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The robustness of multiplex 
networks under layer node-based 
attack
Da-wei Zhao1, Lian-hai Wang1, Yong-feng Zhi2, Jun Zhang2 & Zhen Wang2,3

From transportation networks to complex infrastructures, and to social and economic networks, a large 
variety of systems can be described in terms of multiplex networks formed by a set of nodes interacting 
through different network layers. Network robustness, as one of the most successful application areas 
of complex networks, has attracted great interest in a myriad of research realms. In this regard, how 
multiplex networks respond to potential attack is still an open issue. Here we study the robustness 
of multiplex networks under layer node-based random or targeted attack, which means that nodes 
just suffer attacks in a given layer yet no additional influence to their connections beyond this layer. 
A theoretical analysis framework is proposed to calculate the critical threshold and the size of giant 
component of multiplex networks when nodes are removed randomly or intentionally. Via numerous 
simulations, it is unveiled that the theoretical method can accurately predict the threshold and the 
size of giant component, irrespective of attack strategies. Moreover, we also compare the robustness 
of multiplex networks under multiplex node-based attack and layer node-based attack, and find that 
layer node-based attack makes multiplex networks more vulnerable, regardless of average degree and 
underlying topology.

Robustness of networks refers to the ability of preserving their functional integration when they are subject to 
failures or attacks1,2. Understanding the robustness of networks is thus useful for evaluating the resilience of 
systems and constructing more efficient architectures. During the past decades, there have been a great number 
of works contributing to this topic. But the majority of these achievements mainly focus on the vulnerability of 
single-layer networks3–9, which seems inconsistent with the well-recognized fact that nodes can simultaneously 
be the elements of more than one network in most, yet not all, natural and social systems10–12?. Recently, Buldyrev  
et al. studied the robustness of interdependent networks, where two networks were coupled in one-to-one inter-
dependence way13. Following the failure of one node, a cascading crash took place in both networks (namely, 
interdependent networks are intrinsically more fragile than traditional single-layer networks), which was accu-
rately validated by the theoretical analysis as well. After this interesting finding, the research of network science 
is fast extended to multilayer framework14–17, where systems are usually composed of several network layers, 
including interdependent networks18–26, interconnected networks27–32 and multiplex networks33–44. Thus far, the 
topological characteristics of multilayer networks and dynamical process (such as evolutionary game theory22,24, 
disease spreading28,31,37,43,45, random diffusion33 and synchronization39) upon them have attracted great attention 
in both theoretical and empirical areas (for a recent review see14).

Different from interdependent netowrks, multiplex networks, as a typical kind of topology structures, can be 
regarded as the combination of several network layers which contain the same nodes yet different intra-layer con-
nections. In this sense, many real-world systems like online social networks46, technological networks47, transpor-
tation networks48 can be further studied with the viewpoint of multiplex networks. Figure 1 gives an illustration of 
multiplex framework: six people are connected via two kinds of relationship, for example Facebook connections 
(blue links) and Twitter connections (black links) (panel (a)). Such systems can be well embedded into the frame-
work of multiplex networks with two types of links. Each link type in the system defines a network layer, and the 
nodes of each network layer are the same (see panel (b)). To distinguish the node of multiplex networks and its 
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replica in each network layer, we term them as multiplex node and layer node, respectively. The former points to 
the node which connects its neighbors via all the types of links, like node 3 of Fig. 1(a), whose neighbors are 1, 
5 and 4 via blue and black links. While the latter is the partial case of multiplex node and just considers the local 
connection topology of a given node on one layer. For example, if we only consider blue (black) links in Fig. 1(b), 
node 3 is the layer node of Layer-1 (Layer-2). Now, it is thus clear that multiplex node means the joint element of 
all the layers, and layer node just belongs to the element of one given layer.

Looking back to the early topic, the research of robustness of multiplex networks thus becomes a very inter-
esting and crucial challenge. In44, Min et al. explored the robustness of multiplex networks when multiplex nodes 
were removed randomly or intentionally (here the removal of a multiplex node means all its replicas in network 
layers are pruned). They showed that correlated coupling would affect the structural robustness of multiplex 
networks in diverse fashion. In some realistic cases, however, the failure unites or attack targets may be just the 
layer nodes. For example, on multiplex transport networks where nodes are cities and network layers are airplane 
network, highway network and railway network, the failures may take place in one or some, yet not all the layers. 
Similarly, prohibiting the use of some social network accounts, people may still connect with each other via other 
available social network accounts. In this sense, an interesting question naturally poses itself, which we aim to 
address in this work. Namely, how does the removal of layer node affect the robustness of multiplex networks?

