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Renewed interest in metabolic research over the last two decades has inspired an explosion 

of technological developments for studying metabolism. At the forefront of methodological 

innovation is an approach referred to as “untargeted” or “discovery” metabolomics. The 

experimental objective of this technique is to comprehensively measure the entire 

metabolome, which constitutes a largely undefined set of molecules. Given its potential 

comprehensive coverage, untargeted metabolomics is often the first choice of experiments 

for investigators pursuing a metabolic research question. It is important to recognize, 

however, that untargeted metabolomics may not always be the optimal experimental 

approach. Conventionally, untargeted metabolomics only provides information about relative 

differences in metabolite pool sizes. Therefore, depending on the specific scientific question 

at hand, a complementary approach involving stable isotopes (such as metabolic flux 

analysis) may be better suited to provide biological insights. Unlike untargeted 

metabolomics, stable-isotope methods can provide information about differences in reaction 

rates.

So which metabolic research questions are best tailored for each of the various experimental 

approaches? What are the limitations of untargeted metabolomics? What are the challenges 

of metabolic flux analysis? How have each been successfully applied? Research 

investigators Gary Patti, Nicola Zamboni, and Alan Saghatelian address these questions in 

the vignettes that follow. First, Gary Patti discusses opportunities and challenges of 

untargeted metabolomics within the framework of potential unknown metabolites in “How 

Big is the Metabolome? Opportunities and Challenges”. Next, Nicola Zamboni describes the 

power of metabolic flux analysis and explores its most frequent limitations and pitfalls in 

“Modern Stable-Isotope Metabolic Flux Analysis”. Finally, Alan Saghatelian contrasts 

different instrumentation platforms available for metabolite measurements and highlights 
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some successful applications of both metabolomics and metabolic flux analysis in 

“Biological Lessons from Metabolite Profiling”.

How Big Is the Metabolome? Opportunities and Challenges

Gary J. Patti

In 1955, Donald Nicholson compiled all of the metabolic reactions known at that time into a 

single chart. This chart, which he drew by hand with stencils, provided the first perspective 

of a comprehensive cellular metabolome. The rendering displayed only about 20 metabolic 

pathways.(Nicholson, 1970)

The majority of metabolic pathways taught in today’s undergraduate biochemistry 

curriculum had been discovered and mapped onto comprehensive charts by the 1960’s. 

There was a growing perception that the picture of the cellular metabolome was complete. In 

1964, Nobel laureate Ernst Boris Chain offered his perspective on the greatest landmarks in 

biochemical research. He listed one major achievement as the elucidation of biochemical 

pathways.(Chain, 1965) Chain categorized the success of elucidating pathways into three 

historical eras: (i) the “pre-isotope era” in which the enzyme activities of pathways were 

determined in cell-free extracts, (ii) the “isotope era” in which metabolite transformations 

were mapped with tracers, and (iii) the “era of biochemical genetics” where the expression 

of biosynthetic enzymes were manipulated to establish reaction sequences.(Chain, 1965)

This perspective that the complete cellular metabolome had been elucidated did not evolve 

greatly until recently when researchers began applying cutting-edge mass spectrometry to 

study metabolism comprehensively. The results have been unexpected. Thousands of signals 

can be detected from the metabolic extracts of biological samples whose masses do not 

match any of those predicted based on the conventional biochemical charts. Data from this 

new experimental approach, termed “metabolomics”, have challenged the idea that the 

picture of cellular metabolism is complete. While it is unclear at this time precisely how 

many unknown metabolites are represented in metabolomic data, already metabolomic 

technologies have been applied to discover new metabolites and unexpected pathway fluxes 

that have important physiological relevance.(Dang et al., 2009; Kalisiak et al., 2009; Mathe 

et al., 2014; Patti et al., 2012a; Yore et al., 2014)

With the rise of metabolomics, a new era of biochemical discovery has begun. For the first 

time in several decades, excitement to discover new metabolites and pathways is at the 

forefront of biological research.(McKnight, 2010)

The unknown metabolome: a love and hate relationship—There are several 

technological platforms available for performing metabolomics, but liquid chromatography/

mass spectrometry (LC/MS) is most commonly used for discovery (i.e., untargeted) 

experiments because thousands of signals are routinely detected from the metabolic extract 

of a biological sample.(Patti et al., 2012b) The biggest challenge in performing discovery 

metabolomic experiments is translating these signals, termed features, into metabolite 

identities. While there are certainly more resources available now compared to ten years ago, 

the process of making metabolite identifications is still low throughput. It is common to 
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spend weeks to months analyzing each metabolomic dataset and, even then, only a relatively 

small number (<20) of metabolite identifications are often made.

