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BACKGROUND AND PURPOSE
Airway microvascular leak (MVL) involves the extravasation of proteins from post-capillary venules into surrounding tissue. MVL is
a cardinal sign of inflammation and an important feature of airway inflammatory diseases such as asthma. PGE2, a product of
COX-mediatedmetabolism of arachidonic acid, binds to four receptors, termed EP1–4. PGE2 has a wide variety of effects within the
airway, including modulation of inflammation, sensory nerve activation and airway tone. However, the effect of PGE2 on airway
MVL and the receptor/s that mediate this have not been described.

EXPERIMENTAL APPROACH
Evans Blue dye was used as a marker of airway MVL, and selective EP receptor agonists and antagonists were used alongside EP
receptor-deficient mice to define the receptor subtype involved.

KEY RESULTS
PGE2 induced significant airway MVL in mice and guinea pigs. A significant reduction in PGE2-induced MVL was demonstrated in
Ptger2�/� and Ptger4�/� mice and in wild-type mice pretreated simultaneously with EP2 (PF-04418948) and EP4 (ER-819762)
receptor antagonists. In a model of allergic asthma, an increase in airway levels of PGE2 was associated with a rise in MVL; this
change was absent in Ptger2�/� and Ptger4�/� mice.

CONCLUSIONS AND IMPLICATIONS
PGE2 is a key mediator produced by the lung and has widespread effects according to the EP receptor activated. Airway MVL
represents a response to injury and under ‘disease’ conditions is a prominent feature of airway inflammation. The data presented
highlight a key role for EP2 and EP4 receptors in MVL induced by PGE2.
Abbreviations
BAFL, bronchiolar lavage fluid; COPD, chronic obstructive pulmonary disease; IPA, intrapulmonary airways; MVL, micro-
vascular leakage; OVA, ovalbumin
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These Tables list key protein targets and ligands in this article which are hyperlinked to corresponding entries in http://www.
guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Pawson et al., 2014)
and are permanently archived in the Concise Guide to PHARMACOLOGY 2015/16 (Alexander et al., 2015).
Introduction
Airway microvascular leakage (MVL) and plasma exudation
represent classical features in the pathogenesis of various
respiratory diseases, including asthma and chronic obstruc-
tive pulmonary disease (COPD) (Paredi and Barnes, 2009).
The bronchial microvasculature has a multitude of important
functions that are essential for maintaining pulmonary ho-
meostasis, but during an inflammatory response this barrier
can be disrupted allowing fluid and large macromolecules to
move into the surrounding tissues through interendothelial
gaps. Many mediators (e.g. cysteinyl leukotrienes, histamine,
bradykinin, 5-HTand cytokines) are capable of inducing this
effect when released in response to an inflammatory insult
in the airway, where they can act upon the endothelium of
post-capillary venules to open these intercellular gaps. This
effect causes plasma to ‘leak’ out into extravascular sites be-
cause of hydrostatic pressure gradients (Olivenstein et al.,
1997; Reynolds et al., 2002; Greiff et al., 2003). This phenom-
enon is a very distinctive feature of acute inflammation but is
also observed in more chronic diseases such as asthma
(Laitinen et al., 1987; Li and Wilson, 1997; Innes et al.,
2009; Khor et al., 2009) and COPD (Hill et al., 1999; Minakata
et al., 2005; Bessa et al., 2012).

PGE2 is an endogenous lipid eicosanoid synthesized by
COX-mediated metabolism of free arachidonic acid. It is pro-
duced in a variety of cells, including airway smooth muscle,
epithelial cells, alveolar macrophages and pulmonary endo-
thelial cells (Meyrick et al., 1989; Widdicombe et al., 1989).
It exerts its biological effects via activation of four cell-surface
GPCRs, termed EP1–4, encoded for by the genes Ptger1–4
(Coleman et al., 1994). Increased levels of PGE2 have been re-
ported in bronchiolar lavage fluid (BALF) and plasma of
asthma patients (Brightling et al., 2000; Birring et al., 2003;
Long et al., 2004; Sastre et al., 2008), allergen-challengedmice
(Herrerias et al., 2009) and enhanced levels in the exhaled
breath condensate of COPD patients (Montuschi et al.,
2003; Chen et al., 2008; Antczak et al., 2012).

