co-stained with the CREST
autoserum to mark the kinetochores. For Aurora B or Spc25 staining, maximum-intensity projections of
deconvolved images were measured using AutoDeblur/AutoVisualize software, and their fluorescence
intensities (average + s.d.) relative to that of CREST staining at the kinetochore were quantified, using 10
randomly chosen kinetochores from at least 10 siLuc or siNudC prometaphase cells. n.s., not significant.

doi:10.1371/journal.pone.0153455.g005

NudC knockdown does not affect Aurora B localization at the kinetochore in early mitosis.
This finding led us to focus on NudC interaction with Aurora B at later stages of mitosis.

NudC Knockdown Leads to Elongated Intercellular Bridge and
Sustained Aurora B Activity in the Midbody

It is known that Aurora B localizes to the midzone and midbody to regulate cleavage furrow
formation [56,57] and cell abscission [6], respectively. We examined Aurora B localization at
the cleavage furrow and midzone in anaphase cells, but did not observe defects in Aurora B
localization at these sites following NudC knockdown (data not shown). We previously showed
that NudC knockdown leads to an increase in cells connected with intercellular cytoplasmic
bridges and multinucleation, suggesting a failure in cytokinesis [34,35]. We next examined the
interaction of NudC and Aurora B at the midbody in the final stages of mitosis. HeLa cells
were transfected with either Luciferase or NudC siRNA oligos for 72 h, and cells in unper-
turbed cytokinesis were examined by staining for NudC. While control cells showed NudC
staining in the intercellular bridge (Fig 6A, left, inset), knockdown of NudC resulted in a loss of
NudC signals in the elongated intercellular bridge (Fig 6A, right). In siLuc control cells, Aurora
B is seen as either “two dots” separated by the dark zone (Fig 6Bi and 6Bii, insets) in earlier-
stage cytokinetic cells with more condensed DNA or “two whiskers” (Fig 6Biii and 6Biv, insets)
in later-stage cytokinetic cells with less condensed DNA. In contrast, an unusual pattern of
Aurora distribution was observed at the midbody in NudC-deficient cells. In addition to being
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NIS-Elements software, and the lengths in ym (mean + s.e.m.) are presented using GraphPad Prism software. The numbers of midbodies counted in siLuc
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(n =84) and siNudC (n = 121) cells were obtained from 3-5 independent experiments. *, p < 0.01. siLuc and siNudC cells were also stained as follows: (D)
Aurora B (red) and pTSS-INCENP (green). (E) Borealin (green). (F) pT232 Aurora B (red) and B-tubulin (green). Midbodies are enlarged in insets. (H) PRC1
(red). (I) MKLP1 (red) and B-tubulin (green). All bars, 10 um. (G) Intercellular distances between interconnected daughter cells were determined by staining
with tubulin, as indicated by the yellow line in (A). The lengths in um (mean + s.e.m.) were obtained from siLuc (n = 37) and siNudC (n =49) cellsinn=2

experiments. *, p <0.01.

doi:10.1371/journal.pone.0153455.g006

found as two foci at the midbody, Aurora B staining was also found to be distributed past the
lateral constriction zone (narrowed region past the midbody) into the flanking regions beyond
[42,43] in NudC-deficient cells (Fig 6Bv-6Bviii, insets). Note that the unusual Aurora B stain-
ing pattern could be observed in NudC-deficient cells that had retained the normal distance
between divided cells (Fig 6Bv, inset) as compared with that in siLuc cells (Fig 6Bi and 6Bii,
insets). Aurora B staining could also be observed to be asymmetrically distributed in the flank-
ing region to one side of the midbody in NudC-deficient cells (Fig 6Bvii and 6Bviii, insets). We
next measured the length of the midbody region positive for Aurora B staining. In siLuc control
cells, Aurora B staining at the midbody was found to be around 4 um in length (Fig 6C), a
median midbody length observed in several cell types [2,42,58]. In contrast, in NudC-deficient
cells Aurora B staining was found to spread out to a median length of 6.5 um, with lengths
reaching up to 15-20 pm in some cells (Fig 6C).

We next examined the localization of other components of the CPC, including INCENP
and Borealin [7,9] at the midbody. In siLuc control cells, pTSS-INCENP (Fig 6D, left) and Bor-
ealin (Fig 6E, left) are localized as two foci separated by the dark zone at the midbody. Follow-
ing NudC knockdown, INCENP and Borealin were also found to be distributed past the lateral
constriction zone into the flanking regions beyond [42,43] (Fig 6D and 6F, right, insets). These
observations suggest that the Aurora B/CPC complex is aberrantly localized that the midbody
region in NudC-deficient cells.

