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Abstract

SDF-1/CXCL12 is a potent chemokine required for the homing and engraftment of hematopoietic 

stem and progenitor cells. Previous Data from our group has shown that in an SDF-1/CXCL12 

transgenic mouse model, Lineage− Sca-1+ c-Kit+ (LSK) bone marrow cells have reduced 

mitochondrial membrane potential versus wild-type, These results suggested that SDF-1/CXCL12 

may function to keep mitochondrial respiration low in immature blood cells in the bone marrow. 

Low mitochondrial metabolism helps to maintain low levels of reactive oxygen species (ROS), 

which can influence differentiation. To test whether SDF-1/CXCL12 regulates mitochondrial 

metabolism, we employed the human leukemia cell line HL-60, that expresses high levels of the 

SDF-1/CXCL12 receptor, CXCR4, as a model of hematopoietic progenitor cells in vitro. We 

treated HL-60 cells with SDF-1/CXCL12 for 2 and 24 hours. Oxygen consumption rates (OCR), 

mitochondrial-associated ATP production, mitochondrial mass, and mitochondrial membrane 

potential of HL-60 cells were significantly reduced at 2 hours and increased at 24 hours as 

compared to untreated control cells. These biphasic effects of SDF-1/CXCL12 were reproduced 

with lineage negative primary mouse bone marrow cells, suggesting a novel function of SDF-1/

CXCL12 in modulating mitochondrial respiration by regulating mitochondrial oxidative 

phosphorylation, ATP production and mitochondrial content.
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Introduction

Stromal cell-derived factor 1α (SDF-1), also known as CXCL12, is an important member of 

the CXC family of chemokines. SDF-1/CXCL12 is expressed in a wide array of different 

tissues and cell types, including immune cells, endothelial cells, stromal cells, fibroblasts, 

and cancer cells [1]. The gene encoding SDF-1/CXCL12 is located at 10q11.1 and has 6 

exons encoding 68 amino acids. It has a molecular weight of 8 kDa, and its promoter 
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contains binding sites for transcription factors such as SP1 [2]. Signal transduction induced 

by SDF-1/CXCl12 is mediated through the chemokine receptor CXCR4 [3–6]. Knockout of 

SDF-1/CXCL12 is perinatal lethal and mice lacking SDF-1/CXCL12 have severe defects in 

gastrointestinal vascularization, cerebral development, and hematopoietic defects [7–9]. 

CXCR4 knockout studies reveal a strikingly similar phenotype to that of SDF-1/CXCL12 

knockout mice, suggesting that the SDF-1/CXCL12 and CXCR4 signaling axis is non-

promiscuous [10].

SDF-1/CXCL12 is a potent chemotactic factor for hematopoietic stem (HSCs) and 

progenitor (HPCs) cells [11,12]. It plays an essential role in the maintenance of HSCs, 

including homing, engraftment and repopulating activity, as well as HSC quiescence and 

retention in the bone marrow [13–17]. It has been shown to enhance the survival of HSCs 

and HPCs, an effect increased in synergy with other cytokines [5,18–20]. Treatment of 

mouse bone marrow cells and human cord blood HPCs with soluble SDF-1/CXCL12 

enhanced their replating efficiency, and bone marrow cells from mice expressing a human 

SDF-1/CXCL12 transgene exhibited increased replating capacity of single macrophage-and 

multipotent progenitor- derived colonies [21].

SDF-1/CXCL12 appears to be a key regulator of HSCs in the bone marrow 

microenvironment [22]. The niche provides signals regulating HSC functions, such as self-

renewal and long term repopulating capability, as well as the ability to undergo multiline age 

differentiation. Several groups have shown in genetic studies that mesenchymal progenitor, 

endothelial, and stromal cell populations play a critical role in the maintenance of HSCs in 

the niche and depending on which niche cells HSCs interact with, helps to define the 

specific “sub-niche” in which HSCs may reside [23–30]. Deletion of SDF-1/CXCL12 from 

different types of niche cells leads to the reduction in HSC numbers, competitive 

repopulation, and increases in splenic HSCs, all of which indicate an essential role for 

SDF-1/CXCL12 in HSC function in the bone marrow microenvironment [23,25,27,29,30].

Despite work from several groups describing the role of SDF-1/CXCL12 in the maintenance 

of HSCs and HPCs in the various niches in the bone marrow [23,25,27,29,30], there is a 

paucity of information on the mechanism by which SDF-1/CXCL12 functions at the 

molecular level for immature blood cell function in the bone marrow. Regulation and 

restriction of mitochondrial metabolism has been shown to be critical in maintaining the 

quiescent state of HSCs in the bone marrow by preventing mitochondrial produced reactive 

oxygen species (ROS), which can promote differentiation and HSC attrition and potential 

dysfunction [31–36]. Recent work from our group has shown that SDF-1/CXCL12 can 

modulate mitochondrial activity and mitochondrial mass in murine bone marrow cells 

expressing a human SDF-1/CXCL12 transgene [37]. We therefore hypothesized that SDF-1/

CXCL12 regulates mitochondrial respiration in early hematopoietic cells.

