Skip to main content
. 2016 Apr 14;6:24497. doi: 10.1038/srep24497

Table 3. The comparison of CCN activation and prediction in LinAn with other researches.

  Site location Air mass type SS (%) Dc (nm) κ Nccn (cm−3) Activation ratio Prediction
Chemical composition Mixing state
This Work LinAn-clean, China rural-clean 0.45 60.1 ± 4.4 0.32 ± 0.07 4757 ± 2179 0.46 ± 0.11 bulk external
LinAn-heavy haze, China rural-pollution 0.45 62.0 ± 4.7 0.3 ± 0.07 8697 ± 2692 0.71 ± 0.07 bulk external
LinAn-heavy haze, China rural-pollution 0.28 79.3 ± 5.7 0.34 ± 0.08 7183 ± 2424 0.62 ± 0.06 size-resolved internal
Asia Beijing-aged pollution43, China urban-pollution 0.46 59.3 ± 3.0 0.31 ± 0.05 8830 ± 1600 0.74 ± 0.08
PRD11,15, China urban 0.47 58.3 ± 5.8 0.33 ± 0.08 9760 ± 5320 0.53 ± 0.19 size-resolved internal
Hong Kong19, China urban 0.5 56 ± 6.0 0.31 ± 0.10 1815 ± 1285 0.57 ± 0.14 size-resolved internal
Kanpur-summer44, India urban 0.5 64.4 ± 11.6 0.24 ± 0.13 5074 0.71 no
Jeju Island12, Korea coastal 0.58 44 ± 3 0.48 ± 0.1 3496 ± 1510 bulk internal
Europe Vienna45, Austria urban 0.5 820 0.13
Hyytiälä46, Finland rural 0.4 74.82 0.21 0.42
Vavihill46,47, Sweden rural 0.5 0.21 1285 0.44 no
North America Colorado34, USA rural 0.36 83.9 ± 7.1 0.18 ± 0.04
Tucson-winter48, USA urban 0.2 0.19 420 0.08 no
South America Amazonia13, Brazil remote-clean 0.46 82.8 ± 8.8 0.122 ± 0.04 141 ± 147 0.53 ± 0.13 bulk internal
São Paulo21, Brazil urban 0.45 0.15 ± 0.04 2202 ± 1035 0.19 ± 0.09 size-resolved internal