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Facilitated receptor-recognition 
and enhanced bioactivity of 
bone morphogenetic protein-2 
on magnesium-substituted 
hydroxyapatite surface
Baolin Huang1,2,3, Yuan Yuan1,2,4, Tong Li3, Sai Ding2,4, Wenjing Zhang1,4, Yuantong Gu3 & 
Changsheng Liu1,2,4

Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach 
to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material 
surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains 
elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we 
developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these 
issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of 
recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, 
molecular dynamic simulations were performed to calculate the preferred orientations, conformation 
changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 
on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition 
and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that 
BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on 
the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-
knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP 
interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration 
implants/scaffolds.

The healing of spinal fusions, bone defects, and fractures of bone are still great challenges in recent years1,2. To 
address these issues, loading of growth factors into implantable scaffolds is a well-established and promising 
avenue to reconstitute normal fracture healing and hereby enhance union3–5. Among the growth factors, bone 
morphogenetic protein-2 (BMP-2) from the transforming growth factor-β  (TGF-β ) superfamily has been iden-
tified as a potent osteogenic growth factor to induce bone formation6–8 and was approved by US Food and Drug 
Administration for clinical applications in 20021,6. Although the use of BMP-2 enhances fracture healing, the 
bioactivity of BMP-2 loaded in delivery systems is still need to be modulated to induce robust bone regeneration 
due to a short half-life and an improper immobilization1,7,8. Moreover, many previous investigations found that 
the hydrogen/ionic/hydrophobic interactions often lead to changes in secondary/tertiary structure and denatur-
ation of BMP-2 both in vitro and in vivo7,9,10. This directly undermines its therapeutic efficacy and thus results 
in a high-dosage usage accompanied with high therapy costs and undesirable side effects2,3,8. Therefore, there is 
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an urgent need to understand and tailor the adsorption and bioactivity of BMP-2 upon orthopedic implants/
scaffolds.

Recently, the interactions between protein and biomaterial surface have attracted great attention due to its 
significance in many research fields11–15. Plenty of studies have indicated that surface parameters (e.g. charge16, 
chemical composition17, topography18, and hydrophilicity19) on the nanoscale can largely affect protein adsorp-
tion, conformation, and biological activity on material surfaces. Specifically, the surface-mediated changes of 
adsorption and bioactivity of recombinant human BMP-2 (rhBMP-2) have been demonstrated by some recent 
studies20–24. For example, negatively charged graphene oxide sheets could load large doses of rhBMP-2 and pre-
serve the structure and bioactivity of the protein10. Also, TiO2 nanotube surfaces immobilized with rhBMP-2 
have shown good biological performance evidenced by great differentiation and low apoptosis of bone stromal 
stem cells (BMSCs) cultured on these surfaces22. These studies highlight the possibility to mediate the bioactivity 
of adsorbed rhBMP-2 molecules by tailoring its binding mode. However, to date, the effect of the binding mode 
of rhBMP-2 to bone morphogenetic protein receptors (BMPRs)-recognition is still poorly understood, and the 
mechanism involved for the ensuring bioactivity of rhBMP-2 is not clear.

In recent years, a rash of biomaterials (e.g. collagen1,5, graphene10, heparin20,25, apatite21, and titanium22,26) have 
been extensively exploited for loading rhBMP-2 cargos in bone regeneration. Among these vehicles, hydroxyapa-
tite [HAP, Ca10(PO4)6(OH)2] is the most extensively applied biocompatible ceramic materials as its chemical com-
position is similar to the mineral of hard tissues15,21. Moreover, due to favourable interactions with native bone 
tissue, HAP is often considered as the “golden standard” in orthopaedics27. To enhance the biological activity, 
synthetic HAP was usually doped with small amounts of additives, such as Mg2+, Zn2+, Sr2+, CO3

2−, SiO4
4−, and 

F−27–29. These small species not only changed the morphology, stability, and solubility of HAP, but also affected 
the biological response of adsorbed proteins27,28. One of the most important elements is magnesium (Mg), which 
is the fourth most abundant cation in human body30,31. It was found that a low concentration of Mg2+ played a 
crucial role in bone metabolism, and its depletion caused bone fragility and bone loss32. In addition, one recent 
study has found that the substitution of Mg2+ to Ca2+ (even low content) in calcium phosphate cement modu-
lated adsorption of fibronectin and thus ameliorated the cellular response of BMSCs33. Therefore, it is interesting 
to investigate the potential positive effects of adsorption and bioactivity of rhBMP-2 on Mg-substituted HAP 
(Mg-HAP) surface compared to the HAP surface and the involved mechanism.

Currently, molecular dynamics (MD) simulations provide many new insights into the understanding of pro-
tein adsorption on nanoscale surfaces at atomic level34,35. Moreover, steered molecular dynamics (SMD) simu-
lation is developed to accelerate the processes of adsorption and/or desorption36–38. These two simulations have 
been combined to investigate the adsorption dynamics of proteins on many surfaces. For instance, a series of 
MD and SMD simulations showed a shield effect in the adsorption processes of leucine-rich amelogenin protein 
onto silicon-doped HAP surfaces37. In another recent study using MD and SMD, it has found that the interfacial 
mechanical behavior is governed by the electrostatic attraction between an osteopontin and a HAP surface38. In 
addition, a series of studies investigated the adsorption of bone morphogenetic proteins (BMPs) on the HAP sur-
face36,39. It was proven that proteins could show different adsorption mechanisms on the HAP surface, such as the 
adsorption formed with electrostatic interaction and water-bridged H-bonds36,39. These works clearly explained 
the conformational changes of the protein during the adsorption/desorption processes, but they lack in vitro/vivo  
validation of the bioactivity of the adsorbed proteins. Despite all these MD and SMD simulations for BMP-2 
adsorption, up to date, relatively little knowledge has been obtained about the BMPRs-recruitment and bioactiv-
ity of BMP-2 upon the HAP and Mg-HAP model surfaces.

Therefore, we investigated the adsorption behaviour, recognition of BMPRs, and bioactivity of rhBMP-2 on 
the HAP and Mg-HAP surfaces by quartz crystal microbalance with dissipation (QCM-D) experiments, cell 
experiments, and MD/SMD simulations. To prepare the respective surfaces, HAP and Mg-HAP nanocrystals 
were fabricated by a microwave method and deposited with an electrophoretic deposition (EPD) method. The 
adsorption dynamics and recruitments of BMPRs were examined with a QCM-D technique. The bioactivity of 
rhBMP-2 was measured by an alkaline phosphatase (ALP) activity study with C2C12 cells and BMSCs. In addi-
tion, combined MD and SMD simulations were carried out to simulate 6 classical orientations of BMP-2 adsorbed 
on the HAP and Mg-HAP model surfaces. The detailed mechanism was also elucidated by the experimental 
results and numerical simulations.

Results
Characterization of the HAP and Mg-HAP nanoparticles.  Phase compositions of the HAP and 
Mg-HAP nanoparticles were characterized by X-ray diffraction (XRD). As shown in Fig. 1a, the peaks of sto-
ichiometric HAP are indexed according to a standard pattern (JCPDS 09-0423). It can be observed that the 
HAP nanoparticles exhibit sharp diffraction peaks, and the intensity of peaks of the Mg-HAP nanoparticles is 
lower. As shown in Fig. 1b, all Fourier transform infrared (FTIR) spectra of the HAP and Mg-HAP nanocrystals 
illustrate OH- bands at 656 and 3569 cm−1 and PO4

3− bands at 565, 603, 1032, and1089 cm−1. Transmission 
electron microscope (TEM) images and selected-area diffraction patterns (SAED) revealed that the HAP and 
Mg-HAP nanocrystals were rod-like and typical polycrystalline (Fig. 1c). Moreover, zeta potentials of the HAP 
and Mg-HAP nanocrystals were − 1.4 ±  0.3 mV and − 0.9 ±  0.4 mV (n =  5), respectively. Energy dispersive X-ray 
spectra (EDS) patterns of the HAP and Mg-HAP nanoparticles showed strong peaks of Ca, P, and O (Fig. S1, 
Supporting Information). Notably, a peak of Mg was found in the EDS pattern of Mg-HAP. In addition, the ratio 
of Mg/Ca was confirmed as 2.1 at% for the Mg-HAP nanocrystals.