Materials and Methods

Oxygen Consumption Rates

Basal oxygen consumption rates (OCR) and mitochondrial-associated ATP production were 

obtained using the Seahorse Bioscience XF96 Extracellular Flux Analyzer from Seahorse 
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Bioscience, and measurements were performed according to the manufacturer’s instructions 

and as described previously [37–39]. Mitochondrial-associated ATP production is the 

difference between the basal OCR and oligomycin-A repressed OCR [40].

Cell Culture and Lineage negative bone marrow cell isolation

HL-60 cells (ATCC CCL-240) were obtained from the American Type Culture Collection 

(Manassas, VA) and maintained in Iscove’s Modified Dulbecco’s Medium (IMDM) with 

20% FBS. HL-60 cells were incubated in IMDM +20% FBS with and without 50 ng/ml 

SDF-1 (R&D, Minneapolis, MN) for two and 24 hours, respectively. This concentration of 

SDF-1 has been shown to elicit optimal responses in numerous of our assays 

[12,18,19,21,41]. C57Bl/6 strain mice were used to isolate lineage negative bone marrow 

cells. The Indiana University Committee on Use and Care of Animals approved the mouse 

studies. Mouse lineage negative cells were isolated using the Miltenyi Biotech (San Diego, 

CA) mouse Lineage Cell Depletion Kit. After lineage depletion, lineage negative cells were 

incubated in IMDM +10% FBS and stimulated with or without 50 ng/ml SDF-1 (R&D, 

Minneapolis, MN) for two and 24 hours, respectively.

Reagents and instruments

Anti-human CXCR4 APC conjugated antibody (Clone 12G5) and anti-human CXCR7 FITC 

conjugated antibody (Clone 358426) was from R&D, Minneapolis, Minnesota. Mitotracker 

Green FM and Mitotracker Red CMXRos were from Molecular Probes, Eugene, Oregon. 

Flow cytometry was performed with a FACS Calibre flow cytometer (BD Biosciences, 

Franklin Lakes, NJ). Flow cytometry data were analyzed using FlowJo (Ashland, Oregon). 

Oligomycin-A was purchased from Sigma-Aldrich (St. Louis, MO) and AMD3100 was a 

kind gift from AnorMed (Langley, BC, Canada).

Statistical analysis

Data were statistically analyzed and plotted using GraphPad Prism 6 (San Diego, CA). 

Differences were assessed with a 2-tailed Student t-test or one-way ANOVA with Tukey’s 

post-hoc correction. P values ≤0.05 were considered significant.

Results and Discussion

To investigate the potential role that SDF-1/CXCL12 plays in controlling mitochondrial 

respiration, we employed the human promyelocitic leukemia cell line, HL-60, as a beginning 

of modeling human immature subsets of hematopoietic cells and then proceeded to confirm 

the results in lineage− primary mouse bone marrow cells.

A) Effects on HL-60 cells

We maintained HL-60 cells in culture with IMDM +20% fetal bovine serum under standard 

cell culture conditions, then cultured them for two and 24 hours, respectively, with or 

without 50 ng/ml of SDF-1/CXCL12 to assess rapid and more delayed effects. We assessed 

oxygen consumption rates (OCR), a measure of mitochondrial respiration, for each group on 

a Seahorse Bioscience XF96 Extracellular Flux Analyzer (Seahorse XF96). Cells treated for 

two hours with SDF-1/CXCL12 had a significant reduction in OCR of 24.8±1.0% (mean ± 
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SEM) as compared to two-hour unstimulated control cells (Figure 1Ai). In contrast, HL-60 

cells treated for 24 hours with SDF-1/CXCL12 had a significantly increased OCR of 

96.7±13.3% over unstimulated 24-hour control cells (Figure 1Aii). This suggests that SDF-1/

CXCL12 plays a potential role modulating mitochondrial respiration in a bi-phasic manner 

as indicated by changes in mitochondrial OCR.

We next analyzed mitochondrial-associated ATP production by using the Seahorse XF96 

(Figure 1Bi and 1Bii). Mitochondrial-associated ATP production is the difference between 

the OCR and oligomycin-A (0.6 μM) repressed OCR [34]. Mitochondrial-associated ATP 

production was significantly reduced in the two-hour SDF-1/CXCL12 treated group 

compared to the unstimulated control cells (−29.2 ± 2.9%), while the 24-hour treated group 

was significantly increased versus control (+120.1 ± 20.3%). These results show that as 

OCR is reciprocally decreased or increased over time by SDF-1/CXCL12 treatment of 

HL-60 cells, there are closely related changes in ATP production suggesting that these 

processes are tightly coupled and regulated in a biphasic manner in vitro.