Aiming to answer this issue, we consider the robustness of multiplex networks under layer node-based attack, 
which can be further divided into random and targeted scenarios. With the framework of generating function 
method49, we propose theoretical method to calculate the critical threshold of network crash and the size of giant 
component when a fraction of layer nodes are removed. Furthermore, we also compare the robustness of multi-
plex networks under multiplex nodes-based attack and layer node-based attack.

Results
Model definition and theoretical analysis.  As mentioned in previous literatures13,21,23, the robustness of 
networks is usually evaluated by one critical threshold value and the size of giant component after the removal of 
nodes. If the fraction of removed nodes exceeds this critical threshold, the giant component becomes null. Here 
it is worth mentioning that the accurate definition of giant component of multiplex networks should be mutually 
connected giant component (MCGC), which is the largest component that remains after the removal propagates 
back and forth in the different layers. The giant component naturally consists of a set of connected multiplex 
nodes. A pair of multiplex nodes are regarded to have connection if there exists at least one type of link between 
them. Therefore, attacking some layer nodes may not destroy their connection with other nodes, and the set of 
nodes that remains at the end of damage is the mutually connected giant component (see Fig. 2 for schematic 
illustration). In the following, we will focus on theoretical method of calculating the critical threshold value and 
the size of giant component of the multiplex networks under layer node-based attack.

For simplicity (yet without loss of generality), we refer to previous treatment2,44,49. For a multiplex network 
composing of N multiplex nodes and m network layers, the generating function for the joint degree distribution 


p k( )j , where = ...


k k k k( , , , )j j j jm1 2  denotes the degrees of a multiplex node j in each layer, can be written in the 
form of a finite polynomial

Figure 1.  Schematic illustration of multiplex networks. (a) Six nodes are connected via two kinds of links 
(blue link and black link). (b) Such a system can also be embedded into the framework of multiplex networks, 
where each link type defines a network layer. Besides, we also define the terminology: multiplex node and layer 
node in the total architecture and each layer, respectively.
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where = ...x x x x( , , , )m1 2  represents the auxiliary variable coupled to 


k j. Here, it is of particular value to empha-
size give that the key parameter, joint degree distribution 



p k( )j , contains the general information of degree corre-
lation between network layers, the following derivations will be universal for (un)correlated multiplex networks. 
Then the generating function of remaining joint degree distribution by following a randomly chosen link of net-
work layer i is given by
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where zi is the average degree of layer i.
Then, on locally-tree like networks, if ui (i =  1, 2, … , m) is defined as the probability that a multiplex node 

reached by following a random chosen link of network layer i does not belong to the giant component, it can be 
derived by the coupled self-consistency equation

=
u G u( ), (3)i

i
1
( )

Figure 2.  Schematic illustration of layer node-based attack and giant component of multiplex networks. 
(a) Layer node 1 of Layer-1 and layer node 4 of Layer-2 are initially attacked. (b) Soon layer nodes 1,2 of 
Layer-1 and 3,4 and 5 of Layer-2 become failure nodes since they do not belong to the giant component of 
corresponding layers. (c) However, multiplex nodes 1–6 still belong to the mutually connected giant component 
of the multiplex networks since they connect to the largest component through at least one type of links after 
damage.
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where = …
u u u u( , , , )m1 2 . Furthermore, the size of the (mutually connected) giant component can be calculated 

according to

= − .
R G u1 ( ) (4)0

Along this framework, we can now turn to the layer node-based attack on multiplex networks. If φ k( )i ji
 is used 

to denote the probability that a layer node with degree k ji
 is removed from network layer i, then the generating 

function of the joint degree distribution after the removal of layer nodes can be expressed as
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Correspondingly, the generating function of remaining joint degree distribution after the removal of layer 
nodes by following a randomly chosen link of network layer i is given by
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In the case of layer node removal, the probability vi that a multiplex node reached by following one random 
chosen link of network layer i does not belong to the giant component can be written as
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Then, after the removal of nodes from layers, the size of giant component is given as follows

= − .
R H v1 ( ) (8)0

The existence of giant component under layer node-based attack requires the largest eigenvalue Λ  of the 
Jacobian matrix J of Eq. (7) at (1, 1, … , 1) to be larger than unity44. In this work, we mainly focus on multiplex net-
works composed of two Erdös-Rényi (ER) random50 or Barabási-Albert scale-free (SF)51 network layers (namely, 
m =  2), J thus can be written as


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κ
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largest eigenvalue Λ  is given by
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Before computation simulations, it is worth mentioning that the above derived theoretical framework  
(of generating function) is even effective in the thermodynamic limit N →  ∞ . Aiming to validate its accuracy, we 
will pay our main attention to middle-size networks in the following simulations.