The possibility that hundreds or thousands of LC/MS signals might correspond to unknown 

metabolites that have yet to be described is one of the most exciting aspects of performing 

discovery metabolomics. This possibility is also the single reason that performing 

metabolomics is so challenging. For example, consider a situation where there is interest in 

identifying an ion with a mass-to-charge value of 808.118 as detected in negative-ionization 

mode. The first step would be searching the value of 808.118 in metabolomic databases such 

as METLIN and HMDB.(Tautenhahn et al., 2012a; Wishart et al., 2009) Given that modern 

mass spectrometers can routinely measure mass-to-charge ratios of metabolites with an error 

of 25 ppm or less, the databases would be searched for candidate compounds over the mass-

to-charge interval 808.098–808.138. Currently, the only hit returned from this search is 

acetyl-CoA. Yet, because there may be unknown metabolites with mass-to-charge values 

within this interval that have not been input into metabolomic databases, this result would 

not substantiate identifying the ion with a mass-to-charge value of 808.118 as acetyl-CoA. 

Without a complete parts list of the metabolome, accurate mass is never sufficient to 

confidently identify a metabolite.

Instead, to reliably identify a metabolite, its mass-to-charge value, chromatographic 

retention time, isotopic pattern, and fragmentation data are generally used together in 

combination.(Patti et al., 2012b) The sum of this information is highly specific to a 

compound and therefore it is unlikely that any two metabolites, known or unknown, produce 

the same set of data. Using retention time and fragmentation data to identify metabolites, 

however, leads to some major experimental challenges. The remainder of my discussion is 

dedicated to briefly describing some bioinformatic resources that have been developed to 

help with the process.

Metabolomics on the cloud—One of the most widely used software packages for 

processing raw LC/MS-based metabolomic data is a program called XCMS. Just five years 

ago, installation and operation of XCMS required familiarity with the R programing 

language. Recently, however, a cloud-based version of XCMS was developed called XCMS 

Online that uses an intuitive graphical interface.(Tautenhahn et al., 2012b) Metabolomic data 

are uploaded to the XCMS Online server much like files are uploaded as an attachment to an 

email. After the data are processed, the results are integrated with the METLIN database so 

that candidates for the metabolite identities of each signal (i.e., feature) are listed. The 

candidate list is produced on the basis of each feature’s mass-to-charge value. As discussed 

above, the mass-to-charge value of a feature alone is insufficient to substantiate a metabolite 

identification. To facilitate metabolite assignments based on fragmentation data, a number of 

metabolomic databases such as METLIN, HMDB, and MassBank have begun incorporating 

experimental fragmentation data acquired from model standards.(Horai et al., 2010; 

Tautenhahn et al., 2012a; Wishart et al., 2009) At this time, the METLIN database contains 

fragmentation data for more than 12,000 model standards. Current efforts are focused on 

further integrating XCMS Online and METLIN so that metabolite assignments can be made 

during data processing that are based on both mass-to-charge values and fragmentation data, 
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an approach that has been referred to as autonomous metabolomics.(Benton et al., 2014; 

Tautenhahn et al., 2012a)

Credentialing features: honey, I shrunk the metabolome—In a typical discovery 

profiling experiment performed with LC/MS-based technologies, thousands of features are 

routinely detected from most biological samples. When the mass-to-charge ratios of each 

detected feature are searched against metabolomic databases, a surprisingly small fraction 

provide database hits. The challenge with interpreting this result with respect to the size of 

the unknown metabolome is that each feature detected does not necessarily correspond to a 

different metabolite. As a consequence, the number of “unknown” compounds detected is 

overestimated upon simple inspection. For example, naturally occurring isotopes can result 

in one metabolite species being detected as multiple features. Mostly, this results from the 

relatively high concentration of 13C that occurs naturally and results in a mass shift. Another 

reason a metabolite can produce multiple features is because metabolites can ionize as 

several adducts. That is, in addition to being detected as [M+H]+, metabolites might also be 

detected as [M+Na]+, [M+NH4]+, etc. Further, metabolites can sometimes fragment or form 

non-covalent interactions with other metabolites when entering the mass spectrometer. This 

too inflates the feature count independent of the number of metabolites present.