Next we sought to confirm that the changes in mitochondrial respiration and ATP production 

in HL-60 cells are mediated through the SDF-1/CXCL12-CXCR4 axis. We first measured 

surface expression of human CXCR4 and CXCR7, both receptors for SDF-1/CXCL12, 

using fluorochrome conjugated antibodies. (Figure 2A). Once we determined that the HL-60 

cells expressed CXCR4 with minimal or no expression of CXCR7, we used the CXCR4 

antagonist AMD3100 [42] to attempt to block the SDF-1/CXCL12-CXCR4 mediated 

changes in mitochondrial respiration. HL-60 cells were pretreated for 30 minutes with 100 

ng/ml of AMD3100 and then stimulated for 2 and 24 hours, respectively, with 50 ng/ml of 

SDF-1/CXCL12. HL-60 cells treated with SDF-1/CXCL12 for two hours have significantly 

reduced OCR as compared to untreated control cells, while both the AMD3100 alone group 

and the SDF-1/CXCL12 + AMD3100 group were not significantly different from untreated 

control (Figure 2Bi). Cells treated with SDF-1/CXCL12 for 24 hours had significantly 

increased OCR as compared to untreated control and cells pretreated with AMD3100 alone 

or pretreated with AMD3100 and then stimulated with SDF-1/CXCL12 for 24 hours had 

significantly reduced OCR as compared to untreated control cells (Figure 2Bii). These 

results show that blocking CXCR4 with AMD3100 oblates the SDF-1/CXCL12 mediated 

biphasic changes in OCR, suggesting that these metabolic effects of SDF-1/CXCL12 are 

mediated through the CXCR4 receptor.

To further investigate the mechanism by which SDF-1/CXCL12 mediates changes in 

mitochondrial respiration, we investigated changes in mitochondrial mass and mitochondrial 

membrane potential (Δψm). We hypothesized that changes in mitochondrial respiration and 

ATP production should be accompanied by concomitant changes in mitochondrial mass and 

Δψm. To assess these changes we used the mitochondrial specific dyes MitoTracker Green 

FM (50nM) and MitoTracker Red CMXROS (50 nM). MitoTracker Green FM is a 

mitochondrial specific dye that is mitochondrial membrane potential independent and is an 

indicator of mitochondrial mass, while Mitotracker Red CMXRos is membrane potential 

dependent and used as an indicator of Δψm (a measure of mitochondrial electron transport 

chain function). HL-60 cells were cultured for two and 24 hour, respectively, with 50 ng/ml 

of SDF-1/CXCL12. After each time point, cells were harvested and stained with 
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MitoTracker Green FM or MitoTracker Red CMXRos and mitochondrial mass and Δψm 

was measured by flow cytometry. Both the mitochondrial mass and Δψm for the two-hour 

SDF-1/CXCL12 stimulated group was significantly decreased versus unstimulated control 

(Figure 3Ai and 3Bi). There was a trend toward increased mitochondrial mass at 24 hours 

(Figure 3Aii). The Δψm of the 24-hour SDF-1/CXCL12 stimulated group was significantly 

increased versus control (Figure 3Bii). Much like the OCR and ATP production, SDF-1/

CXCL12 is also producing biphasic changes in mitochondrial mass and Δψm, suggesting 

that it may be regulating several different aspect of mitochondrial respiration through 

regulation of electron transport, oxidative phosphorylation, and mitochondrial biogenesis.

B) Effect on Mouse Primary Bone Marrow Lineage− Cells

To determine if SDF-1/CXCL12 effects on HL-60 cells could be mimicked in primary cells, 

we isolated lineage negative (Lin−) bone marrow cells (enriched for immature blood cells) 

from C57Bl/6 mice and cultured them with or without 50 ng/ml SDF-1/CXCL12 for two 

and 24 hours, respectively. Cells were then collected after each time point and OCR rates of 

each group were measured on the Seahorse Bioscience XF96 Extracellular Flux Analyzer. 

As already noted for the human HL-60 cells (Figure 1), the OCR for the two-hour SDF-1/

CXCL12 stimulated group was significantly reduced versus unstimulated two-hour control 

(Figure 4Ai). The OCR of the 24-hour SDF-1/CXCL12 stimulated group, however, was 

significantly increased (Figure 4Aii). These results are similar to the changes in OCR of the 

SDF-1/CXCL12 treated HL-60 cells. Next we analyzed mitochondrial-associated ATP 

production using the Seahorse Bioscience XF96 Extracellular Flux Analyzer (Figure 4Bi and 

4Bii). Treatment of Lin− cells with SDF-1/CXCL12 produced a significant decrease in the 

mitochondrial-associated ATP production versus two-hour unstimulated control and 

treatment of Lin− cells with SDF-1/CXCL12 for 24 hours produced a significant increase in 

the mitochondrial-associated ATP production as compared to control cells. These results 

demonstrate that ex vivo treatment of primary mouse immature blood cells in Lin- bone 

marrow cells with SDF-1/CXCL12 regulates mitochondrial respiration in a biphasic manner 

similar to that seen in HL-60 cells.