Characterization of the HAP and Mg-HAP surfaces.  Surface topographies of the HAP and Mg-HAP 
surfaces were evaluated by atomic force microscopy (AFM, Fig. 2a). It can be found that the HAP and Mg-HAP 
surfaces consist of very delicate nanostructures. Thickness and Ca/P ratio of coatings, root-mean-square 
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roughness (RMS), surface potential, and water contact angle of the HAP and Mg-HAP surfaces are reported in 
Table 1. Surface morphology observed by scanning electron microscopy (SEM, Fig. S2a, Supporting Information) 
showed that the HAP and Mg-HAP nanoparticles were uniformly deposited on the respective surfaces. EDS 
patterns (Fig. S2b,c, Supporting Information) of the deposited coatings revealed similar element contents as com-
pared to those of respective nanoparticles. In particular, the ratio of Mg/Ca was demonstrated as 2.2 at% for 
the Mg-HAP coatings. Importantly, this low amount of substitution of Mg to Ca was suggested as an optimum 
concentration for exploring protein adsorption according to literature30,31. The concentration curves of Mg2+ 
and Ca2+ ions released from the HAP and Mg-HAP surfaces are shown in Fig. 2b. It can be clearly found that 
Ca2+ ions released from the HAP and Mg-HAP surfaces are not significantly different (p >  0.05) and gradually 
increased with time. The release of Mg2+ions was only detected in the Mg-HAP surface and slowly increased with 
time. It is worthwhile to mention that the discrepancy of Ca2+ release between the HAP and Mg-HAP samples 
is inconspicuous, which was due to the EPD fabrication process mediated the ion-release rate of the HAP and 
Mg-HAP coatings as compared to their nanoparticle state. Moreover, the element distributions of the HAP and 
Mg-HAP surfaces are presented in Fig. 2c. It suggested that Mg, Ca, P, and O were uniformly located on the 
respective surfaces. Notably, Mg was sparsely distributed on the Mg-HAP surface.

Adsorption dynamic of rhBMP-2 and recognition of BMPRs.  We measured and compared the 
adsorption of rhBMP-2 and subsequent recognition of BMPRs on the HAP and Mg-HAP surfaces. Typical 
QCM-D shifts in frequency and dissipation for the adsorption of rhBMP-2 and subsequent binding of BMPR-IA 
are shown in Fig. 3a,b. The adsorption amounts of rhBMP-2 and BMPRs were calculated with the Sauerbrey 
equation11 (Table 2). It was found that the Mg-HAP surface showed a slightly lower mass-uptake of rhBMP-2 than 
the HAP surface. However, the adsorbed rhBMP-2 on the Mg-HAP surface induced an increased recruitment of 
BMPR-IA/B. For example, a nearly 1.9-fold mass-uptake of BMPR-IA and 1.8-fold mass-uptake of BMPR-IB was 
found. To further compare the capacity of the adsorbed rhBMP-2 for recruiting BMPRs, the “BMPRs-binding 
availability” was calculated (Fig. 3c). As expected, a nearly 2.2-time availability of BMPR-IA and 2.1-time avail-
ability of BMPR-IB was achieved for adsorbed rhBMP-2 on the Mg-HAP surface. There was no significant 

Figure 1.  XRD patterns (a) FTIR spectra (b) and TEM and SAED images (c) of the HAP and Mg-HAP 
nanoparticles. Scale bars are 50 nm for TEM images, and 30 nm for SAED patterns.
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difference (p >  0.05) for the binding availability of BMPR-II by adsorbed rhBMP-2 on both surfaces. The binding 
amounts of ActR-I, ActR-II, and ActR-IIB by adsorbed rhBMP-2 were very low (Table 2), and their binding avail-
abilities were not significantly different (p >  0.05) between the HAP/rhBMP-2 and Mg-HAP/rhBMP-2 surfaces 
(Fig. 3c). Therefore, we focused on BMPR-IA, BMPR-IB, and BMPR-II of BMPRs in recognition with rhBMP-2. 
Additionally, we reported the binding kinetics and maximum binding capabilities of rhBMP-2 on the HAP and 
Mg-HAP surfaces (Fig. S3, Supporting Information), which suggested that the adsorption of rhBMP-2 fitted well 
with the well-known classical Langmuir adsorption theory9,11.

To further identify the recognition of BMPRs by adsorbed rhBMP-2, we measured the immunofluorescence 
staining of rhBMP-2 and BMPRs (Fig. 3d). There is no significant difference (p >  0.05) between the binding 
availability of TRITC-BMPRs/FITC-rhBMP-2 and that of BMPRs/rhBMP-2 (Fig. S4, Supporting Information). 
Compared with the HAP surface, large recognized BMPR-IA clusters were achieved on the Mg-HAP surface. 
The clusters of BMPR-IB on the HAP surface were small (< 5 um) and uniformly dispersed, while that on the 

Figure 2.  (a) AFM images of the HAP and Mg-HAP surfaces. (b) Mg2+ and Ca2+ ions released from the HAP 
and Mg-HAP surfaces. (c) Element distributions on the HAP and Mg-HAP surfaces. N.A. represents not 
available. Scale bar is 5 um.

HAP Mg-HAP

Thickness (nm) 28.2 ±  2.6 30.4 ±  3.5

Ca/P ratio 1.71 ±  0.05 1.64 ±  0.06

RMS (nm) 5.2 ±  0.7 6.1 ±  0.9

Surface charge (mV) − 1.8 ±  0.3 − 1.6 ±  0.2

Water contact angle (°) 74.7 ±  2.4 72.2 ±  1.3

Table 1.   Thickness and Ca/P ratio of coatings, RMS (root-mean-square roughness), surface charge, and 
water contact angle of the HAP and Mg-HAP surfaces (n = 5).



www.nature.com/scientificreports/

5Scientific Reports | 6:24323 | DOI: 10.1038/srep24323

Mg-HAP surface exhibited large aggregations (10–15 um). The clusters of BMPR-II on both surfaces were com-
parable (5–10 um). In addition, the relative fluorescence units (RFU) of BMPRs per RFU of rhBMP-2 were calcu-
lated (Fig. 3e). It showed a similar trend as compared to the results of “BMPRs-binding availability”. For instance, 
an almost 1.7-time recruitment of BMPR-IA per rhBMP-2, 1.8-time recruitment BMPR-IB per rhBMP-2, and 
comparable recruitment of BMPR-II per rhBMP-2 were achieved on the Mg-HAP surface as compared to those 
on the HAP surface.

Adsorption stability and bioactivity of rhBMP-2.  The adsorption stability of rhBMP-2 on the HAP and 
Mg-HAP surfaces was shown in Fig. 4a. It was found that both the HAP/rhBMP-2 and Mg-HAP/rhBMP-2 sam-
ples exhibited no significant difference (p >  0.05) in the adsorption stability of rhBMP-2: an initial burst release 
within first 24 h and a gradual release after that. Notably, more than 85% of rhBMP-2 remained on the HAP 
and Mg-HAP surfaces, which indicated that the growth factors were tightly adsorbed and had good adsorption 
stability. It can be inferred that the Mg-HAP/rhBMP-2 was acted as a complex communicating with cells, which 
was also supported by an ALP study (Fig. S5, Supporting Information) suggesting Mg2+ and released rhBMP-2 
hardly induced ALP activity but the complex did. The osteogenetic bioactivity of adsorbed rhBMP-2 was deter-
mined by quantitating the ALP expressions of C2C12 cells (Fig. 4b). It was clearly found that the HAP and 
Mg-HAP samples (as negative control) exhibited little ALP expression. At days 3 and 5, the Mg-HAP/rhBMP-2 
sample induced significantly (p <  0.05) increased ALP activity of C2C12 cells compared to the HAP/rhBMP-2 

Figure 3.  Typical changes in Δf (blue line) and ΔD (red line) recorded against time during the adsorption of 
rhBMP-2 and subsequent binding of BMPR-IA on (a) the HAP surface and (b) the Mg-HAP surface.  
(c) Calculated BMPRs-binding availability by adsorbed rhBMP-2 on the HAP and Mg-HAP surfaces. Values 
are shown as mean ±  standard error of the mean from 5 data points (n =  5). *p <  0.05, #p <  0.05, compared 
with the HAP surface. (d) CLSM observation of the fluorescent staining of adsorbed rhBMP-2 (green) and 
subsequent recruited BMPRs (red) on the HAP and Mg-HAP surfaces. Scale bar is 50 um. (e) The RFU (relative 
fluorescence units) of BMPRs per RFU of rhBMP-2. Values are shown as mean ±  standard error of the mean 
from 50 data points (n =  50). *p <  0.05, #p <  0.05, compared with the HAP surface.