Previous work from our lab, and others, has demonstrated
that the bronchodilator effects of PGE2 occur through the ac-
tivation of the EP4 receptor (Buckley et al., 2011; Benyahia
et al., 2012), whereas airway sensory nerve activation and
cough appear to be via the activation of the EP3 receptor
(Maher et al., 2009). However, the effect of PGE2 and the EP
receptors on airway MVL has not been extensively investi-
gated. To investigate this, Evans Blue dye was used as a marker
of MVL, a method that has been used for decades to quantify
vascular permeability in various tissues and a variety of spe-
cies (Miles and Miles, 1952; Evans et al., 1987; Rogers et al.,
1988; Baluk et al., 1999; Reynolds et al., 2002; Xie et al.,
2003; Zhuang et al., 2011). First, we established the responses
to PGE2 in both mouse and guinea pig airways. Then using a
pharmacological approach and EP receptor-deficient mice,
we provided substantial evidence that both the EP2 and EP4
receptors mediate PGE2-induced airway MVL.
Methods

Animals
Male C57BL/6 mice (20–25 g) and male Dunkin Hartley
guinea pigs (250–350 g) were purchased from Harlan
(Bicester, Oxon, UK). Homozygous breeding pairs of mice ge-
netically modified to disrupt one of the following genes:
Ptger1 (EP1), Ptger2 (EP2) and Ptger3 (EP3) (Ushikubi et al.,
1998), had been backcrossed at least eight times onto the
C57BL/6 background. Ptger4�/� (EP4) mice do not survive on
the C57BL/6 background because of patent ductus arteriosus
(Segi et al., 1998), so they were backcrossed on a mixed back-
ground of 129/Ola X C57bl/6. Mice were kindly provided by
Dr Shuh Narumiya, Kyoto University, and breeding colonies
maintained at Imperial College, London. All animals were
housed in individually ventilated cages and provided with food
and water ad libitum in a controlled environment. A 12 h
light–dark cycle was maintained for all animals. All studies and
procedures were approved by the Imperial College, AnimalWel-
fare and Ethical Review Body, and performed in accordancewith
Home Office guidelines under the Animals (Scientific Proce-
dures) Act of 1986 and the ARRIVE guidelines (Kilkenny et al.,
2010) and the editorial on reporting animal studies (McGrath
and Lilley, 2015).
General methodology for measuring
microvascular leak
Apart for the data generated in the variousmouse knockout line,
animals were randomised as regards the treatment groups.
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Animals were anaesthetized with i.p. urethane (2 g·kg�1; 200 μL
of a 25% solution given at two sites, followed by a further
50–100 μL as required). Mice breathe spontaneously under ure-
thane and so were therefore not artificially ventilated. Depth of
anaesthesia was assessed using the pedal and corneal reflex.
Once surgical anaesthesia was reached, the jugular veins were
then exposed following a midline incision over the thorax.
The administration of substances i.v. was achieved by passing
the injection needle through the pectoralis major as this helped
prevent bleeding on withdrawal. Animals received Evans Blue
dye (20mg·kg�1) followed by the specificmediator or its vehicle
1 min later (4 mL·kg�1). The doses and timings used were those
shown to be effective in previous studies within the group and
from the literature (Hele et al., 2001; Belvisi et al., 2009). Thirty
minutes after vehicle or compound administration, the animals
were killed by an overdose of anaesthesthetic (pentobarbitone
200 mg kg�1, i.p.), the thoracic cavity was opened and a small
incision was made in the left ventricle and also the left atrium
of the heart. A cannula was then inserted into the left ventricle
and the systemic circulation perfused with sterile saline (0.9%)
at a pressure of approximately 100 mmHg. This was continued
until the perfusate ran clear (2–5 min). The purpose of this was
to remove any intravascular dye. The heart, lungs and oesopha-
gus were removed en bloc and then the trachea and lungs sepa-
rated from the heart and oesophagus. The oesophagus and
bladderwere taken for the initial studies and used as non-airway,
reference tissues. The trachea was isolated by cutting just above
the bifurcation of the bronchi and the larynx removed. The pa-
renchymawas then carefully scraped off using a scalpel to reveal
the intrapulmonary airways (IPA). The trachea, the bronchi and
IPA, the oesophagus and the bladder were then all weighed, and
the wet tissue weight was recorded. Each tissue was then incu-
bated in 120 μL of formamide at 37.5°C for at least 18 h to facil-
itate the extraction of Evans Blue dye. The concentration of
Evans Blue extracted from each tissue was determined by light
absorbance at 620 nmusing a spectrophotomer; 100 μL of form-
amide was removed from each Eppendorf and pipetted into a
96-well plate alongside a standard curve of Evans Blue in form-
amide (0, 0.3125, 0.625, 1.25, 2.5, 5, 10 and 20 μg·mL�1). The
concentration was then calculated by interpolation from the
standard curve and expressed as ng·mg�1 of tissue. End points
were assessed by a different operator than the experimental part
of the study.
Experimental design
PGE2-induced airway microvascular leak. A dose–response
curve to PGE2 was established where male C57BL/6 mice
were given PGE2 (0.1, 0.3, 1, 3 or 10 mg·kg�1 at 4 mL·kg�1)
and 5-HT (10 mg·kg�1 at 4 mL·kg�1) as a positive control or
vehicle (1% ethanol in saline). Thirty minutes after
administration, Evans Blue extravasation was measured. A
non-selective COX inhibitor, diclofenac (30 mg·kg�1 in 10
mL·kg�1) (Mitchell et al., 1993), or vehicle (0.5%
methylcellulose, 0.2% Tween 80 in water) was administered
orally 60 min prior to PGE2 administration to block
endogenous prostanoids that may influence the baseline or
PGE2-induced response. Having assessed the effect of i.v.
PGE2, administration via topical delivery was then
investigated to mimic what might happen in airway disease.
Here, mice were anaesthetized and then dosed intra-nasally
994 British Journal of Pharmacology (2016) 173 992–1004
with either vehicle (1% ethanol in saline) or PGE2 (3
mg·kg�1) in 50 μL. Once surgical anaesthesia was reached,
mice were then given Evans Blue and killed 30 min later.