Layer node-based random attack.  For layer node-based random attack, which is characterized by  
random removal of layer nodes from network layers, there exists the removal probability φ =k( )i ji

 
φ = = …i j N( 1, 2; 1, 2, )i

LR . According to the above analysis, the critical threshold and the size of giant compo-
nent of multiplex networks under layer node-based random removal can be respectively expressed as

φ φ φ φ= Λ =( , ) {( , ) 1} (11)
LR LR

c
LR LR

1 2 1 2

and

= −
R H v1 ( ), (12)LR

0

where φ φ=k( )i j i
LR

i
. It is worth mentioning that above φ φ( , )LR LR

c1 2  there is no giant component, whereas below 
φ φ( , )LR LR

c1 2  a giant connected cluster exists.
We start by inspecting how layer node-based random attack affects the robustness of multiplex networks. 

Figure 3 shows the size RLR of giant component in dependence on the removal probability φ LR
1  and φ LR

2  for net-
work layer 1 and network layer 2, respectively. Moreover, the black line indicates the theoretical critical threshold 
calculated according to Eq. (11). It is clear that when the removal probability (φ φ,LR LR

1 2 ) is above this black line, 
the size of giant component becomes negligible; whereas there exists one giant component if (φ φ,LR LR

1 2 ) is located 
below this black line. This implies that the theoretical critical threshold can accurately predict the impact of layer 
node-based attack on the robustness of multiplex networks. To further validate this fact, we also compare the 
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theoretical prediction derived from Eq. (12) and simulation results for the size of giant component in Fig. 4. It can 
be observed that there is indeed good agreement between simulation and theoretical prediction.

Layer node-based targeted attack.  Targeted attack, as a well-known attack strategy, usually aims to 
remove influential nodes, which can be identified by centrality measures, such as the degree centrality, eigenvec-
tor centrality, k-shell centrality and betweenness centrality52. In this work, we mainly pay attention to the view-
point of degree centrality. For layer node-based targeted attack, the removal probability of a layer node with 
degree k ji

 is determined by its degree, and can be expressed as follows

φ =
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where kci
 is the cutoff degree for attack on network layer i, and fi denotes the removal probability of node with 

degree kci
. Consequently, the total fraction of removal nodes in network layer i is given by

∑φ φ= p k k( ) ( ),
(14)

i
LT

k
i j i j

ji

i i

where p k( )i ji
 indicates the fraction of layer nodes with degree k ji

 in layer i.
Similar to Eqs (11) and (12), we can get the critical threshold

Figure 3.  The size RLR of giant component in dependence on removal probability φ LR
1  and φ LR

2  for layer 
node-based random attack. The black line indicates the theoretical critical threshold calculated according to 
Eq. (11). The networks used are multiplex ER network with average degree (a) z1 =  z2 =  1, (b) z1 =  2, z2 =  3 and 
network size N =  5000. It is worth mentioning that the well agreement between theoretical prediction and 
simulation outcome is effective for larger networks as well (not shown here). For the convenience of simulations, 
we will focus on the same network size in the remaining figs.

Figure 4.  Theoretical (line) and numerical (point) results of the size RLR of giant component as a function 
of φ LR

2  when φ LR
1  takes fixed values. The networks used are multiplex ER networks with average degree  

(a) z1 =  z2 =  1, (b) z1 =  2, z2 =  3 and network size N =  5000.
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φ φ φ φ= Λ =( , ) {( , ) 1}, (15)
LT LT

c
LT LT

1 2 1 2

and the size of giant component

= −
R H v1 ( ), (16)LT

0

where φ k( )i ji
 is defined as Eq. (13), for layer node-based targeted attack on multiplex networks consisting of two 

network layers.
In Fig. 5, the color code represents the size RLT of the giant component as a function of the removal probability 

φ LT
1  and φ LT

2  under layer node-based targeted attack, and the black line indicates the theoretical critical threshold 
calculated according to Eq. (15). Similar to Fig. 3, the theoretical prediction fully agrees with the simulation 
results. Moreover, Fig. 6 provides the further comparison between the theoretical prediction and simulation for 
the size of giant component, which also validates the accuracy of theoretical method. Combining with all the 
above phenomena, it is clear that the proposed theoretical framework can allow us to accurately calculate the 
critical threshold and the size of giant component under the layer node-based attack.

Comparison of robustness of multiplex networks.  Based on the above framework, multiplex 
node-based attack proposed in44, can be regarded as a special case of layer node-based attack when all the 
removed nodes or replicas are the same in each network layer. From the economic viewpoint, the cost of remov-
ing p fraction of multiplex nodes seems approximately equal to that of removing p fraction of layer nodes in each 
network layer. However, the damage of both scenarios on the multiplex networks may be greatly different. In this 
sense, it becomes very instructive to compare the robustness of multiplex networks under multiplex node-based 
attack and layer node-based attack. For simplicity of comparison, we assume that layer node-based attack means 
to remove the same proportion of layer nodes in each network layer in what follows. The removal probability 

Figure 5.  The size RLT of giant component in dependence on removal probability φ LT
1  and φ LT

2  for layer 
node-based targeted attack. The black line indicates the theoretical critical threshold calculated according to 
Eq. (15). The networks used are multiplex ER networks with average degree (a) z1 =  z2 =  2, (b) z1 =  2, z2 =  4 and 
network size N =  5000.