Conclusions

Regulation of mitochondrial respiration is essential to HSC and HPC maintenance and 

proper function [31–36]. Disregulation of mitochondrial function can lead to various 

disorders including leukemia or bone marrow failure. Many groups have shown an essential 

role for SDF-1/CXCL12 in HSC maintenance, but its role in mitochondrial regulation had 

yet to be established. Our findings in HL-60 and primary Lin− bone marrow cells suggest 

that SDF-1/CXCL12 regulates mitochondrial OCR, ATP production as well as Δψm and 

mitochondrial mass in a biphasic fashion and that these effects are mediated through 

CXCR4. These results suggest that SDF-1/CXCL12 plays a potential role in regulating 

mitochondrial respiration in immature blood cell types. Mitochondrial regulation in a 

biphasic manner also suggests that time-dependent changes in SDF-1/CXCL12, as well as 

changes in the expression of SDF-1CXCL12 by various niche cells, may differentially effect 

hematopoietic cells in the bone marrow and potentially influence HSC maintenance and 

differentiation. It is clear that mitochondrial metabolism of HSCs and HPCs is important 
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[33–37] and these results may have important implications for the regulation of 

mitochondrial metabolism of HSCs and HPCs in the bone marrow microenvironment. By 

continuing to study the role of SDF-1/CXCL12 in mitochondrial regulation in more defined 

HSC and HPC populations, studies may elucidate the role that it plays in regulating HSC 

and HPC function by various SDF-1/CXCL12 expressing niche cells.
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Figure 1. SDF-1/CXCL12 Regulates mitochondrial respiration of HL-60 cells in a biphasic 
manner
The human leukemia cell line, HL-60, was treated with 50 ng/ml of SDF-1 for 2 and 24 

hours respectively. After each time point, cells were collected and their oxygen consumption 

rates (OCR) was measured (A) on the Seahorse Bioscience Extracellular Flux Analyzer. (B) 

Mitochondrial-linked ATP production of SDF-1 treated HL-60 cells was also measured 

using the Seahorse Bioscience Extracellular Flux Analyzer. Results are the mean ± SEM of 

four independent experiments with significant differences as compared to unstimulated 

control shown in the figure.

Messina-Graham and Broxmeyer Page 9

Blood Cells Mol Dis. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. SDF-1/CXCL12 mediated effects on HL-60 cells are CXCR4 specific
(A) HL-60 cell were stained with anti-hCXCR4-APC and anti-hCXCR7-FITC conjugated 

antibodies and the level of surface expression of each receptor was determined by flow 

cytometry. (B) HL-60 cells were pre-treated with 100ng/ml of the CXCR4 antagonist, 

AMD3100, for 30 minutes. After pre-treatment, cells were treated with 50ng/ml of SDF-1 

for 2 and 24 hours respectively. After each time point, cells were collected and their oxygen 

consumption rates (OCR) (B) were measured on the Seahorse Bioscience Extracellular Flux 

Analyzer. Results are the mean ± SD of one experiment with triplicates of each group. *, 

p<0.05 comparing each group to unstimulated control.
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Figure 3. SDF-1/CXCL12 Regulates mitochondrial mass and mitochondrial membrane potential 
of HL-60 cells in a biphasic manner
(A & B) HL-60 cells were treated with 50ng/ml of SDF-1 for 2 and 24 hours respectively. 

After each time point, cells were collected and stained with 50 nM MitoTracker Green (A) 

to measure mitochondrial mass or 50 nM MitoTracker Red CMXRos (B) to measure 

mitochondrial membrane potential. Mitochondrial mass and membrane potential were 

analyzed by flow cytometry. Results are the mean ± SEM of five independent experiments 

with significant differences as compared to unstimulated control shown in the figure.

Messina-Graham and Broxmeyer Page 11

Blood Cells Mol Dis. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. SDF-1/CXCL12 Regulates mitochondrial respiration of lineage negative bone marrow 
cells in a biphasic manner
Lineage negative bone marrow cells were isolated from C57Bl/6 mice and treated with 

50ng/ml of SDF-1 for 2 and 24 hours respectively. After each time point the the OCR (A) 

and mitochondrial-linked ATP production (B) were measured on the Seahorse Bioscience 

Extracellular Flux Analyzer. Results are the mean ± SEM of three independent experiments 

with significant differences as compared to unstimulated control shown in the figure.
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