HAP Mg-HAP

ΔmrhBMP-2(ng/cm2) 63.7 ±  2.5 55.2 ±  1.8

(ΔD/Δf)rhBMP-2(10−8Hz−1) 3.94 ±  0.22 6.73 ±  0.32

ΔmBMPR-IA(ng/cm2) 30.1 ±  1.1 56.6 ±  2.1

ΔmBMPR-IB(ng/cm2) 7.8 ±  0.7 14.2 ±  1.4

ΔmBMPR-II(ng/cm2) 19.8 ±  1.4 18.8 ±  1.1

ΔmActR-I(ng/cm2) 5.7 ±  1.1 5.3 ±  0.9

ΔmActR-II(ng/cm2) 4.7 ±  0.6 4.9 ±  0.8

ΔmActR-IIB(ng/cm2) 6.4 ±  1.3 5.6 ±  1.2

Table 2.   Surface mass density and visco-elastic property of adsorbed rhBMP-2 and BMPRs-recruitment to 
rhBMP-2 layer on the HAP and Mg-HAP surfaces (n = 5).
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sample. Importantly, the ALP expression normalized to rhBMP-2 amount (data not shown) was significantly 
higher (p <  0.05) for C2C12 cells cultured on the Mg-HAP/rhBMP-2 surface than on the HAP/rhBMP-2 surface. 
Intriguingly, the bioactivity of adsorbed rhBMP-2 on the Mg-HAP surface was notably greater (p <  0.05) than the 
theoretical positive control, most likely due to the contributing synergistic effects of the nanostructured Mg-HAP 
surface and desirable conformation of adsorbed rhBMP-2. In addition, the enhanced bioactivity of rhBMP-2 on 
the Mg-HAP surface was also evidenced by the Western Blot and Quantitative real time PCR results (Fig. 4c–e) 
showing significantly (p <  0.05) promoted p-Smad 1/5/8 and expression of Id1, Runx2, and OCN of C2C12 cells 
on the Mg-HAP/rhBMP-2 group.

Figure 4.  (a) Remained rhBMP-2 on the HAP and Mg-HAP surfaces. Values are shown as mean ±  standard 
error of the mean from 6 data points (n =  6). (b) ALP activity assay. The HAP and Mg-HAP surfaces without 
rhBMP-2 were acted as negative controls. The rhBMP-2 solution representing culture medium containing 
fresh rhBMP-2 at the similar content to that calculated from the QCM-D study was used as a positive control. 
(c) Western blot of p-Smad1/5/8, Smad1/5/8, and GAPDH for C2C12 cells cultured on respective surfaces. 
(d) Relative expressions of p-Smad1/5/8 and Smad1/5/8 (data are normalized to the total GAPDH content). 
Values are shown as mean ±  standard error of the mean from 5 data points (n =  5). (e) Real time PCR results 
of expression of rhBMP-2-mediated genes and BMPRs genes on different samples. Values are shown as 
mean ±  standard error of the mean from 5 data points (n =  5). *p <  0.05, compared with the corresponding 
surfaces without rhBMP-2; #p <  0.05, compared with HAP/rhBMP-2; @p <  0.05, compared with rhBMP-2 
solution.
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Expression of BMPRs in C2C12 cells.  To further explore Mg mediating rhBMP-2/BMPRs interactions, 
the expression of BMPRs on cellular surface of C2C12 cells cultured on the rhBMP-2-adsorbed surfaces was 
investigated by an immunofluorescence staining of the BMPR-IA, BMPR-IB, and BMPR-II respectively. As shown 
in Fig. 5a, the expressed BMPRs are uniformly distributed on the cellular surface of C2C12 cells cultured on 
the HAP/rhBMP-2 and Mg-HAP/rhBMP-2 surfaces. Importantly, significant larger (p <  0.05) BMPR-IA and 
BMPR-IB clusters and comparable BMPR-II clusters are found on the C2C12 cells seeded on the Mg-HAP/
rhBMP-2 sample than on the HAP/rhBMP-2 sample. In addition, the RFU of BMPRs (Fig. 5b) revealed that the 
BMPR-IA and BMPR-IB were more expressed in the C2C12 cells cultured on the Mg-HAP/rhBMP-2 surface, 
which well corresponds to the QCM-D studies and the immunofluorescence staining experiments (Table 2 and 
Fig. 3c–e). In addition, Quantitative real time PCR was applied to identify the expression of BMPRs at the tran-
scriptional level. As shown in Fig. 4e, the Mg-HAP/rhBMP-2 surface significantly promoted the cellular expres-
sion of BMPR-IA, ActR-I and ActR-IIB. Considering that the low binding availability of ActR-I and ActR-IIB, 
the ameliorated bioactivity of rhBMP-2 on the Mg-HAP/rhBMP-2 group is ascribed to the up-regulated 
BMPR-IA-binding availability and promoted BMPR-IA expression in C2C12 cells.

Cell adhesion, focal adhesion, and cytoskeleton organization.  The cellular morphology, focal adhe-
sion, and cytoskeleton organization of C2C12 cells on the respective surfaces were investigated with an immuno-
fluorescence staining of the actin, vinculin, and nucleus (Fig. 6). It can be seen that C2C12 cells were well spread 
and had intimate contact with the surfaces, especially for the HAP/rhBMP-2 and Mg-HAP/rhBMP-2 samples. 
The cell amounts were obviously larger (p <  0.05) on the HAP/rhBMP-2 and Mg-HAP/rhBMP-2 surfaces as 
compared to that on the respective HAP and Mg-HAP surfaces. Moreover, C2C12 cells cultured on the Mg-HAP/
rhBMP-2 surface showed a better spread morphology and a well-organized actin cytoskeleton when compare to 
those of the HAP/rhBMP-2 surface. The vinculins (visible as red background) were present throughout the cyto-
plasm of all C2C12 cells, suggesting large focal contacts between cells and respective surfaces. It is evident that 

Figure 5.  Expression of BMPRs (BMPR-IA, BMPR-IB, and BMPR-II) on cellular surface of C2C12 cells 
cultured on the HAP/rhBMP-2 and Mg-HAP/rhBMP-2 surfaces. (a) Fluorescence images of BMPRs (green 
dots, respectively) and cell nucleus (blue) of C2C12 cells cultured on respective surfaces after 12 h of incubation. 
Scale bar is 50 μm. (b) The RFU (relative fluorescence units) of BMPRs expressed in C2C12 cells extracted from 
fluorescence pictures of BMPRs. Values are shown as mean ±  standard error of the mean from 50 data points 
(n =  50). *p <  0.05, #p <  0.05, compare with the HAP/rhBMP-2 surface.
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greater focal adhesion was formed on the Mg-HAP/rhBMP-2 surface as compared to the HAP/rhBMP-2 surface. 
To further investigate the cellular attachment, assessments of the cell-surface contact area and cellular perimeter 
were performed (Fig. S6, Supporting Information). It was found that C2C12 cells cultured on the HAP/rhBMP-2 
and Mg-HAP/rhBMP-2 surfaces had larger contact area than that on the HAP and Mg-HAP surfaces, respec-
tively. Importantly, a significant (p <  0.05) increased contact area was achieved on the Mg-HAP and Mg-HAP/
rhBMP-2 surfaces as compared to the HAP and HAP/rhBMP-2 surfaces, respectively. It is noteworthy that the 
data of cellular perimeter exhibited similar results to those of the cell-surface contact area. Similar to some recent 
studies13,21, these findings suggested that rhBMP-2 adsorbed on the HAP and Mg-HAP surfaces, especially on the 
Mg-HAP surface, can significantly improve C2C12 adhesion.