Figure 6.  Theoretical (line) and numerical (point) results of the size RLT of giant component as a function 
of φ LT

2  when φ LT
1  takes fixed values. The networks used are multiplex ER networks with average degree  

(a) z1 =  z2 =  2, (b) z1 =  2, z2 =  4 and network size N =  5000.
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correspondingly becomes φ φ φ= =LR LR LR
1 2  for layer node-based random attack and φ φ φ= =LT LT LT

1 2  for 
layer node-based targeted attack. While for multiplex node-based attack, the total fraction of removal multiplex 
nodes under random attack and targeted attack becomes φMR (all of the multiplex nodes are removed randomly 
with probability φMR) and

∑φ φ=
→

 

p k k( ) ( ),
(17)
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k
j
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j

j

where 

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where kc is the cutoff degree and f denotes the removal probability of node which satisfies + =k k kj j c1 2
.

Similar to the above treatment, we still use the critical threshold as a uniform evaluation index for multiplex 
node-based attack and layer node-based attack. In fact, the larger the value of critical threshold, the better the 
robustness of multiplex networks against attack. To get a more intuitive comparison, we consider the simple case 
of random attack on multiplex ER networks with z1 =  z2 =  z. Based on Eq. (9), we have κ κ φ= = − −z( 1)(1 )LR

1 2  
and φ= = −z(1 )LR

1 2
2  . The critical threshold of layer node-based random attack φc

LR thus becomes

φ = − .
z

1 1
(19)c

LR

Similarly, according to ref. 44, the critical threshold of multiplex node-based random attack φc
MR is

φ = −
−
.

z
1 1

2 1 (20)c
MR

Obviously, there always exists φ φ>c
MR

c
LR, which means multiplex networks are more robustness under the 

multiplex node-based random attack, irrespective of average degree. To attest this theoretical analysis, we will 
provide more comprehensive simulation comparisons in what follows. Figure 7 features how the the critical 
threshold of multiplex networks varies as a function of average degree under both multiplex node-based random 
attack (red line) and layer node-based random attack (black line). It is clear that the threshold of both cases rises 
with the increment of average degree, which means that multiplex networks are more robust for denser connec-
tions. Interestingly, another observation of utmost significance is that the threshold of multiplex node-based 
random attack is always higher than that of layer node-based random attack, irrespective of the average degree 
and underlying connection topology. This computation outcome completely agrees with the aforementioned 
theoretical prediction. This is to say, multiplex networks are more vulnerable under layer node-based attack, 
because it usually makes more multiplex nodes subject to attack and lose more connections with other multiplex 
nodes. Moreover, we can also obtain the similar observation for multiplex node-based targeted attack and layer 
node-based targeted attack in Fig. 8, which further supports the fact that layer node-based attack brings larger 
damage to multiplex networks. Along this seminal finding, it may shed new light into the research of protection 
or immunization of empirical multiplex topology53,54.

Figure 7.  The critical threshold of multiplex networks in dependence on the network average degree under 
multiplex node-based random attack (red dash line) and layer node-based random attack (black solid line). 
The networks used are (a) multiplex ER networks with average degree z1 =  z2 =  z and (b) multiplex SF networks 
with average degree z1 =  z2 =  z. The size of all the networks is N =  5000.
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Summary
To sum, we have studied the robustness of multiplex networks under layer node-based attack. Under this frame-
work, the layer nodes can be removed randomly or intentionally, which corresponds to layer node-based random 
attack or layer node-based targeted attack. A theoretical method is proposed to evaluate the robustness of multi-
plex networks when a fraction of layer nodes are removed. Through numerous simulations, this method can accu-
rately calculate the threshold and size of giant component, irrespective of the removal case. In addition, we also 
compare the robustness of multiplex networks under multiplex node-based attack and layer node-based attack. 
An interesting finding is that multiplex networks will be more robust under multiplex node-based attack, which 
is universal for different average degree and underlying topology. With regard to the reason, it may be related with 
the fact that layer node-based attack usually brings damage to more multiplex nodes, which will directly break the 
remaining joint component of networks.

Since multiplex framework is ubiquitous in realistic social and technological networks, we hope that the pres-
ent outcomes can inspire further research of the robustness of multiplex networks, especially combining with the 
novel properties of multiplex networks, like the clustering characteristic25, degree-degree correlation between 
network layers37. In addition, the targeted attack can also be incorporated into other centrality measures, such as 
the eigenvector centrality, k-shell centrality and betweenness centrality52. Along this line, we may get new under-
standing for the protection of multiplex network.
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