Most features corresponding to isotopes, adducts, and fragments can be readily identified by 

using software programs such as CAMERA.(Kuhl et al., 2012) But even after these 

processing steps, the number of features detected can still be larger than the number of 

metabolites present due to artifacts associated with contaminants, chemical noise, and 

bioinformatic noise. To identify and remove these artifactual features, isotopic labeling 

methods such as credentialing and isotope-ratio outlier analysis have been developed.

(Mahieu et al., 2014; Stupp et al., 2013) In brief, identical samples with and without 13C 

labels are mixed. Features of biological origin consequently produce a unique isotopic 

pattern in the mass spectra, whereas artifactual features do not. Features with the appropriate 

isotopic patterns are said to be “credentialed”.

It is important to highlight that even when these extensive filtering strategies are applied to 

Escherichia coli, there remain hundreds of credentialed features whose mass-to-charge 

values do not return any matches in current metabolomic databases.(Mahieu et al., 2014) Of 

course, it is possible that some credentialed features returning database hits are themselves 

unknowns that have matching mass-to-charge values but do not have matching structures. 

Alternatively, it may be that some credentialed features not returning database hits are 

known metabolites that have undergone an extracellular transformation (e.g., during the 

extraction process). Only after every credentialed feature is structurally characterized will a 

definitive calculation of the number of unknowns detected be possible. Certainly the results 

are expected to be at least partially organism specific. The credentialing experiments 

performed thus far, however, suggest that the number of unknown metabolites detected by 

LC/MS-based metabolomics is much smaller than the thousands of features without 

database hits appearing in the raw data prior to filtering.

The “metabolomics era” of biochemical pathway elucidation—In 1955, 

Nicholson provided the first picture of the comprehensive cellular metabolome by 
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constructing a chart connecting the ~20 biochemical pathways that had then been 

characterized. By 1970, Nicholson’s chart contained just over 400 metabolites. Today, 

comprehensive metabolic charts have expanded to now include more than four times as 

many metabolites.(Ogata et al., 1999; Thiele et al., 2013) The introduction of new 

technologies for studying metabolism has raised the question of how complete even that 

picture is.

Undoubtedly, advances in mass spectrometry-based metabolomics have reinvigorated 

research in metabolite discovery. The extent to which metabolomic technologies will impact 

the canonical view of comprehensive metabolism in textbooks remains to be seen, but it is 

interesting to consider that we have entered a new period of biochemical research. Recall 

that Chain organized the history of pathway discovery into three periods: the pre-isotope era, 

the isotope era, and the era of biochemical genetics. Building upon Chain’s perspective, we 

might say that we have entered a fourth era of elucidating biochemical pathways: the 

“metabolomics era”. In most cases, understanding how newly discovered metabolites 

integrate into our current comprehensive chart of metabolism will require using stable 

isotopes and metabolic flux analysis as described by Nicola Zamboni below.

Modern Stable-Isotope Metabolic Flux Analysis

Nicola Zamboni

While untargeted metabolite profiling approaches have yielded many important insights into 

a multitude of biological problems and may potentially lead to an update of our perspective 

of the number of metabolites present in a cell, conventional untargeted metabolomic 

experiments generally only provide information about metabolite concentration. This is a 

static snapshot that cannot be translated into a dynamic map of metabolite traffic on 

biochemical routes. A more complete understanding of biochemical pathways can be 

obtained by using metabolic flux analysis. Metabolic fluxes are the in vivo velocities of 

metabolic reactions. These include the rate of transformation of intermediates by enzymes 

and of the transport of metabolites between compartments. In single cells or multicellular 

organisms, metabolic fluxes are an emerging property as they depend on the systemic 

organization and interplay of enzymes, carriers, and substrates in the environment. 

Knowledge of metabolic fluxes is essential to unravel sites and mechanisms of metabolic 

regulation, and thus augment our understanding on how metabolism is embedded in cellular 

decisions. In diseased cells, information on fluxes paves the road for identification of 

selective therapeutic targets.

The frequent questions related to metabolic fluxes are (i) discovery of the catabolic fate of a 

given nutrient, (ii) discovery of the biosynthetic origin of a given intracellular compound, 

(iii) targeted analysis of fluxes at a specific metabolic node or reaction, or (iv) determination 

of cellular balances for redox (i.e., NADPH and NADH) and energy (ATP) carriers. In all 

these quests, the method of choice is metabolic flux analysis with isotopic tracers, e.g., 13C 

and 2H.