Molecular dynamic simulation.  In order to shed light on the dynamic adsorption of BMP-2 on the HAP 
and Mg-HAP surfaces at atomic level, we performed combined MD and SMD simulations. The binding energy 
against the distance between BMP-2 and the surface in the SMD process is provided in Fig. 7. In the End1 ori-
entation, there was no significant difference (p >  0.05) between the binding energies for the HAP and Mg-HAP 
surfaces. In the Side1 and Side2 orientations, it was found that the binding energy for the HAP surface was lower 
than that for the Mg-HAP surface. However, in the End2, Side3, and Side4 orientations, a remarkably lower 
(p <  0.05) binding energy was observed on the Mg-HAP surface compared to that on the HAP surface. These 
findings suggest that BMP-2 adsorbed in different orientations towards the HAP and Mg-HAP surfaces exhibited 
distinct interactions with these surfaces. Moreover, we recorded the minimum binding energy and the separa-
tion distance of the adsorption state (Table S1 and Table S2, Supporting Information). Basically, the separation 
distances between BMP-2 and the surface for side-on orientations were notably shorter (p <  0.05) than that for 
end-on orientations.

The radius of gyrate (Rg) of BMP-2 with respect to simulation time is shown in Fig. S7 (Supporting 
Information). It was also found that the Rg of BMP-2 for the whole process was significantly lower (p <  0.05) in 
all end-on orientations, while it was notably higher (p <  0.05) in all side-on orientations. This finding suggests 
that the configuration of BMP-2 was partly folded during the adsorption process in the end-on orientations, while 
it was partly loosened during the adsorption process in the side-on orientations. Moreover, various Rg shifts 
(Table 3) indicated that BMP-2 molecules were folded or loosened at different extents on the HAP and Mg-HAP 
models as compared to the initial configuration. In addition, the profile of root mean square deviation (RMSD) 
of BMP-2 against the simulation time is shown in Fig. S8 (Supporting Information). All the curves exhibited a 

Figure 6.  Fluorescence images of actin (cytoskeleton, green), vinculin (focal contact, red), cell nucleus 
(blue), and merged images of C2C12 cells cultured on respective surfaces after 12h of incubation. Scale bar 
is 50 μm.
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Figure 7.  Binding energy against the distance between BMP-2 (centre of mass) and surface (HAP and Mg-HAP)  
for the End1 (a) End2 (b) Side1 (c) Side2 (d) Side3 (e) and Side4 (f) orientations. Inserts are illustrations of 
respective configurations of BMP-2 (with wrist and knuckle epitopes noted) towards surface.

Orientation HAP Mg-HAP

End1 − 0.193 ±  0.005 − 0.246 ±  0.004

End2 − 0.142 ±  0.005 − 0.288 ±  0.011

Side1 0.149 ±  0.006 0.056 ±  0.008

Side2 0.091 ±  0.003 0.238 ±  0.012

Side3 0.138 ±  0.004 0.060 ±  0.006

Side4 0.115 ±  0.009 0.159 ±  0.006

Table 3.   Rg shifts (nm) of BMP-2 molecule (in 6 orientations) adsorbed on the HAP and Mg-HAP surfaces 
compared to the initial configuration (n = 5).
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similar trend: a linear increase of RMSD from 0 to 600 ps, a rapid up-regulation of RMSD from 600 to 750 ps, and 
a slight rise of RMSD in the MD procedure (750 to 2750 ps). The RMSDs of BMP-2 on the HAP and Mg-HAP 
models varied slightly.

The root mean square fluctuation (RMSF) of residues of BMP-2 was also obtained in the whole adsorption 
process (Fig. 8). At first glance, the values of RMSF are varied with orientation. As expected, the values of RMSF 
are also varied on HAP and Mg-HAP surfaces in a same orientation of BMP-2. Moreover, the residues which 
exhibited a high value of RMSF (> 0.25 nm) are collected in Table S3 (Supporting Information). It was found that 
a rash of residues showed a high value of RMSF for BMP-2 adsorbed on the HAP and Mg-HAP surface in the 
Side2 orientation. Regardless of the orientation of BMP-2, significantly more residues with a high value of RMSF 
on the Mg-HAP surface were found than that on the HAP surface. In particular, we found that it was extremely 
high (> 0.6 nm) for the RMSFs of residues Phe23-Ala34 of BMP-2 in the Side2 orientation on the Mg-HAP sur-
face, which might lead to denaturation of the adsorbed protein. In addition, the values of RMSF of cysteine-knots 
of BMP-2 were relative low (Fig. S9, Supporting Information). It can be found that the cysteine-knots of BMP-2 
showed different stabilities in 6 orientations both on the HAP and Mg-HAP surfaces. Together, the results indi-
cated that the cysteine-knots of BMP-2 on the Mg-HAP surface were more stable than that on the HAP surface.

Discussion
Adsorption of proteins onto surfaces of inorganic material is a crucial topic in the field of biomaterials, bio-
medicine, biosensors, and cell biology16,17,19. It is reported that proteins from the extracellular matrix (ECM) 
firstly attach to the surface of an implanted material, and then sensitively mediate the cellular adhesion12,13,17. 

Figure 8.  RMSF of residues of BMP-2 (with 6 configurations) on the HAP and Mg-HAP surfaces during the 
adsorption process. BMP-2 is composed by 2 monomers. Monomer I is composed by residues Arg9 to Arg114, 
and monomer II is composed by residues Arg9′  to Arg 114′ .
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The biological processes of adsorption are proved to have a strong dependence on the interaction between the 
protein and material surface. The protein-surface interactions can correspond to the distinct surface properties 
(e.g. charge16, chemistry17, topography18, and hydrophilicity19), natures of proteins12, and the surrounding envi-
ronment (e.g. pH7 and ions19). If the biological performance of the sequestrated protein can be preserved or even 
enhanced, the surface will be highly desirable in regenerative medicine and tissue engineering as novel function-
alities are integrated into the materials10,26. To that end, in the present study we both experimentally and numer-
ically investigated the adsorption, BMPRs-recruitment, and bioactivity of rhBMP-2 on the HAP and Mg-HAP 
surfaces. With these typical matrixes as material models, the results indicated that the BMPR-IA binding capacity 
and bioactivity of adsorbed rhBMP-2 were significantly up-regulated on the Mg-HAP surface compared to the 
HAP surface, even though the adsorption amount of rhBMP-2 was slightly decreased. Moreover, combined MD/
SMD simulations revealed that the BMP-2 on the Mg-HAP surface largely preserved the active protein structure 
evidenced by more stable cysteine-knots as compared to the HAP surface. Collectively, this contribution could 
provide valuable guidance for the future design and fabrication of BMP-2-based bone scaffolds/matrixes.

It is well-acknowledged that the primary interactions between proteins and substrate surfaces, especially at 
the initial adsorption process, mainly depend on hydrophobic interaction, electrostatic interaction, hydrogen 
bond, surface topography, and surface chemistry14,16–19. The hydrophobic interaction, electrostatic interaction, 
and surface topography were not significantly different between the HAP/rhBMP-2 and Mg-HAP/rhBMP-2 
samples, given that the HAP and Mg-HAP surfaces exhibited similar water contact angles, zeta potentials, and 
RMS values (Table 1). For the hydrogen bond, recent studies have demonstrated that it is closely related with the 
hydrophobic interaction and electrostatic interaction in the protein-surface interactions19,36,40. Thus, the hydrogen 
bonds were also not significantly different between the HAP/rhBMP-2 and Mg-HAP/rhBMP-2 samples. Actually, 
in this study the surface chemistry was the predominant reason for the distinct interaction between the HAP/
rhBMP-2 and Mg-HAP/rhBMP-2 samples. With a sparse Mg presenting in the Mg-HAP surface, the Van der 
Waals force was shifted as compared to the HAP surface. This discrepancy was confirmed to lead the variation of 
conformation and/or orientation of rhBMP-2 on the HAP and Mg-HAP surfaces, which ultimately influenced the 
bioactivity of the adsorbed protein.