Despite its unusual distribution beyond the midbody, Aurora B remained functionally
active in the elongated intercellular bridge in NudC-deficient cells, as evidenced by the pres-
ence of Aurora B substrate phosphorylation on pTSS-INCENP®** %2
Aurora B activity [36,59] (Fig 6D, right, inset) and Aurora B autophosphorylation on pT232
[60] (Fig 6F, right, inset). It has been suggested that the presence of chromatin in the midzone/
midbody may trigger Aurora B activation, as part of the abscission checkpoint to delay abscis-
sion until the chromatin bridge can be resolved [6,61,62]. However, we did not detect chroma-
tin in the elongated midbody region in the majority of NudC-deficient cells (Fig 6). Strikingly,
NudC depletion resulted in a significant increase in the length of the intercellular bridge con-
necting daughter cells, from 11.9 (£ 0.7) um in control cells, a length commonly observed in
HeLa cells [63], to 18.4 (+1.7) pm or longer distances reaching up to 56 pm in NudC-deficient
cells (Fig 6A and 6G). Taken together, NudC depletion resulted in elongated intercellular
bridge, unusual spreading of Aurora B beyond the midbody into the intercellular region, and
sustained Aurora B activity in the elongated intercellular bridge.

that promotes maximal

NudC Knockdown Does Not Affect the Localization of Microtubule
Organizing Proteins PRC1 and MKLP1

The midbody is composed of tightly packed, interdigitating anti-parallel midzone microtu-
bules, microtubule bundling protein PRC1 [64,65], kinesin motors MKLP1 [1,2,56,66,67],
MKLP2 [67-69] and KIF4 [64,70,71], and endosomal trafficking proteins that provide mem-
branes for cell abscission [43,62,72,73]. We next examined PRC1 and MKLP1, which are two
proteins that do not require Aurora B for their localization to the midbody and which exhibit
distinct localization patterns as compared to the CPC at the midbody. The microtubule
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bundling protein PRC1 was found to be distributed along the length of the intercellular bridge,
as expected, in both the control and NudC-deficient cells (Fig 6H). The kinesin motor MKLP1,
usually found as a ring structure at the midbody [2,56], was found as a single focus at the mid-
body in both control and NudC-deficient cells (Fig 6I). These results suggest that NudC does
not play a role in the localization of PRC1 or MKLP1 at the midbody.

Wild-Type NudC but Not T40 Phosphorylation Mutant NudC Rescues
Cytokinesis

Cytokinesis completion requires the cleavage of the midbody to separate the daughter cells
[5,6,10]. We examined whether Aurora B phosphorylation of NudC at T40 plays a role in cyto-
kinesis. To address this, we performed NudC knockdown followed by reconstitution with the
T40 phosphorylation NudC mutants. Western blot analysis showed knockdown of endogenous
NudC in siNudC-treated cells and equal expression of exogenous EGFP-NudC wild-type
(WT), T40A or T40D mutants in siLuc control as well as siNudC cells after transfection (Fig
7A). Next, GFP-positive cells undergoing cytokinesis were analyzed. Expression of GFP-NudC
WT or T40 mutant constructs did not have a significant effect on cytokinesis in control siLuc
cells (Fig 7B, upper). In contrast, we observed a significant increase (p < 0.01) in cells con-
nected by an intercellular bridge in NudC-deficient cells relative to that in siLuc control cells,
suggesting problems in cytokinesis (Fig 7B, lower). Exogenous expression of WT NudC was
able to significantly rescue cytokinesis in siNudC cells to a level observed in siLuc control cells.
Interestingly, the phosphorylation-defective T40A NudC mutant was also able to rescue cytoki-
nesis. In contrast, the phosphorylation-mimetic T40D NudC mutant was found to be ineffi-
cient in completing cytokinesis (Fig 7B, lower). Taken together, these results suggest that both
NudC levels and its dynamic phosphorylation on T40 by Aurora B play a role in cell abscission
that occurs at the end of cytokinesis.

Discussion

Our studies show that NudC is an Aurora B substrate, and suggest that NudC phosphorylation
by Aurora B plays a role in regulating cell abscission during cytokinesis.

NudC Regulates Aurora B Distribution at the Midbody

The Aurora B/CPC complex is targeted to specific locations at different stages of mitosis and
cytokinesis, and mediates mitotic progression through phosphorylation of various substrates
[11]. NudC is one of many proteins identified in the midbody proteome [74] and plays a role
in regulating cytokinesis [34,35]. We found that NudC interacts with and co-localizes with
Aurora B at the midbody in late mitosis, and is phosphorylated by Aurora B on pT40. NudC
appears to restrict Aurora B distribution to the midbody, as elongated midbodies with Aurora
B/CPC positivity beyond the midbody region was observed in NudC-deficient cells. Several
possibilities may explain this phenotype. NudC may be involved in localizing the Aurora B/
CPC complex to the midbody, as NudC is an associated factor of the dynein-dynactin motor
complex [14,18,20,22,75], and has been shown to mediate microtubule plus-end-directed cargo
transport in neuronal cells [22,23,27], nuclear movement along the hyphae in the filamentous
tungus Aspergillus nidulans [14,18,20,25], and apical nuclear migration in radial glial progeni-
tor cells during neocortical brain development [26]. The lack of NudC may thus hamper
Aurora B/CPC concentration to the microtubule plus-ends at the midbody. Alternatively,
NudC contains a p23-like CHORD-Sgt domain similar to small heat shock proteins [76] and
has been shown to exhibit chaperone activity in vitro [51,52,77,78]. In this context, insufficient
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bridge were analyzed. % cells in cytokinesis (mean + s.e.m.) was determined from 3-5 independent
experiments. n, number of cells counted. Statistical significance was calculated using ANOVA. *, p < 0.05;
** p <0.01. (C) Model of NudC phosphorylation on T40 by Aurora B on cytokinesis and cell abscission. In
NudC knockdown cells, Aurora B is widely distributed at the midbody region. This is correlated with over-
extension of microtubules (horizontal arrows) in the elongated intercellular bridge and poor cell abscission.
Reconstitution with wild-type (WT) NudC or unphosphorylatable T40A NudC rescues abscission and
cytokinesis. Reconstitution with the phospho-mimetic T40D NudC is inefficient in completing abscission and
cytokinesis. The model suggests that dynamic phospho-regulation on NudC T40 by Aurora B is important in
regulating cell abscission and cytokinesis.—, microtubule minus-ends; +, microtubule plus-ends. Horizontal
arrows, microtubule sliding and elongation in the intercellular bridge.