Basic principles of flux experiments—As any other reaction rate, metabolic fluxes 

cannot be measured directly. In cell cultures, but not in vivo, it is possible to measure the 
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consumption rate of nutrients and secretion of metabolic byproducts by monitoring the time-

dependent depletion or production, respectively, in spent medium. Intracellularly, however, 

metabolite levels remain constant in a dynamic equilibrium between producing and 

consuming reactions and don’t inform on molecular flow. Instead, intracellular fluxes can be 

accessed by administering nutrients labeled with stable isotopes, typically 13C or 2H. Uptake 

and enzymatic transformation of labeled substrates propagates heavy isotopes through the 

metabolic network in a flux-dependent fashion. In some cases – but not always – the 

resulting labeling pattern of metabolites can be used to infer from which nutrient it 

originated or, if alternative pathways exist, through which enzymatic route.

Two fundamental designs exist for metabolic flux analysis studies: stationary and non-

stationary experiments. In stationary experiments, labeling patterns are evaluated at the end-

point when they become invariant over time, i.e. an isotopic equilibrium was reached 

(Zamboni et al., 2009). The main advantage of stationary experiments is that at isotopic 

steady-state the measured labeling patterns are fully independent of metabolite levels. The 

latter can be safely neglected in the calculation of fluxes from labeling data facilitating data 

acquisition and interpretation. On the downside, stationary isotopic experiments are only 

useful to resolve the relative contribution of different pathways to the synthesis of a common 

derivative, but are not suited to quantify the flux in a simple linear pathway. Stationary 

labeling experiments must last sufficiently long to attain isotopic stationarity. In peripheral 

pathways, it can take days. During this time, conditions and fluxes must be constant. In cell 

biology, stationary metabolic flux analysis is best suited to determine what nutrients 

contributed to the biosynthesis of intracellular metabolites. For this purpose, single nutrients 

are uniformly 13C-labeled while all other substrates are provided with natural labeling. At 

isotopic steady state, the 13C-enrichment of each metabolite (i.e., its fractional labeling) 

indicates what ratio originated from the labeled substrate.

Non-stationary labeling experiments, in contrast, focus on the kinetics of tracer propagation 

before isotopic equilibrium (Wiechert and Nöh, 2013). This relaxes most limitations of 

stationary experiments: labeling experiments can be as short as a few minutes and it 

becomes possible to estimate fluxes within linear pathways. This increased power over 

stationary analyses comes with extra costs. First, many more time-points, and thus more 

samples and more instrument time, are necessary to assemble the data set. Second, data 

analysis is substantially more complex. Third and most important, non-stationary labeling 

transients depend both on metabolic fluxes and on intracellular metabolite concentration. 

Therefore, the latter have to be measured by canonical quantitative metabolomics and 

included in the interpretation.

Tracer choice—The labeling configuration of the tracer is a pivotal component of the 

labeling experiment. As mentioned before, 100% uniformly 13C-labeled substrates are the 

preferred for identifying their intracellular fate in any cellular system. In microorganisms, 

the combination of uniformly 13C-labeled and unlabeled substrates has been largely used to 

assess multiple fluxes in central metabolism with a single experiment. The mix between 

labeled and unlabeled forms of the same substrate allows to resolve alternative pathways that 

use different enzymes. The classical example is glucose catabolism through glycolysis or the 

pentose-phosphate pathway (PPP). With 100% 13C-glucose, the two pathways are 
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indistinguishable because they both produce completely 13C-labeled pyruvate. If 50% 

uniformly 13C and 50% unlabeled glucose are mixed, catabolism through the transaldolase 

and transketolase in the PPP will combine labeled and unlabeled carbon backbones and lead 

to partly labeled pyruvate forms which differentiate from the either completely 13C-labeled 

or unlabeled pyruvate molecules produced by glycolysis. In mammalian cells, however, 

there are many more interfering pathways and nutrients that prevent resolving several fluxes 

at once with generalist tracers. In contrast, positionally enriched tracers harboring stable 

isotopes only at specific positions are used to resolve important reactions. This strategy is 

particularly suited to assay decarboxylating enzymes if it is possible to label its substrate 

such as all label is lost as 13CO2. This ad-hoc strategy is frequently used in the analysis of 

the oxidative PPP, pyruvate dehydrogenase, or oxidative TCA cycle.