It can be inferred that the rhBMP-2 molecules possessed better bioactivity on the Mg-HAP surface than on 
the HAP surface. As a bone growth factor, rhBMP-2 exerts its signal function mainly through oligomerizing 
BMPR-IA/B and BMPR-II receptors serine/threonine kinases on the cellular membranes41,42. Moreover, the rec-
ognition of BMPR-IA to rhBMP-2 is demonstrated as a pivotal role for signal transduction43. The better bio-
activity of Mg-HAP/rhBMP-2 is ascribed to the higher expression of BMPR-IA in C2C12 cells (Figs 4e and 5)  
and the greater BMPR-IA/B-recognition of the adsorbed rhBMP-2 (Table 2 and Fig. 3c–e). These promoted 
BMPR-IA-expression and BMPR-IA/B-recognition are closely related to the loosened configuration of adsorbed 
rhBMP-2 on the Mg-HAP surface, which is well supported by the values of (ΔD/Δf)rhBMP-2. In conclusion, the 
Mg-HAP surface induced favorable configuration of rhBMP-2, up-regulated rhBMP-2/BMPR-IA/B recogni-
tion, and enhanced expression of BMPR-IA in C2C12 cells. In addition, the cellular attachment study also sup-
ported that the rhBMP-2 on the Mg-HAP surface had a better bio-compatibility and bio-performance, which 
was evidenced by the C2C12 cells cultured on the rhBMP-2-adsorbed Mg-HAP surface having a well-organized 
cytoskeleton (Fig. 6 and Fig. S3, Supporting Information). Moreover, the priority of Mg-HAP/rhBMP-2 to HAP/
rhBMP-2 was also confirmed by an ALP study using BMSCs (Fig. S5, Supporting Information).

It is interesting and necessary to investigate various orientations of BMP-2 for adsorbing on a surface, as some 
of them are highly favored39,40. In the present study, we selected 6 typical orientations of BMP-2 as the objectives 
of MD/SMD simulations. In recent years, several studies36,38 have investigated the adsorption of different orien-
tations of BMP-2 with molecular models, but they have not explored the difference between the various orien-
tations and the most favorable orientation. Here, with the curve of binding energy, it was shown that the Side1 
orientation of BMP-2 was the most preferred orientation and had the strongest interaction with both the HAP 
and Mg-HAP surfaces (Fig. 7 and Table S1, Supporting Information). Considering the random orientations of 
BMP-2 in solution and binding energy, there were also some other possible orientations (especially Side2, Side3, 
and Side4) of BMP-2 that adsorbed on the HAP and Mg-HAP surfaces. For the HAP surface, the majority of 
BMP-2 was adsorbed in the Side1 and Side2 orientations. For the Mg-HAP surface, though the most favorable 
orientation is still Side1, a considerable amount of BMP-2 was adsorbed in the Side3 and Side4 orientations.

It is believed that MD and SMD simulations have greatly advanced knowledge of protein structures37,38, as 
they can predict many parameters of protein configuration. Among the parameters, Rg and RMSD are the mostly 
calculated items for evaluating conformational changes of proteins. Here, in the End1 and End2 orientations, it 
can be inferred that the adsorbed BMP-2 was folded on both HAP and Mg-HAP surfaces (Table 3). Further, a 
more highly folded conformation of BMP-2 was achieved on the Mg-HAP surface than that on the HAP surface. 
In all side on orientations, it was found that the adsorbed BMP-2 was loosened on both HAP and Mg-HAP sur-
faces (Table 3). Specifically, in the Side1 and Side3 orientations, it was found that the adsorbed BMP-2 was in a 
less loosened conformation on the Mg-HAP surface than on the HAP surface; in the Side2 and Side4 orientations, 
we found that the adsorbed BMP-2 was in a more loosened conformation on the Mg-HAP surface as compared to 
that on the HAP surface. As is widely accepted, a slightly loosened configuration of protein could expose its active 
spots for ligand-receptor interaction and thus up-regulate the bioactivity of protein11–13,44. Therefore, it can be 
inferred that the bioactivities of BMP-2 with all end on orientations were decreased, while with all side on orienta-
tions were increased, for both the HAP and Mg-HAP surfaces. It seems that this conclusion has a contradiction to 
the experiment results that the ALP activities of BMP-2 on both the HAP and Mg-HAP surfaces were higher than 
those of the theoretical positive control (Fig. 4b). However, considering that the preferred orientations for BMP-2 
adsorbed on the HAP and Mg-HAP surfaces, it is reasonable and clear that the bioactivity of adsorbed BMP-2 is 
enhanced on both surfaces, and it is higher for the Mg-HAP surfaces.
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As is known to all, a globe protein is composed of a hydrophobic core and some hydrophilic residues16,44, 
which are important to stabilize the whole structure. However, BMP-2 does not possess a hydrophobic core, thus 
7 cysteine-knots of BMP-2 play core roles in maintaining functional structure of the protein41,44. Some recent 
studies23,25,26,44 have suggested that the maintenance of integrity of cysteine-knots can preserve a high bioac-
tivity of BMP-2, and the depletion of cysteine-knots cause a denaturation of BMP-2. Therefore, the stability of 
cysteine-knots could be utilized as an additional perspective for assaying the bioactivity of adsorbed BMP-2. To 
further explore the collections between the bioactivity and structures of BMP-2, we evaluated the stability of 
cysteine-knots of BMP-2. As the results indicated, the cysteine-knots located in different monomers of BMP-2 
exhibited a distinguished stability (Fig. S9, Supporting Information). Collectively, in general we found that 
cysteine-knots of BMP-2 on the Mg-HAP surface were more stable as compared to the HAP surface. It is believed 
that the existence of Mg on the Mg-HAP surface restrained the movement of cysteine-knots of BMP-2, and thus 
preserved the higher bioactivity of BMP-2 compared to the HAP surface.

In summary, the enhanced bioactivity of rhBMP-2 on the Mg-HAP surface should be attributed to the syner-
gistic effect of the preferred orientation, loosened conformation, and stable cysteine-knots (Fig. 9). The present 
study systematically investigated the differences of the adsorption of rhBMP-2 on the HAP and Mg-HAP surfaces 
and the involved mechanism. Moreover, it is for the first time it has been demonstrated that the BMP-2 adsorbed 
on the Mg-HAP surface has better stability of cysteine-knots than that on the HAP surface. All acquired knowl-
edge in this study will contribute to a better understanding of protein-surface interactions and up-regulation of 
bioactivity of BMP-2.

Conclusion
With experimental and numerical assays, we have demonstrated that the recruitment of BMPR-IA and bioactivity 
of BMP-2 were remarkably increased on the Mg-HAP surface compared to those on the HAP surface. The pres-
ence of a low amount of Mg on the Mg-HAP surface not only induced a slightly loosened conformation of BMP-2, 
but also maintained the integrity of cysteine-knots of the adsorbed BMP-2. The clear advantages of the Mg-HAP 
surface for loading BMP-2 highlight the potential of Mg-HAP biomaterials in being used as bone regeneration 
implants/scaffolds.