Guinea pigs were chosen as a second (larger) species to as-
sess PGE2-induced airway MVL as they more closely resemble
humans in terms of their respiratory anatomy (lobing and
branching) and physiology (mediator release). Male
Dunkin–Hartley guinea pigs (300–600 g) were anaesthetized
with urethane (2 g·kg�1 i.p. of a 25% solution). Once surgical
anaesthesia was reached, animals received Evans Blue (20
mg·mL�1 at 1 mL·kg�1 i.v.) and then 1 min later vehicle (1%
ethanol in saline), PGE2 (3 mg·kg�1) or 5-HT (1 mg·kg�1), all
i.v. at 1 mL kg�1; 5 min after 5-HT or 30 min after PGE2, the
extravasation of Evans Blue was measured.

Identifying the EP receptor mediating PGE2-induced airway
microvascular leak: EP receptor-deficient mice. The same MVL
protocol was used as before with a single submaximal dose
of PGE2 (3 mg·kg�1) or vehicle (1% ethanol in saline) used.
Additionally, the response to 5-HT in EP receptor knockouts
(ptger2�/� and ptger4�/�) and their wild types was
investigated to ensure that their lack of response to PGE2
was not due to an overall disruption in MVL. A submaximal
dose of 5-HT (1 mg·kg�1) was used as a known inducer of
MVL.

Identifying the EP receptor mediating PGE2-induced airway
microvascular leak: selective EP receptor agonists. To parallel
the effects seen in the EP receptor-deficient mice, the
response to selective EP agonists was studied. Following
Evans Blue administration, animals were given selective EP
receptor agonists (Okada et al., 2000; Suzawa et al., 2000;
Cao et al., 2002): ONO-D1-004 (EP1), ONO-AE1-259 (EP2),
ONO-AE-248 (EP3), ONO-AE1-329 (EP4) or PGE2 (3 mg·kg�1)
i.v. at 4 mL·kg�1 or vehicle (1% ethanol in saline).

Inhibition of EP2- and EP4-induced microvascular leak using
selective EP2 and EP4 receptor antagonists. Selective receptor
antagonists were used to confirm data generated with
selective agonists. Initially, a dose response to ONO-AE1-259
(EP2 agonist) was performed to establish a suitable dose to
use. The doses used were 0.1, 0.3, 1 and 3 mg·kg�1 (i.v. at 4
mL·kg�1). The EP2 antagonist, PF-04418948, was used in
subsequent studies and was dosed at 3, 10, 30 or 100
mg·kg�1 (10 mL·kg�1 i.p.). A vehicle control was also
included (0.5% methylcellulose, 0.2% Tween 80 in saline).
Mice were dosed with PF-04418948 (af Forselles et al., 2011)
or vehicle 1 h before ONO-AE1-259 administration (3
mg·kg�1 in 4 mL·kg�1 i.v.). Next, a dose–response curve to
ONO-AE1-329 (EP4 agonist) was carried out using 0.1, 0.3, 1
and 3 mg·kg�1 (i.v. at 4 mL·kg�1). The EP4 antagonist, ER-
819762 (Chen et al., 2010), was used in subsequent studies
and was dosed at 3, 10, 30 or 100 mg·kg�1 (10 mL·kg�1 i.p.).
A vehicle control was also included (0.5% methylcellulose,
0.2% Tween 80 in saline). Mice were dosed with ER-819762
or vehicle 1 h before ONO-AE1-329 administration (3
mg·kg�1 in 4 mL·kg�1 i.v.).

Inhibition of PGE2-induced microvascular leak by EP2 and EP4
receptor antagonists. Mice were dosed with PF-04418948 (10
mg·kg�1 at 10 mL·kg�1 i.p.) or ER-819762 (30 mg·kg�1 at 10
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mL·kg�1 i.p.) or vehicle (0.5% methylcellulose, 0.2% Tween
80 in saline) 1 h before PGE2 administration (3 mg·kg�1 at 4
mL·kg�1 i.v.). Additionally, in a separate study, mice were
dosed with both PF-04418948 and ER-819762
simultaneously 1 h before PGE2.