Measurement of labeling patterns—Non-radioactive isotopes are amenable with 

instrumentation platforms such as mass spectrometry and nuclear magnetic resonance, 

which provide powerful tools for determining the isotopic patterns of numerous metabolites 

or macromolecules. The community is dominated by two types of instruments. Gas 

chromatography/mass spectrometry (GC/MS) is the most affordable technology and 

perfectly suited to analyze isotopic patterns in amino and organic acids, sugars, and fatty 

acids. GC/MS often adopts electron impact ionization, which intrinsically fragments 

analytes and therefore provides additional information on the localization of the isotopic 

label within the metabolite structure. In contrast, LC/MS uses a soft ionization technique 

which preserve molecular ions. Compared to GC/MS, it delivers less positional information 

but offers better coverage of endogenous metabolites. Therefore, LC/MS is preferred in non-

stationary labeling experiments to monitor the isotopic transients in proximity of the 

important reactions and also quantify the levels of metabolites required for non-stationary 

data analysis.

Interpretation of labeling patterns—An ideally designed tracer experiment allows for 

verification of the working hypothesis through direct observation of the labeling data or the 

fractional labeling of a metabolite. Statistical significance is checked by simple univariate 

testing. This is a practical strategy when searching for the origin of a given metabolite, and 

the possible substrates or routes are characterized by different label content. It is also used in 

combination with selective inhibition of alternative pathways (i.e., isoenzymes) by gene 

knockout and knockdown or pharmacological inhibition, for which qualitative comparison 

of the resulting labeling patterns is sufficient to assess their relative contribution. An 

illustrative example is given by (Son et al., 2013).

Unfortunately, it is not always feasible to design such an explicit labeling experiment. 

Interpretation is complicated by the propagation and scrambling of tracer over the entire 

network following carbon fluxes. A metabolic alteration occurring in the early steps of tracer 

catabolism may affect the labeling patterns of all - close and distant - metabolites. The logic 

consequence is that a difference in labeling patterns could have been caused by upstream 

alterations in metabolism. An unbiased analysis of labeling patterns must consider the 

potential effect of distant pathways. This is particularly challenging for metabolic cycles, 

reversible reactions, and extensive compartmentalization that introduces numerous degrees 
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of freedom. Already in mid-sized systems such as central carbon metabolism, this task 

exceeds human intuition and calls for formal analysis.

Mathematical inference of flux data from labeling patterns can tackle the problem from 

essentially two complementary angles: globally or locally. In the global approach, all 

cellular fluxes are sought simultaneously to find the set of flux solutions that best matches 

measured labeling patterns. This approach builds on constraint-based modeling and 

therefore requires possibly accurate measurement of the uptake and secretion rate of all 

cellular substrates and products, respectively, to balance all species in the system. 

Intracellular fluxes are fitted iteratively in a procedure that becomes computationally hard 

with increasing number of model size and dimensions. Although powerful implementations 

exist both for the stationary and non-stationary case (e.g. 13CFLUX2 (Weitzel et al., 2013) 

and INCA (Young, 2014)), this approach quickly hits its limits when solving flux in central 

carbon metabolism of mammalian cell lines grown with a variety of carbon sources. In 

practice, precise flux estimations are obtained only by combining multiple labeling 

experiments with different tracers and by fitting fluxes within amended models in which 

reactions or compartments were neglected. Unless justified by independent data, e.g., on 

protein expression, the model simplifications increase the risk of returning overly precise but 

inaccurate flux values.

The local approach focuses only on a small part of the metabolic network, typically not 

more than a few reactions sharing a common metabolite, and is geared towards estimating 

local fluxes based solely on local data. In the stationary case, a local analysis only provides 

relative fluxes, i.e., so-called flux ratios. Absolute flux rates can be estimated with 

nonstationary labeling experiments and local metabolome concentrations. Compared to the 

global approach, the local analysis doesn’t require any uptake and secretion measurements 

and is computationally much simpler. There is no special software to recommend for local 

flux analysis, but the principles are described in (Hörl et al., 2013; Yuan et al., 2008; 

Zamboni et al., 2009). The local analysis is an efficient tactic to cope with complex flux 

analysis problems, i.e., resolving fluxes in mammalian cells (Zamboni, 2011), by 

decomposing the daunting challenge of resolving many fluxes at once in tractable tasks to be 

solved with ad-hoc designs. This is best exemplified in the study by Fan et al. (Fan et al., 

2014), in which numerous experiments with 2H, 13C, and 14C tracers and local and 

quantitative analyses were assembled into a cell-wide and yet accurate picture of NADPH 

metabolism.