Figure 9.  Schematic diagram of the adsorption of rhBMP-2 and recognition of BMPRs to rhBMP-2 on the 
HAP and Mg-HAP surfaces. (a) For the HAP surface, Side1 and Side2 are the most favorable orientations for 
the adsorption of rhBMP-2. For the Mg-HAP surface, Side1 and Side2 (especially Side1) are the most favorable 
orientation for the adsorption of rhBMP-2, while a considerable amount of rhBMP-2 is adsorbed in Side3 and 
Side4 orientations. (b) The rhBMP-2 on the Mg-HAP surface exhibited a greater BMPRs-recognition than that 
on the HAP surface, which is ascribed to the slightly loosened conformation and more stable cysteine-knots. 
The higher BMPRs-recognition on the Mg-HAP surface induced a stronger BMP signaling than that on the 
HAP surface.



www.nature.com/scientificreports/

13Scientific Reports | 6:24323 | DOI: 10.1038/srep24323

Materials and methods
Materials.  Ca(NO3)2⋅ 4H2O and (NH4)2HPO4 were purchased from Sinopharm Chemical Reagent Co., Ltd. 
Shanghai, China. NH3⋅ H2O and Mg(NO3)2⋅ 6H2O were purchased from Shanghai Lingfeng Chemical Regent 
Co., Ltd. Shanghai, China. Gold-coated QCM-D sensors (QSX 301) were purchased from Q-Sense AB, Bioline 
Scientific, Sweden. Escherichia coli-derived rhBMP-2 (carrier-free, > 95% purity) was obtained from Shanghai 
Rebone Biomaterials Co., Ltd. Shanghai, China. Recombinant Human BMPRs (BMPR-IA, BMPR-IB, BMPR-II, 
ActR-I, ActR-II, and ActR-IIB, expressed in mouse NSO cells) and Human BMP-2 ELISA Kit were obtained 
from R&D Systems, Inc. Minneapolis, USA. FluoroTag FITC conjugation Kit, TRITC conjugation Kit, mouse 
monoclonal anti-vinculin antibody, TRITC-conjugated goat anti-mouse IgG antibody, and FITC-conjugated 
phalloidin were purchased from Sigma-Aldrich, St Louis, USA. DMEM, FBS, 0.25% Trypsin-EDTA, and PBS 
were obtained from GIBCO, Grand Island, USA. BCA assay kit, ALP assay kit and DAPI were purchased from 
Beyotime, Biotech. Jiangsu, China. Rabbit polyclonal anti-human/mouse BMPR-IA, BMPR-IB, and BMPR-II 
antibody, FITC-conjugated goat anti-rabbit IgG antibody, and goat polyclonal HRP-conjugated anti-rabbit IgG 
were purchased from Abcam, Cambridge, UK. Rabbit polyclonal anti-Smad1/5/8, anti-phospho-Smad1/5/8, and 
anti-GAPDH were purchased from Cell Signaling Technology, Beverly, USA. Trizol reagent, PrimeScript RT 
reagent Kit, and SYBR Premix Ex Taq were purchased from Takara, Tokyo, Japan.

Fabrication and characterization.  Preparation of HAP and Mg-HAP nanoparticles.  Colloidal 
HAP nanocrystals were prepared by a microwave method. In brief, 0.040 mol of Ca(NO3)2⋅ 4H2O was dis-
solved in 200 mL of deionized-distilled water free of CO2. 0.024 mol of (NH4)2HPO4 was dissolved in 120 mL 
of deionized-distilled water free of CO2. After freezing in a − 20 °C desk refrigerator for 5 min, the two 
above-mentioned solutions were mixed with mild stirring, and maintained the pH around 10.5 with NH3⋅ H2O 
during the procedure. The mixed solution was then set in a microwave synthesis reactor at 200 W and 60 °C for 
30 min. The resultant suspension was centrifuged at 6000 g for 10 min, and washed 3 times with deionized water 
and ethanol (in that order) and finally dried at 70 °C in an air oven for 24 h. To obtain the Mg-HAP nanocrystals, 
0.040 mol of Ca(NO3)2⋅ 4H2O was substituted by 0.002 mol of Mg(NO3)2⋅ 4H2O and 0.038 mol of Ca(NO3)2⋅ 4H2O 
in the above procedure.

Characterization of HAP and Mg-HAP nanoparticles.  Phase compositions and crystal sizes of the nanocrystals 
were characterized by XRD (Rigaku RU-200). Surface charges of HAP and Mg-HAP nanocrystals in deionized 
water were determined by dynamic light scattering using a Zetasizer Nano Series. Surface morphologies of the 
nanoparticles were observed by TEM (JEOL JEM-2100) with SAED. Functional groups of HAP and Mg-HAP 
nanoparticles were analyzed by FTIR (Nicolet Nexus 670). Chemical compositions of the nanoparticles were 
quantified by EDS (QUANTAX 400-30).

Preparation of the HAP and Mg-HAP surfaces.  We employed an EPD method to fabricate an ultra-thin 
layer of the HAP and Mg-HAP coatings on QCM-D sensors, respectively. Briefly, a platinum gauze electrode 
(1.5 ×  1.5 cm) served as the anode, and the QCM-D sensor (gold-plated) served as the cathode. For the HAP coat-
ing, 1 wt% of the HAP suspension in ethanol was used as electrolyte. And, 100 V/cm DC voltage was applied for 
3 min to prepare the HAP coating on the QCM-D sensor. For the Mg-HAP coating, 1 wt% of Mg-HAP suspension 
in ethanol was used as electrolyte in the above procedure. After the deposition, the coated QCM-D sensors were 
conducted with an ultrasonic treatment (40 kHz, 75W, 0.5 min) and dried with nitrogen. For cellular assessments, 
the coated QCM-D sensors were sterilized using an autoclave at 120 °C for 30 min.

Characterization of the HAP and Mg-HAP surfaces.  Surface morphologies and elemental distributions of 
the HAP and Mg-HAP surfaces were investigated by SEM coupled with X-ray energy dispersive spectrome-
try (SEM-EDS, Hitachi S-4800). Surface roughness of the prepared surfaces was analyzed in air by the AFM 
(Shimadzu SPM-9500). Surface charges of the HAP and Mg-HAP surfaces in deionized water were determined 
using SurPASS (AntonPaar). Surface hydrophilicities of the HAP and Mg-HAP surfaces were analyzed at 22 °C 
in air by a sessile drop method of distilled water (approximately 0.02 mL) with automatic contact angle meter 
(Kyowa Interface Science CA-W200). Thicknesses of the HAP and Mg-HAP coatings were examined with a spec-
tral ellipsometer (UVISEL/VIS Jobin Yvon). Concentrations of ions released from the HAP and Mg-HAP sur-
faces at 37 °C for 1, 3, and 7 days were examined by inductively coupled plasma optical emission spectroscopy 
(ICP-OES, Optima 8300).

RhBMP-2 adsorption and BMPRs binding capacity.  QCM-D study.  The surface adsorption of 
rhBMP-2 and the ensuing BMPRs (BMPR-IA, BMPR-IB, BMPR-II, ActR-I, ActR-II, and ActR-IIB) binding to the 
adsorbed rhBMP-2 layer were monitored by the well-used QCM-D technique. According to the simple Sauerbrey 
equation (shown below)11, a thin non-dissipative layer with no slip condition, the adsorbed mass, Δm (ng/cm2), 
is directly proportional to the frequency shifts, Δf (Hz).

∆ = − × ∆m fnc
n (1)

where C (17.7 ng·cm2 Hz−1 for a 5 MHz crystal) is the mass sensitivity constant, n (1, 3, 5, … ) is the overtone 
number, and Δfn is the frequency shifts of the nth overtone.

The BMPRs binding to the rhBMP-2 adsorbed surfaces results in a Δf and the additional mass was analyzed as 
an estimate of “BMPRs-binding availability” with Sauerbrey equation by the following equation11:
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where NrhBMP-2 is the number of rhBMP-2 molecules in the protein layer, NBMPRs is the number of BMPRs 
bound to the rhBMP-2 layer, ΔfrhBMP-2 and ΔfBMPRs are the respective frequency changes, and MrhBMP-2 =  26 kDa, 
MBMPR-IA =  55 kDa, MBMPR-IB =  55 kDa, MBMPR-II =  75 kDa, MActR-I =  39 kDa, MActR-II =  40 kDa, and 
MActR-IIB =  41 kDa are the respective molecular weights.