doi:10.1371/journal.pone.0153455.g007

levels of NudC may lead to the spreading of Aurora B/CPC in the elongated midbody in
NudC-deficient cells.

NudC Regulates Intercellular Bridge Elongation

The presence of extraordinarily long intercellular bridges is a striking feature in NudC-defi-
cient cells [34,35] (Fig 6). Newly-identified functions of Aurora B/CPC in budding yeast may
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in part explain this phenotype. Aurora B/CPC localization along anaphase spindles has been
suggested to promote microtubule plus-end polymerization, while their concentration at the
midbody is shown to slow down microtubule polymerization to prevent spindle overgrowth
[79]. The CPC also controls spindle elongation through the kinesin-5 motor [80], where
kinesin-5 can switch between a force generator that promotes outward sliding of spindle
microtubules or a brake to inhibit spindle elongation depending on CPC activity. It has been
shown that Aurora B can reach its targets through a diffusion-based kinase activity gradient,
as has been observed for Aurora B at the centromere [81-83], spindle midzone [84], and
spindle microtubules [85]. The aberrant spreading of active Aurora B (pT232)/CPC
(pTSS-INCENP) beyond the midbody may generate an even more extended activity gradient
to reach targets further along the intercellular bridge. One such target might be the microtu-
bule depolymerizing kinesin KIF2A that regulates microtubule lengths at their minus ends
[63]. It is possible that continued phosphorylation of KIF2A by an extended Aurora B kinase
gradient may inhibit the depolymerizing activity of KIF2A at microtubule minus-ends, thus
contributing to the over-extension of microtubules in the elongated intercellular bridge in
NudC-deficient cells.

NudC in Cytokinesis Regulation

At the end of cytokinesis, a decline in Aurora B activity together with dephosphorylation of
Aurora B substrates is required for the destabilization of the intercellular bridge and comple-
tion of cell abscission [5,6,8,43,62]. We envisage that NudC is phosphorylated at T40 by Aurora
B when the Aurora B-mediated abscission checkpoint is turned on, and that NudC is dephos-
phorylated when the abscission checkpoint is turned off. Such a scenario could explain our
findings that overexpression of the phospho-mimetic T40D NudC (abscission checkpoint on)
is correlated with inefficient abscission and cytokinesis failure, while the unphosphorylatable
T40A NudC (abscission checkpoint off) is able to rescue cytokinesis in NudC-deficient cells
(Fig 7B). We suggest that a balance between phosphorylated and dephosphorylated T40 NudC
plays a role in regulating cell abscission at the end of cytokinesis (Fig 7C).

Post-Translational Modification of NudC in Mitosis and Cytokinesis

The mitotic functions of NudC is regulated by post-translational modifications, including
deacetylation by HDAC3 [33] and phosphorylation by at least three mitotic kinases, including
Cdk1 (data not shown), PIk1 [32,35] and Aurora B (this study). While the function of
Cdkl1-phosphorylated NudC is not known, Plk1 phosphorylated $S274/5326 NudC is involved
in recruiting PIk1 to kinetochores to regulate kinetochore-microtubule attachments in early
mitosis [32] and localizing PIk1 to the midzone/midbody to regulate cytokinesis [34,35]. Plk1
has recently been shown to also regulate microtubule plus-end dynamics [71] as well as mid-
body assembly [2]. Pkl controls anaphase midzone microtubule elongation in part by regu-
lating the activity of the chromokinesin KIF4, a PRC1 binding partner [70]. Interestingly,
Aurora B also regulates microtubule dynamics through activating KIF4A at microtubule plus-
ends [13,86,87]. In KIF4 knockdown HeLa cells, both the midzone length and cell length are
increased with intercellular distances reaching up to 22 um [71], a length also observed in
NudC-deficient cells (Fig 6G). Whether NudC sits in the KIF4 pathway remains to be deter-
mined. Understanding how NudC phosphorylation by Plk1 and Aurora B are coordinated
will further elucidate how these mitotic regulators control spindle dynamics and coordinate
midbody assembly (P1k1 function) with abscission checkpoint (Aurora B function) to com-
plete cytokinesis.
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