Frequent limitations and pitfalls—Calculability of fluxes in real systems depends on 

multiple factors (Zamboni, 2011; Zamboni et al., 2009). Some factors are structural, e.g., the 

mapping of atoms in metabolic reactions or the availability of mass spectrometry data. These 

are known a priori and can thus be included in experimental design before the labeling 

experiment is performed. Several factors are more fluid and difficult to capture in advance. 

These include the mixing of label caused by fast reversible reactions, the uncertainty in 

determining labeling patterns for metabolites that can exist in different cellular 

compartments, the actual speed of label propagation far away from substrate entry, etc. The 

extent by which these latter factors affect and jeopardize flux measurement depends on the 

actual fluxes and metabolic state of the cell and can only be assessed a posteriori.
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Experience teaches us that biased flux analyses are mostly caused by two issues: over-

generalization and over-simplification. Generalization refers to the transfer of knowledge or 

assumptions from a previous study to a new study. This is commonly done to avoid 

measuring biomass composition or to claim that the effect of enzyme reversibility, or 

compartmentalization, is negligible. Although these aspects were carefully ascertained in the 

previous study, it is risky to generalize across different cell types, different environments, or 

different proliferation rates. Simplification of the model was discussed before as a habit to 

enable flux calculation in underdetermined systems. It is common practice to disregard 

compartmentalization of enzymes and intermediates or reaction/pathways that are meant to 

have only a secondary role. It must be stressed that data are only good to prove models 

wrong. Hence, a good fit of measurements to a given model are not proof that the underlying 

fluxes reflect reality unless all plausible models were exhaustively tested.

Experience has also thought us that a purist approach without some simplifications and 

generalization drastically prevents the generation of testable hypotheses on metabolic fluxes. 

Finding the right equilibrium between calculation and assumptions depends on critical 

assessment. Results should be openly challenged by the scientist. Positive and negative 

controls should be included in the analysis as for any other analytical technique.

Biological Lessons from Metabolite Profiling

Alan Saghatelian

How do we detect and quantify metabolites?—There are many ways to detect and 

quantify metabolite levels or to measure labeling patterns in compounds. Early methods to 

measure metabolites relied on thin layer chromatography (TLC) of abundant compounds or 

radiolabeling followed by TLC for less abundant compounds. The emergence of gas 

chromatography and GC/MS proved incredibly important to improving our understanding of 

cellular metabolism. Still, today, GC/MS is an important and widely used method for 

detecting metabolites, as well as a technology often used for performing metabolic flux 

analysis as described by Nicola Zamboni above. Indeed, GC/MS was used in much of the 

early metabolomics work, which was done in plants (Weckwerth et al., 2004). Plants were 

an excellent choice because the combination of metabolomics and genetics enabled the 

metabolic characterization of many genes. Weckwerth, Fiehn and colleagues used GC/MS-

based metabolomics of potatoes to identify metabolic functions of genes with silent 

phenotypes, demonstrating the power of metabolomics in gene characterization (Weckwerth 

et al., 2004).

Nuclear magnetic resonance (NMR) spectroscopy has also been used for metabolomics, 

provides rapid metabolome analysis, and can sometimes be used to resolve the location of 

stable isotopes within a molecular structure.(Cheng et al., 2011) In an interesting 

demonstration of NMR metabolomics, Dumas, et. al. described changes in choline 

metabolism that are linked to fatty liver through measurements of plasma and urine 

metabolites (Dumas et al., 2006).

The most popular method for metabolomics, however, has been mass spectrometry-based 

metabolomics. Shotgun metabolomics refers to methods that infuse extracted metabolome 
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samples without any chromatography (Adamovich et al., 2014; Han and Gross, 2005). Like 

NMR, these methods are extremely fast and enable rapid detection and quantitation of 

metabolites. Adamovich and co-workers utilized shotgun lipidomics to quantify levels of 

acyl glycerols, sphingolipids, and phospholipids in mice that lack per1 and per2, two key 

circadian rhythm genes, and observed the regulation of trigylceride levels by the circadian 

clock (Adamovich et al., 2014).