Identifying the EP receptors involved in ovalbumin-induced
microvascular leak: EP receptor-deficient mice. Mice were
sensitized with ovalbumin (OVA) (10 μg per mouse, 100 μL i.
p.) on days 0 and 14 and on days 24, 25 and 26 mice were
intranasally challenged with saline or OVA (50 μg in 50 μL)
under isoflurane anaesthesia. PGE2 levels in the BALF were
measured using LC-MS/MS following lipid extraction as
follows: 5 ng PGE2-d4 was added to samples before
extraction, as an internal standard. Lipids were extracted by
adding a solvent mixture (1 mol·L�1 acetic acid, isopropyl
alcohol, hexane (2:20:30, v v�1v�1)) to the sample at a ratio
of 2.5 to 1 mL, vortexing and then adding 2.5 mL of
hexane. After vortexing and centrifugation, lipids were
recovered in the upper hexane layer. The samples were then
re-extracted by addition of an equal volume of hexane. The
combined hexane layers were dried and analysed for free or
esterified PGs using LC-MS/MS. Lipids were separated on a
C18 Spherisorb ODS2, 5 μm, 150 × 4.6 mm column (Waters,
Hertfordshire, UK) using a gradient of 50–90% B over 10
min (A, water : acetonitrile : acetic acid, 75:25:0.1; B,
methanol : acetonitrile : acetic acid, 60:40:0.1) with a flow
rate of 1 mL·min�1. Products were quantified by LC-MS/MS
electrospray ionization on a Sciex 4000 Q-Trap using parent-
to-daughter transitions of m/z 351.2 [M � H]� to m/z 271
for PGE2 and m/z 355.2 to 275.3 for PGE2-d4 with
declustering potential of �55 and collision energy of �26 V.
Products were identified and quantified using standards run
in parallel under the same conditions.
Figure 1
The effect of PGE2 on MVL in the trachea and IPA of C57BL/6 mice. (A) Do
trachea, B: bronchi and IPA). Effect of diclofenac (30mg·kg�1 in 10mL·kg�1

mice (n = 4) (C: trachea, D: bronchi and IPA). Data expressed as mean ± SEM
indicates significance of treatment groups from vehicle control.
Based on these data, MVLwasmeasured at 2 and 24 h after
the final intranasal challenge. In a subsequent study, allergy-
induced MVL was compared in wild-type and EP receptor
knockout (ptger2�/� and ptger4�/�) mice.

Compounds and materials
The EP2 receptor antagonist, PF-04418948, was a gift from
Nick Pullen, Pfizer (Kent, UK). The EP4 antagonist, ER-
819762, was a gift from Eisai (Hertfordshire, UK). The EP1 re-
ceptor agonist (ONO-D1-004), the EP2 receptor agonist
(ONO-AE1-259), the EP3 receptor agonist (ONO-AE-248)
and the EP4 receptor agonist (ONO-AE1-329) were gifts from
Ono Pharmaceuticals (Osaka, Japan). PGE2 was purchased
from Cayman Europe (Tallinn, Estonia). Both antagonists
were made up in 0.5% methylcellulose, 0.2% Tween 80 in sa-
line (or water for p.o. administration). PGE2 and all agonists
were made up in 1% ethanol in saline. All other chemicals
and reagents were from Sigma Aldrich (Poole, UK).

Data analysis and statistical procedures
All data were analysed using GraphPad Prism 5. Data are
expressed as mean ± SEM. Multiple measurements were
analysed by one-way ANOVA; non-parametric Kruskal–Wallis
test and post-hoc comparisons were performed by Dunn’s
multiple comparison test, comparing selected columns to a
control. Additionally, an unpaired t-test and/or non-
parametric Mann–Whitney test, with two-tailed P values,
was carried out, where appropriate, to determine statistical
significance between two groups. Differences were considered
statistically significant if P < 0.05. The figures have been
graphically presented on a range-specific axis. The data and
statistical analysis comply with British Journal of Pharmacol-
ogy guidelines (Curtis et al., 2015).
se–response to PGE2 (0.1–10 mg·kg�1 i.v., n = 3–4) after 30 min (A:
p.o.; 1 h) onMVL in vehicle and PGE2 (3 mg·kg�1 i.v.; 30min) treated
of the concentration of Evans Blue dye (ng·mg�1 of tissue). *P< 0.05
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Results