The monitoring of the adsorption of rhBMP-2 on the prepared surfaces and the subsequent binding of BMPRs 
to rhBMP-2 adsorbed surfaces were conducted as follows: the flow rate (20 μL/min) and temperature (37 °C) 
were kept constant throughout all measurements. First, pure PBS was injected into the QCM-D chamber to sta-
bilize the baseline for 10 min. Then, the rhBMP-2 (50 μg/mL) was introduced into the QCM-D chamber, and the 
QCM-D measurement parameters were stabilized for 30 min. After that, the PBS was used to rinse the saturate 
adsorbed protein layer for 5 min. At approximately t =  45 min, the BMPRs (respectively, 10 μg/mL) were intro-
duced into the QCM-D chamber, and the QCM-D measurement parameters were stabilized for 30 min, following 
which the PBS was used to rinse the layer again for 5 min. Here, the uses of concentration of rhBMP-2 and BMPRs 
followed literature11,12,24 and manufacturer’s instructions. In addition, various concentrations of rhBMP-2 were 
utilized to explore the equilibrium binding constant and maximum binding capability.

Immunofluorescence assay.  An immunofluorescence assay was performed for further identifying the adsorption 
of rhBMP-2 on the HAP and Mg-HAP surfaces and subsequent binding of BMPRs to the adsorbed rhBMP-2. 
FITC was reacted with the primary amines of rhBMP-2 according to the protocol recommended by the manu-
facturer. TRITC was reacted with the primary amines of BMPRs according to the protocol of FluoroTag FITC 
conjugation kit recommended by Sigma-Aldrich. The FITC-conjugated rhBMP-2 was adsorbed on the HAP 
and Mg-HAP surfaces as the same procedure in the QCM-D measurements. Briefly, the prepared surfaces were 
immersed into 0.2 mL FITC-labeled rhBMP-2 (50 μg/mL) for 30 min at room temperature. Then the FITC-labeled 
rhBMP-2 solutions were removed and the substrates were washed twice with PBS to rule out the unadsorbed 
rhBMP-2. Following this, the rhBMP-2-adsorbed surfaces were blocked with 5% BSA at room temperature for 
2 h, and then incubated with TRITC-conjugated BMPRs for 2h at 4 °C. The samples were kept in the dark at 
4 °C until the substrates were observed by confocal laser scanning microscopy (CLSM, Nikon A1). Images at 
600X  magnification were acquired at 10 randomly chosen fields on 5 independent samples for each surface. 
BMPRs-TRITC and rhBMP-2-FITC were also applied in QCM-D experiments to indentify the binding availabil-
ity of labeled BMPRs and rhBMP-2.

Adsorption stability of rhBMP-2.  The adsorption stability of growth factor from the rhBMP-2-adsorbed 
HAP and Mg-HAP surfaces were examined with a Human BMP-2 ELISA Kit over a period of 5 days. Similar to 
the adsorption processes of QCM-D experiments, rhBMP-2 was adsorbed on the HAP and Mg-HAP surfaces by 
an immersion method. In brief, the HAP and Mg-HAP surfaces were immersed into 0.2 mL rhBMP-2 (50 μg/mL) 
for 30 min at 37 °C, respectively. Then, the rhBMP-2 solutions were removed and the rhBMP-2-adsorbed surfaces 
were washed twice with PBS to rule out the surplus rhBMP-2. Following this, the rhBMP-2-adsorbed surfaces 
were put into 24-well plates containing 2 mL PBS and incubated at 37 °C, with constant agitation at 15 rpm. At 
the end of each time point, the release medium was collected (200 μL) and replenished with an equal amount of 
fresh PBS solution. All samples were frozen and stored at − 80 °C until analysis. Profiles of stability of rhBMP-2 
were calculated in terms of the remained percentage of adsorbed rhBMP-2 (%, w/w) with incubation time. The 
measurements were performed in triplicate for each time point.

BMPRs expression, Bioactivity, and cell attachments.  Cell culture.  C2C12 cells, purchased from the 
American Type Culture Collection (ATCC), were cultured in 37.5 cm2 flasks with DMEM containing 10% FBS, 
antibiotics (100 U/mL penicillin-G and 100 mg/mL streptomycin) at a humidified atmosphere of 5% CO2/95% air 
until confluence. After being detached with 0.5 mL 0.25% trypsin-EDTA, cells were suspended in normal culture 
medium. The cell density was calculated and used at the desired density in later assays. Rat BMSCs were isolated 
and cultured based on protocols from previous studies22,33. BMSCs of the fourth to sixth passage were used in the 
present study.

BMPRs expression.  To further explore Mg affecting rhBMP-2/BMPRs interactions, we examined the expression 
of BMPRs in C2C12 cells cultured on the HAP/rhBMP-2 and Mg-HAP/rhBMP-2 surfaces. Briefly, rhBMP-2 was 
adsorbed on the HAP and Mg-HAP surfaces as discussed in the adsorption stability study. Then, the C2C12 cells 
were seeded on these surfaces at a density of 1 ×  104 cells/well (24-well plate). After 12h incubation, the cells were 
fixated with 10% neutral PBS buffered formalin (10 min) and then incubated with 0.1% Triton X-100 for 1h to 
permeabilize the cells. The BMPRs on cellular surface were stained with rabbit polyclonal anti-human/mouse 
BMPR-IA, BMPR-IB and BMPR-II antibodies and FITC-conjugated goat anti-rabbit IgG antibodies according 
to the manufacturer’s instructions. DAPI was used to stain the cell nucleus at a concentration of 0.5 μM DAPI 
(200 μL). Then, the stained cells were investigated by CLSM with 600×  magnification at 10 randomly chosen 
fields on 5 independent samples.

Bioactivity of the adsorbed rhBMP-2.  To explore the bioactivity of adsorbed rhBMP-2, we measured the ALP 
activity of C2C12 cells induced by the rhBMP-2 adsorbed on the HAP and Mg-HAP surfaces. In brief, rhBMP-2 
was adsorbed on the HAP and Mg-HAP surfaces as discussed in the adsorption stability study. To prepare the 
negative control experiments, the rhBMP-2-unadsorbed surfaces were achieved by immersing the substrates into 
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0.5 mL pure PBS solution. After removing the immersion liquid, the C2C12 cells were seeded on the aforemen-
tioned surfaces at a density of 4 ×  104 cells per well (24-well plate). Culture medium with a similar content of 
rhBMP-2, corresponding to that calculated from the QCM-D study, was applied as the positive control. After 1, 3, 
and 5 days of incubation, ALP activity was measured according to standard protocols. The absorbance of ALP was 
quantified at the wavelength of 405 nm using a microplate reader (SPECTRAmax 384, Molecular Devices, USA). 
ALP activity was expressed as 405 nm OD value per total protein per min (OD/mg protein/min). In addition, 
BMSCs were also utilized in the ALP study according to protocols of previous study33.

Western blot study.  Phosphorylation of Smad1/5/8, a short-term effect of BMP signaling, was semi-quantitatively 
analyzed by the western blot assay. Briefly, rhBMP-2 was adsorbed on the HAP and Mg-HAP surfaces as dis-
cussed in the adsorption stability study. C2C12 cells were cultured on the prepared surfaces at a density of 1 ×  105 
cells per well (24-well) for 6 h. After extracted by RIPA lysis buffer, samples were subjected to 10% SDS–PAGE 
and transferred to PVDF membranes. The membranes were blocked by 5% BSA at room temperature for 60 min 
and incubated with primary antibodies (anti-Smad1/5/8, anti-phospho-Smad1/5/8, and anti-GAPDH) at 4 °C 
overnight. Then the membranes were incubated with secondary antibodies (HRP-conjugated anti-rabbit IgG) for 
2 h. Following, the membranes were visualized and analyzed using the ECL plus reagents by Image Quant LAS 
4000 (GE, USA).