Greater coverage of the metabolome is achieved by combining chromatography with mass 

spectrometry. Different types of chromatography have been successfully employed for 

greater metabolome coverage, including the aforementioned GC, liquid chromatography, 

and capillary electrophoresis (CE) (Patti, 2011; Soga et al., 2003). The choice of 

chromatography methods depends on metabolites of interest. GC/MS has been used 

extensively, and successfully, to analyze the metabolome and flux distributions, but 

metabolites must be chemically derivatized so they are volatile (Weckwerth et al., 2004). 

Larger molecules or molecules that are heat labile are therefore not compatible with GC. 

Capillary electrophoresis-mass spectrometry (CE-MS) is excellent for charged molecules 

such as small organic acids, amino acids, and charged (phosphorylated) sugars (Soga et al., 

2003). Lastly, of the methods currently in use, LC/MS is the most widely used technique for 

metabolomics because it provides the greatest coverage of the metabolome as discussed by 

Gary Patti in preceding sections (Want et al., 2007).

The first step in any metabolomics or stable-isotope tracer experiment is the isolation of the 

metabolites from cells or tissues. The extraction method can vary depending on the 

metabolites of interest, with robust protocols for hydrophilic (Bennett et al., 2008) and 

hydrophobic metabolites having been reported (Inloes et al., 2014). Isolated metabolites are 

then analyzed by LC/MS. Many types of LC columns have been developed for hydrophilic 

and hydrophobic analytes. In a metabolomic profiling experiment, the mass spectrometer is 

set to scan a large mass range (i.e. 75–1500 m/z) such that any ionizable metabolite of 

sufficient concentration can be detected and quantified. By scanning a broad mass range, 

metabolomic profiling experiments are less sensitive and can miss lower abundant 

metabolites. Therefore, targeted methods have been developed for a number of important 

metabolites, such as oxysterols (McDonald et al., 2012), which provide the sensitivity to 

analyze the entire metabolite family, but not the entire metabolome. Similarly targeted 

methods are often used in metabolic flux analysis (Yuan et al., 2008).

In addition to using stable isotopes for flux analysis, stable isotope standards are also used to 

validate changing metabolite levels identified during a metabolomics or lipidomics 

experiment. The use of stable isotope labeled standards (2H, 13C or 15N) for absolute 

quantitation is referred to as isotope dilution mass spectrometry (IDMS) (Bennett et al., 

2008). Stable isotope standards are added into the sample during extraction and the ratio of 

these molecules to the endogenous metabolite enables absolute quantitation of the 

endogenous metabolite. These experiments are performed in combination with targeted 

LC/MS, which provides improved signal-to-noise and sensitivity, resulting in a more 

accurate quantitation. An analogy in genomics is the use of quantitative PCR to validate the 

results from an RNA-Seq experiment. Validation by IDMS provides the highest confidence 
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in fold changes that were observed during the profiling experiment and also confirms the 

structural assignment.

Biological lessons from metabolomics and metabolic flux analysis—As 

metabolomics and metabolic flux experiments have become more prevalent, their use in 

biology and biomedical research has expanded and led to fundamental insights in several 

fields. The cell biologists Atilla-Gokcumen, and colleagues, for example, combined 

lipidomics with cell biology to identify the role of lipids, and lipid modifying enzymes, in 

cytokinesis, a physical process in cell division that results in the splitting of the cytoplasm 

into newly divided cells (Atilla-Gokcumen et al., 2014). In this study, the group utilized 

untargeted lipidomics to identify several lipids that were changing (accumulating) during 

cytokinesis and/or in the midbody, a transient structure that appears during the end of 

cytokinesis and is required for the completion of cell division. Knockdown of the enzymes 

that metabolize key midbody lipids affected cytokinesis, revealing new metabolic regulators 

of this fundamental process.

A creative use of metabolomics has also revealed new RNA modifications. Chen, Kowtoniuk 

and co-workers began by purifying cellular RNAs to remove small molecules (Chen et al., 

2009). These RNAs are then digested with nuclease P1, which breaks down the RNAs into 

nucleosides monophosphates, which can then be analyzed using LC/MS-based 

metabolomics. Comparison of digested RNA to a sample treated with an inactive nuclease 

P1 (heat denatured) provided the first evidence for an NAD-linked RNA in E.coli and 

S.venezuelae. The high levels of this modification (3000 copies/cell) suggested that NAD-

modified RNA served a cellular function. Indeed, subsequent work by Cahová, et. al. 

demonstrated that 5’-NAD serves as a bacterial RNA cap to regulate RNA degradation 

(Cahova et al., 2014). This example highlights the power of metabolomics to make new 

discoveries in well-studied systems such as E.coli, which bodes well for the continued 

impact of metabolomics in biological and biomedical research.