PGE2-induced airway microvascular leak
PGE2 (0.1, 0.3, 1, 3, 10 mg·kg�1, i.v.) induced dose-dependent
MVL in both the trachea and the bronchi and IPA (Fig. 1A, B).
From this, a submaximal dose of 3 mg·kg�1 was chosen. No
statistically significant increase inMVL was detected in either
the bladder or oesophagus after PGE2 challenge [vehicle =
58.1 ± 20.3 vs. PGE2 = 46.5 ± 21.2, vehicle = 25.4 ± 15.1 vs.
PGE2 = 32.2 ± 8, Evans Blue (ng·mg�1 of tissue), respectively].
Diclofenac, a nonselective COX inhibitor, was administered
prior to PGE2 administration to block the production and re-
lease of endogenous prostanoids to ensure that they were not
influencing baseline or PGE2-induced airway leak. The data in-
dicate that diclofenac had no effect on baseline or PGE2-in-
duced leak in the trachea or bronchi and IPA (Fig. 1C, D). In
both the vehicle- and diclofenac-treated groups, PGE2 signifi-
cantly increased airway MVL. Having established that i.v.
PGE2 induced MVL in murine airways, we wanted to examine
whether such a response could be replicated via topical admin-
istration direct to the airways. Therefore, a single intranasal
dose of PGE2 (3 mg·kg�1) was administered and EB leak mea-
sured after 30 min. Topical PGE2 induced a similar MVL re-
sponse to that seen with i.v administration (Fig. 2A, B). Last,
to determine whether the effect seen with PGE2 was exclusive
to the mouse, a submaximal dose of PGE2 was administered to
guinea pigs alongside 5-HT, acting as a positive control. PGE2
(3mg·kg�1 i.v.) induced significantMVL in the trachea, bronchi
and IPAs was comparable with 5-HT (Fig. 2C–E).
Figure 2
Effect of an intranasal dose of PGE2 (3 mg·kg�1 intranasally, n = 6) onMVL af
PGE2 (3 mg·kg�1 i.v.) on MVL into the upper trachea (C), lower trachea (D)
as mean ± SEM of the concentration of Evans Blue dye (ng·mg�1 of tissue
control.
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PGE2-induced airway microvascular leak in EP
receptor-deficient mice: role for EP2 and EP4
receptors
The effect of PGE2 (3 mg·kg�1) on MVL was compared in wild
type and mice deficient in individual EP receptors (Ptger1–4�/

�). The data demonstrated a significant increase in MVL in
wild-type, Ptger1�/� and Ptger3�/� mice in response to PGE2
(Fig. 3A and C). However, a substantial and significant reduc-
tion in PGE2-induced MVL was shown in Ptger2�/� and
Ptger4�/� mice (Fig. 3A–D). This was apparent in the trachea
and the bronchi and IPA. To determine whether their lack of
response to PGE2 was not due to an overall disruption in
MVL, 5-HTwas administered to Ptger2�/� and Ptger4�/� mice.
Here, 5-HT produced a significant increase in MVL in the tra-
chea and in the bronchi and IPA, with no difference seen be-
tween the EP receptor-deficient mice and the wild types
(Fig. 4).
Selective EP2 and EP4 receptor agonists induce
airway microvascular leak
Having shown an inhibition in PGE2-induced MVL in
EP2 and EP4 receptor-deficient mice, selective EP receptor
agonists were investigated. ONO-AE1-259 (EP2) and
ONO-AE1-329 (EP4) both significantly increased MVL in
both the trachea and bronchi and IPA of mice, while
ONO-D1-004 (EP1) and ONO-AE-248 (EP3) had little or
no effect on MVL in either trachea or bronchi and IPA
(Fig. 5).
ter 30 min into the trachea (A) or bronchi and IPA (B) of mice. Effect of
or bronchi and IPA (E) of Dunkin–Hartley guinea pigs. Data expressed
). *P < 0.05 indicates significance of treatment groups from vehicle



Figure 3
Investigating the responses to PGE2 (3 mg·kg�1 i.v., n = 6) in wild-type (WT) and EP1–4 receptor-deficient mice (A and B) trachea and (C and D)
bronchi and IPAs. EP1–3 receptor-deficient mice are bred on a C57BL/6 background, and EP4 receptor-deficient mice are bred on a mixed back-
ground of 129/Ola X C57BL/6. Data expressed as mean ± SEM of the concentration of Evans Blue dye (ng·mg�1 of tissue). *P < 0.05 indicates
significance from vehicle control.
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Inhibition of EP2- and EP4-induced
microvascular leak using selective EP2 and EP4
receptor antagonists
The EP2 agonist (ONO-AE1-259) produced a dose-dependent
increase in MVL. Similar to previous studies 3 mg·kg�1

induced a significant increase in MVL in the trachea (data
not shown). This dose was therefore used in subsequent
antagonist studies. The EP2 receptor antagonist, PF-
04418948 (i.p.), evoked a dose-dependent inhibition with a
dose of 30mg·kg�1 showing a significant inhibition of EP2-in-
duced MVL (Fig. 6A, B). ONO-AE1-329 (EP4 agonist) pro-
duced a dose-dependent increase in MVL with a significant
increase in airway MVL at 3 mg·kg�1 (data not shown). The
EP4 receptor antagonist, ER-819762 (i.p.), was able to signifi-
cantly inhibit MVL induced by ONO-AE1-329 (Fig. 6C, D).
PF-04418948 (30 mg·kg�1 i.p.) and ER-819762 (10 mg·kg�1

i.p.) were selected for further study.
Inhibition of PGE2-induced microvascular leak
by EP2 and EP4 receptor antagonists
The effect of PF-04418948 and ER-819762 on PGE2-induced
MVL in mouse airways was investigated. Initially, each an-
tagonist was dosed separately; however, as demonstrated
in Fig. 7A and B, neither antagonist alone inhibited PGE2-
induced airway MVL. When both antagonists were given
simultaneously, there was a significant reduction in PGE2-in-
duced MVL in the trachea and in the bronchi and IPA
(Fig. 7C, D).
The role of PGE2 and EP2 and EP4 receptors in
asthma-related airway microvascular leak
The effect of antigen challenge on BALF PGE2 levels in a
model of allergic asthma was investigated. The antigen
caused an increase in BALF PGE2 levels, with levels increased
at 2 and 6 h after challenge and returning to basal by 24 h
(Fig. 8A). This temporal increase coincided with a significant
increase in airway MVL 2 h after challenge, but not after 24
h (Fig. 8B, C).