Quantitative real time PCR study.  Expression of rhBMP-2-mediated genes and BMPRs genes was further quan-
titatively analyzed using the real time PCR assay. C2C12 cells were cultured on respective surfaces at a density 
of 1 ×  105 cells per well (24-well) for 12 h. Total RNA was extracted using Trizol reagent following manufactur-
er’s instructions. First-stranded cDNA was synthesized with PrimeScript RT reagent Kit. After diluting cDNA 
by ten-fold in sterile distilled water, 4 μL aliquot of the diluted cDNA was subjected to real-time PCR using 
SYBR Premix Ex Taq. Subsequently, real-time PCR was performed by Bio-Rad real-time PCR system (Bio-Rad, 
Hercules, USA) according to manufacturer’s instructions. PCR primer pairs were designed based on the 
sequences of different exons of the corresponding genes (Table S4, Supporting Information). The conditions of 
real-time PCR were as following: 95 °C for 30 s followed by 40 cycles at 95 °C for 5 s and 60 °C for 34 s. ΔCT was 
used to calculate the differences between target and control CT values for each sample: ΔCT =  CT (target)−CT 
(control). The comparative expression level (fold change) was obtained by transforming the logarithmic values 
into absolute values using 2−ΔCT.

Cell attachment.  The cellular adhesion parameters (cellular morphology, focal adhesion, cell-material con-
tact area, and cellular perimeter) of HAP/rhBMP-2 and Mg-HAP/rhBMP-2 were measured by a CLSM. Briefly, 
rhBMP-2 was adsorbed on the HAP and Mg-HAP surfaces as discussed in the adsorption stability study. The 
C2C12 cells (1 ×  104 cells/well, 24-well plate) were seeded on the prepared surfaces. In addition, C2C12 cells 
directly cultured on the HAP and Mg-HAP surfaces were used as controls. After 12 h incubation, the surfaces 
were removed from the culture plates, rinsed shortly in 37 °C PBS and fixated with 10% neutral PBS buffered 
formalin. After fixation, the surfaces were washed twice with warm PBS, permeabilized with 0.1% Triton X-100, 
and washed twice again with PBS. Following this, the cells were incubated for 30 min at room temperature with a 
1% BSA blocking agent and washed twice with PBS buffer. 400 μL of mouse monoclonal anti-vinculin (5 μg/mL)  
was added to the cells and incubated overnight at 4 °C and then washed three times with PBS. 200 μL of 
TRITC-conjugated goat anti-mouse IgG (10 μg/mL) and 200 μL of FITC-conjugated phalloidin (2 μg/mL) were 
added to the surfaces and incubated for 60 min at room temperature. Cells were thereafter washed three times 
with PBS and finally incubated for 10 min at room temperature with 200 μL of 0.5 μM DAPI and washed three 
times with PBS. The stained cells were kept in the dark at 4 °C until the substrates were investigated by CLSM. 
50–60 images at 600X  magnification were acquired at random on each surface.

Molecular dynamics simulation.  Computational setup.  The atomistic MD and SMD simulations were 
conducted with GROMACS 5.0.4 applying the OPLS-AA force field. All calculations were carried out under peri-
odic boundary conditions in explicit TIP3P water with a cut-off distance of 12 Å for van der Waals and a value of 
12 Å for the separation of the direct and reciprocal space summations. Long-range electrostatics was computed 
with the particle mesh Ewald summation.

Surface model.  Molecular models for HAP and Mg-HAP were developed by duplication of small unit cells using 
Materials Studio 7.0. The initial atomic coordinates of HAP (P63/m, unit cell parameters a =  b =  0.943 nm and 
c =  0.688 nm) was extracted from the American Mineralogist Crystal Structure Database. The (0 0 1) face of HAP 
is our surface of interest as this face is the major surface of HAP materials and has been extensively investigated 
in numerous modeling studies36,37,39. Given that natural HAP nanoparticles have lower crystallinity than a HAP 
cell (HAPC), the HAPC underwent 1 ns of MD simulation and was then utilized to develop the super-cell. For the 
HAP model, a super-cell (15 ×  15 ×  4 units) of HAPC was built. For the Mg-HAP model, a uniform substitution 
of Ca2+ into Mg2+ (2.2 at% of total Ca2+, same content as the experimental Mg-HAP surface) at Ca(II) sites was 
performed on the HAP model, given that Mg2+ preferentially replaces at Ca(II) sites of HAPC30. The HAP and 
Mg-HAP models were fixed in all simulations.

Protein.  The initial configuration of the protein was obtained from Protein Database Bank (PDB, ID 
code =  3BMP). In this monomer structure, coordinates of the first 8 residues corresponding to the N-terminus 
are missing41. A homo-dimer (natural bioactivity form) linked with inter-chain disulfide bridges between the 
Cys 78 residues of each monomer was developed and utilized in all simulations. The resulting structure had a 
total charge of -4 e, which was neutralized by adding ions in the protein-surface system setup part. Given that 
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the coordinates of rhBMP-2 are currently unavailable in PDB and the BMP-2 structure of 3BMP has been exten-
sively utilized in modelling simulations36,39,40, BMP-2 (homo-dimer) was applied in the simulation part instead 
of rhBMP-2.

Protein-surface system setup.  Proteins can interact with material surfaces at different orientations, which could 
lead to distinct dynamic adsorption behaviors. As the module of BMP-2 is roughly considered as a rectangular 
box, six initial scenarios with each face of the protein box lying on the material surface in the z-axis were used (as 
shown in Fig. 7, inserts). In this study, the two end-on and four side-on orientations are defined as End1, End2, 
Side1, Side2, Side3, and Side4. The initial separation distances between BMP-2 (centre of mass) and the surface 
were set as approximate 10 nm and 8 nm for the end-on and side-on orientations, respectively. Considering 
the release of Ca2+ and Mg2+ measured by ICP-OES and the box size of system (24.5 ×  24.5 ×  18 nm), ions 
were added to neutralize the systems. For the HAP systems, 4 Ca2+ and 4 Cl− were randomly added and for the 
Mg-HAP systems, 4 Ca2+, 2 Mg2+, and 8 Cl− were randomly added. Energy minimization was performed by 
using the steepest descent method (stop at force < 1000 kJ/mol/nm). To further equilibrating the system, a 100 
ps of NVT ensemble (T =  300 K) was conducted, followed with NPT ensemble (P =  1 bar) for another 100 ps.

MD and SMD simulations.  A hybrid approach combining MD and SMD simulations was performed to explore 
the mechanism of adsorption of BMP-2 on the HAP and Mg-HAP surfaces. In 750 ps of SMD simulation, artifi-
cial forces were applied to the protein backbone, pushing it towards the surface with constant velocity (0.01 nm/
ps) and with a spring constant of 1000 kJ/(mol nm2). The binding energy was recorded with respect to the dis-
tance between BMP-2 and the surface. The configuration of system at the adsorption state, which had the mini-
mum binding energy, was selected and further relaxed with 2 ns of MD simulation. The Rg and RMSD of BMP-2 
were quantified throughout the SMD and MD simulations. In addition, the RMSF of each residue of BMP-2 was 
also investigated over the whole process.

Stability of cysteine-knots.  Each BMP-2 monomer has 7 cysteines, 6 of them constitute 3 intramolecular 
disulfides41, which are known as cysteine-knots (Cys43/Cys111, Cys47/Cys113, and Cys14/Cys79). One of them 
(Cys78) forms an intermolecular disulfide with the other monomer, constituting a dimer. The Cysteine-knot is 
crucial for the stability of conformation and thus for the bioactivity of BMP-240,41,44. To establish the connection 
between bioactivity of BMP-2 and molecular conformation, we measured the RMSF of cysteine-knots of BMP-2 
adsorbed on the HAP and Mg-HAP surfaces. The RMSF of cysteine-knots was defined as follows:

=
+

R a b
R a R b

(Cys /Cys )
(Cys ) (Cys )

2 (3)f
f f
2 2

where Rf (Cysa/Cysb) stands for the RMSF of cysteine-knot of (Cysa/Cysb), and Rf (Cysa) and Rf (Cysb) stands 
for the RMSF of residue of Cysa and Cysb, respectively. Cysa and Cysb stands for the residue a and b of BMP-2, 
respectively.

Statistical analysis.  All numerical data was presented as the mean ±  standard deviation (SD), with simi-
lar results obtained in each experiment. Significant differences were analyzed with independent sample Student 
t-tests. Values of p <  0.05 were accepted as statistically significant.
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