Cancer biologists have used metabolomics and metabolic flux analysis to better understand 

the contribution of aerobic glycolysis, the “Warburg effect”, to the cancer phenotype (Lunt 

and Vander Heiden, 2011). Initially, Warburg hypothesized that increased glycolysis was 

associated with mitochondrial dysfunction, but newer studies have demonstrated that cancer-

causing genes drive the transition to increased glycolytic rates (Ramanathan et al., 2005). 

More recently, Loscale, et. al. used metabolic flux analysis to understand glucose utilization 

in cancer cells (Locasale et al., 2011). They observed that a substantial fraction of glucose 

carbon in cancer cells is diverted into amino acid metabolism (serine and glycine) through 

the overexpression of phosphoglycerate dehydrogenase (PHGDH). Moreover, a reduction of 

PHGDG expression impaired proliferation, indicating the importance of this pathway in 

driving cell growth. Presumably, increased amino acid production is needed to support 

protein translation. This is one of several examples that indicate a role for aerobic glycolysis 

in producing biomass for cellular proliferation (Lunt et al., 2015).

Metabolomics has also been used to identify the functions of genes associated with cancer. 

Mutations in the isocitrate dehydrogenase 1 (IDH1), for example, had been linked with 

human brain cancer, but the biochemical role of the mutant IDH1 was unclear. The classical 
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function of IDH1 is to convert isocitrate to alpha-ketoglutarate, but cancer-associated IDH1 

mutations confer a new activity onto this enzyme. Untargeted metabolomics of mutant 

IDH1Arg132His by Dang and colleagues revealed that this mutant enzyme is able to convert 

alpha-ketoglutarate into 2-hydroxyglutarate (2-HG) (Dang et al., 2009). 2-HG was referred 

to as an oncometabolite since elevation of 2-HG levels has been shown to increase the risk 

of brain tumors. Inhibitors of mutant IDH1 that prevent 2-HG production slow tumor growth 

(Rohle et al., 2013), demonstrating the value of these metabolomics studies in revealing a 

new therapeutic target.

The combination of genetics, metabolomics and chemical biology has also proven useful in 

studying mutations in DDHD2, a poorly characterized enzyme linked to hereditary spastic 

paraplegia (HSP). Inoles and colleagues created a mouse model that lacked DDHD2 

(DDHD2−/− mice) to determine the physiological consequences of loss of DDHD2 activity, 

and used this model to better understand the biochemical function of this enzyme using 

lipidomics (Inloes et al., 2014). DDHD2−/− mice showed age-related dysfunction in motor 

function and cognitive function. Lipidomic comparison of DDHD2−/− to WT mice revealed 

a marked accumulation of tryglycerides in the brains of DDHD2−/− mice, which was 

accompanied by lipid droplet accumulation. DDHD2 had been reported to have 

phospholipase activity in vitro (Higgs et al., 1998), but the analysis of the DDHD2−/− mice 

clearly showed that this enzyme is a brain triglyceride hydrolase with no detectable impact 

on phospholipids. This DDHD2 analysis underscores the importance of characterizing 

enzymes in their native environments where the contributions of the entire proteome can be 

taken into account. Furthermore, the correct characterization of the metabolic defects 

associated with DDHD2−/− provides insights that can be utilized in the eventual 

development of therapeutics to treat HSP.

In closing, metabolomics and metabolic flux analysis are providing new insights into 

numerous biological problems. In addition to the aforementioned studies, additional work 

has utilized metabolomics to study metabolic disease, such as metabolic risk factors for type 

2 diabetes (Rhee et al., 2011; Wang et al., 2013) and the identification of metabolically 

beneficial lipids (Cao et al., 2008; Oh et al., 2010), including novel lipids (Yore et al., 2014). 

Metabolomics is also being used by immunologists and microbiologists to study the impact 

of the gut microbiome on physiology (Ridaura et al., 2013). As metabolomics and metabolic 

flux analysis continues to be utilized in the biological and biomedical sciences, we will learn 

more about the role of metabolism in regulating important biological processes, and in the 

case of disease biology these studies have the potential to reveal new therapeutic 

opportunities (Rohle et al., 2013).
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