The data from a follow-up study showed that the MVL in
the asthma model was absent in mice missing functional EP2
or EP4 receptors, mirroring the observations made in the ex-
ogenous PGE2 studies (Fig. 9A–D).
Discussion
Airway microvascular leak is a cardinal sign of inflammation
and is a prominent feature of both asthma and COPD. Various
inflammatory mediators are capable of inducing this effect
following an inflammatory insult to the airways. These in-
flammatory mediators act upon the endothelium of post-
capillary venules to open intercellular gap junctions. PGE2 is
a ubiquitous eicosanoid that has been implicated in the path-
ogenesis of both asthma and COPD. Increased levels of PGE2
have been reported in BALF and plasma of asthma patients
and the levels are enhanced in the breath condensate of
COPD patients (Montuschi et al., 2003; Long et al., 2004).
The purpose of this investigation was to establish the role of
British Journal of Pharmacology (2016) 173 992–1004 997



Figure 4
Effect of 5-HT (1 mg·kg�1 i.v., n = 6) onMVL in wild-type (WT) and EP2 or EP4 receptor-deficient mice (A and B) trachea and (C and D) bronchi and
IPA. EP2 receptor-deficient mice were bred on a C57BL/6 background, and EP4 receptor-deficient mice were bred on a mixed background of 129/
Ola X C57BL/6. Data expressed as mean ± SEM of the concentration of Evans blue dye (ng·mg�1 of tissue). *P < 0.05 indicates a significant in-
crease from vehicle control.
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PGE2 in mediating airway microvascular leak and the EP re-
ceptor(s) responsible. This is an important step in under-
standing the biological profile of EP receptors given that
PGE2 is a key mediator produced by the lung in health and
in patients with lung disease.

Initial experiments were focused on investigating the ef-
fect of exogenous PGE2 in the airways of mice. PGE2 caused
a dose-dependent increase inMVL in the trachea and bronchi
and IPA of mice, and in addition, blocking the production of
endogenous prostanoids with the COX inhibitor diclofenac
did not impact on PGE2-induced MVL. We also observed a
measurable and significant increase in MVL following an in-
tranasal dose of PGE2, indicating that the effects we are seeing
are not specific to the route of administration. Furthermore,
we did not detect any MVL in non-airway, reference tissues,
oesophagus and bladder, suggesting that in our model sys-
tem, i.v. administration of PGE2 mainly impacts on the air-
ways. As the majority of research into airway MVL has been
carried out in larger species, including the rat and the guinea
pig, we wanted to rule out that what was being observed with
PGE2 was not exclusive to the mouse. In the guinea pig, PGE2
produced a large, substantial increase in airway MVL that was
comparable to that seen with 5-HT. Both the mouse and the
guinea pig produced similar profiles in themagnitude of their
responses, demonstrating that the effect of PGE2 is translat-
able between species.

Having shown that PGE2 induced MVL in the mouse, we
wanted to determine which of the EP receptors were central
to this response. Differing effects of PGE2 have been demon-
strated in vivo, and these, often opposing, effects can be at-
tributed to the activation of different receptor subtypes
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(EP1–4) with different signalling characteristics (Breyer et al.,
2001). Using mice deficient in specific prostanoid receptors,
we were able to identify the EP2 and EP4 receptor/s as mediat-
ing the inflammatory actions of PGE2. 5-HT evoked MVL in
wild-type, EP2 and EP4 knockout mice, indicating that MVL
was not modulated per se in the genetically modified mice.
In addition to data generated in gene-deleted mice, pharma-
cological characterisation was also performed. Experiments
were performed with the four agonists, ONO-D1-004 (EP1),
ONO-AE1-259 (EP2), ONO-AE-248 (EP3) and ONO-AE1-329
(EP4), and the data clearly demonstrated that, similar to
PGE2, the EP2 and EP4 agonists significantly increase airway
MVL. This confirmed that activation of these EP receptors
mediated MVL in mouse airways, while activation of EP1
and EP3 receptors produced no significant increase. Interest-
ingly, others, using an in vitro system with human microvas-
cular endothelial cells, have reported that PGE2 can
strengthen endothelial barrier function via the EP4 receptor
(Birukova et al., 2007; Konya et al., 2013). It is not clear why
there is a difference, but it could be because the cell-based sys-
tem does not resemble the complexity of an in vivo model or
the permeability characteristics of an intact microvascular
endothelium.

In recent years, novel EP2 and EP4 receptor antagonists
that are potent and selective for their respective receptor sub-
type have emerged and can be used to confirm data generated
in developmental knockout mouse strains. Previously,
AH6809 had been used by most investigators to examine
EP2 receptor events, but this also antagonizes EP1 and DP1 re-
ceptors (Jones et al., 2009;Woodward et al., 2011). However, af
Forselles et al. (2011 recently described a novel and selective



Figure 5
Effect of PGE2, ONO-D1-004 (EP1), ONO-AE1-259 (EP2), ONO-AE-
248 (EP3) and ONO-AE1-329 (EP4) (3 mg·kg�1 i.v.; 30 min) on
MVL into the trachea (A) and bronchi and IPA (B) of C57BL/6 mice.
Data expressed as mean ± SEM of the concentration of Evans Blue
dye (ng·mg�1 of tissue), n = 6. *P < 0.05 indicates a significant in-
crease from vehicle control.
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EP2 receptor antagonist, PF-04418948, which was further
characterised by our laboratory (Birrell et al., 2013). In these
experiments, PF-04418948 produced a dose-dependent inhi-
bition of MVL induced by the EP2 agonist, ONO-AE1-259.
In 2010, Chen et al. described a novel EP4 receptor antago-
nist, ER-819762, that was highly selective for EP4 receptors
in a number of different in vitro assays as well as being effec-
tive in both mouse and rat models of arthritis and chronic
pain. Similarly, ER-819762 produced a dose-dependent inhi-
bition of EP4-induced MVL. However, initial experiments
demonstrated that neither antagonist alone was able to in-
hibit PGE2-mediated airway MVL. Interestingly, when both
antagonists were administered simultaneously, at the same
doses and time points, a decrease in PGE2-induced MVL
was evident, with a significant inhibition seen in the tra-
chea and in the bronchi and IPA. This emphasized the pos-
sibility for a dual role for EP2 and EP4 receptors in
mediating PGE2-induced MVL responses. Little research
has been published on the role of prostanoid receptors of
the EP subtype in airway MVL, and so, the data presented
herein demonstrate an EP receptor activity profile, which
will aid in further understanding its role in airway
inflammation.
There is, however, some information available from other
organ systems implicating various EP receptors inMVL by evok-
ing vasodilatation and increasing blood flow, an effect that is
particularly evident in the skin. In this regard, both EP2 and
EP4 receptor signalling have been implicated in acute skin in-
flammation by enhancing blood flow in the micro-
environment (Kabashima et al., 2007). It could also be possible
that PGE2-induced MVL may be caused by vasodilatation and
an increase in blood flow to the airways. There is considerable
evidence indicating that EP2 and EP4 receptors are pivotal inme-
diating the vasodepressor actions inmouse and human vascular
preparations (Kennedy et al., 1999; Zhang et al., 2000; Imig et al.,
2002; Davis et al., 2004). However, in the lung, potent vasodila-
tors such as calcitonin gene-related peptide do not produce
MVL or enhance MVL produced by other agents probably be-
cause of the greater blood flow to the lung than to the skin,
and so, this is less likely (Rogers et al., 1988).

It has been well-documented that microvascular leak and oe-
dema are prominent features of allergic airway diseases, such as
asthma, with high concentrations of plasma proteins being pres-
ent in airway secretions from acute asthmatic patients
(Meerschaert et al., 1999; Kanazawa et al., 2000, 2002; Khor
et al., 2009; Tseliou et al., 2012). Having already demonstrated
that PGE2 induced airway MVL via the EP2 and EP4 receptors,
its role in a murine respiratory model of airway inflammation
was then investigated. An increase in PGE2 was measureable in
lavage fluid 2 and 6 h but not 24 h after OVA challenge. Others
have reported increases in PGE2 levels in their asthma models
(Herrerias et al., 2009; Swedin et al., 2009). MVL appeared to par-
allel the changes in PGE2 levels in that we could detect an in-
crease at 2 h post-challenge but not 24 h later. Furthermore, as
with the exogenous PGE2 experiments, it appears that allergen-
inducedMVL is via the activity of PGE2 on EP2 and EP4 receptors.

An interesting observation from the data presented here
was that both EP2 and EP4 agonists caused almost identical
increases in airway MVL and, in the knockout mice, re-
sponses to PGE2 were almost completely abolished in both
EP2 and EP4 receptor knockouts. Moreover, the selective re-
ceptor antagonists required simultaneous dosing to block
the stimulatory effects of PGE2. This suggests that EP2 and
EP4 may be functionally interdependent. A similar effect has
been reported in human adipocytes and breast cancer cells
with both receptors playing a role in PGE2-induced induction
of aromatase and inhibition of either receptor attenuating
the effects of PGE2 (Subbaramaiah et al., 2008). One hypoth-
esis could be that the EP2 and EP4 receptors form heterodi-
mers, which has been illustrated in Fig. 10. The data from
the knockouts indicate that without functional EP2 or EP4 re-
ceptors, PGE2 is unable to induce MVL. Furthermore, when
EP2 and EP4 antagonists were administered alone, when both
functional receptors are present, PGE2 still induced signifi-
cant MVL. Only when both receptors were antagonized si-
multaneously was PGE2-induced leak attenuated.

There is increasing evidence that GPCRs are able to
heterodimerize and that this interaction can affect the function
of both receptors (McGraw et al., 2006; Wilson et al., 2007).
Wilson et al. (2007 demonstrated a functionally important
heterodimerization of the Tx (TP) and prostacyclin (IP) receptors
in human and mouse aortic smooth muscle cells. Additionally,
McGraw et al. (2006 used fluorescence microscopy in airway
smooth muscle cells and BRETand co-immunoprecipitation in
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Figure 6
Inhibition of EP2- and EP4-induced MVL using selective EP receptor antagonists. Effect of the EP2 receptor antagonist, PF-04418948 (PF; 3, 10, 30
and 100 mg·kg�1 i.p.; 1 h), on ONO-AE1-259-induced MVL (3 mg·kg�1 i.v.) in trachea (A) and bronchi/IPA (B). The effect of the EP4 receptor an-
tagonist, ER-819762 (3, 10, 30 and 100 mg·kg�1 i.p.; 1 h), on ONO-AE1-329-induced MVL (3 mg·kg�1 i.v.) in trachea (C) and bronchi and IPA
(D). Data expressed as mean ± SEM of the concentration of Evans Blue dye (ng·mg�1 of tissue), n = 6. *P < 0.05 indicates a significant increase
from vehicle control. #P < 0.05 indicates a significant decrease from treatment control.

Figure 7
Effect of PF-04418948 (PF; 30 mg·kg�1 i.p.; 1 h) and ER-819762 (ER; 10 mg·kg�1 i.p.; 1 h) on PGE2-induced MVL (3 mg·kg�1 i.v.; 30 min) in the
trachea (A) and bronchi and IPA (B) of mice. In the top two graphs, each antagonist was dosed separately (n = 5–6), while in the bottom two
graphs, both antagonists were given simultaneously to the same animal in trachea (C) and bronchi and IPA (D). Data expressed as mean ±
SEM of the concentration of Evans Blue dye (ng·mg�1 of tissue). *P< 0.05 indicates a significant increase from vehicle control. #P< 0.05 indicates
a significant decrease from treatment control.
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Figure 8
Effect of OVA challenge on BALF PGE2 levels (A) and microvascular leak into the trachea (B) and bronchi and IPA (C) of sensitized mice. Levels of
BALF PGE2 were determined using LC-MS/MS and expressed as mean ± SEM (n = 6). The airway MVL data are expressed as mean ± SEM of the
concentration of Evans Blue dye (ng·mg�1 of tissue, n = 4). *P < 0.05 indicates a significant increase from vehicle control.

Figure 9
Investigating the responses to OVA challenge in sensitized, wild-type and EP2 or EP4 receptor-deficient mice in the (A and B) trachea and the (C
and D) bronchi and IPA. Airway MVL was measured 2 h following the final intranasal antigen challenge. Airway tissue was dried before the extrac-
tion of Evans Blue dye. Data expressed as mean ± SEM of the concentration of Evans Blue dye (ng·mg�1 of dry tissue), n = 4–8. *P< 0.05 indicates a
significant increase from vehicle control. #P < 0.05 indicates a significant decrease from wild-type control.
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Figure 10
Schematic of possible EP2/4 heterodimer and how this interaction influences PGE2-induced airway microvascular leak. (A) PGE2 and EP2 and EP4
agonists are all able to induce a significant increase in airway MVL. However, in EP2 and EP4 receptor knockouts, this response to PGE2 is absent.
With either functional receptor missing, the EP2/4 heterodimer cannot form, and so, stimulation with PGE2 cannot elicit a response. (B) Pharma-
cological inhibition of either receptor with an antagonist does not inhibit airway MVL. When both EP2 and EP4 antagonists are administered simul-
taneously, both receptors are blocked, and PGE2-induced MVL is attenuated.

BJP V C Jones et al.
a cell line to show heterodimerization between EP1 receptors
and β2 adrenoceptors. However, more investigations are obvi-
ously needed to establish whether this is occurring between
the EP2 and EP4 receptors in this in vivomodel.

PGE2 is a key mediator produced by the lung and has
widespread effects according to the EP receptor that is acti-
vated. Airway MVL represents a response to injury and under
‘disease’ conditions is a prominent feature of airway inflam-
mation. The data presented here highlight a key role for
PGE2 and the EP2 and EP4 receptors. These findings are novel
and make an exciting addition to the expanding repertoire of
effects mediated by EP receptor activation.
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