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Abstract

Classic instrumental variable techniques involve the use of structural equation modeling or other 

forms of parameterized modeling. In this paper we use a nonparametric, matching-based 

instrumental variable methodology that is based on a study design approach. Similar to propensity 

score matching, though unlike classic instrumental variable approaches, near/far matching is 

capable of estimating causal effects when the outcome is not continuous. Unlike propensity score 

matching, though similar to instrumental variable techniques, near/far matching is also capable of 

estimating causal effects even when unmeasured covariates produce selection bias. We illustrate 

near/far matching by using Medicare data to compare the effectiveness of carotid arterial stents 

with cerebral protection versus carotid endarterectomy for the treatment of carotid stenosis.
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1 Introduction

For comparative effectiveness research to reach its potential, there must be reliable methods 

to address confounding by indication using “real world” data. Without randomization, the 

groups receiving the treatment tend to be systematically different than those patients 

receiving the control and many of these differences typically go unmeasured. As a result, 

statistical procedures such as regression and propensity score matching are unable to 

properly adjust. It is common in the literature to either use a method like propensity score 

matching and assume that all important covariates are available in the data set (i.e., that 

strongly ignorable treatment assignment holds) or to use a classical instrumental variables 

approach. Near/far matching (Baiocchi et al. 2010) is a new technique that synthesizes these 

two approaches and thus offers opportunities to adequately address confounding by 

indication in observational data settings.

Near/far matching uses a study design approach to replicate the structure of a clinical trial 

framework within an observational setting. The following quote from Rosenbaum (2010), 

helps to delineate the “design” from the “analysis” of a study: “In practice, the design of an 

observational study consists of all activities that precede the examination of those outcome 

measures that will be the basis for the study’s conclusions… In theory, design anticipates 

analysis. Analysis is ever present in design, as any goal is ever present in any organized 

effort, as a goal is necessary to organize effort.” Most readers will be familiar with 

propensity score matching, which is also a study design approach. The matching phase of 

the procedure is study design which prepares the data for statistical analysis (e.g., using a 

paired t-test). In this way, near/far matching is similar to propensity score matching in that 

there is a matching phase to prepare the data for the evaluation of outcomes in a structure 

designed to mimic a clinical trial. The difference is that near/far matching harnesses the 

randomization of an instrument and uses this to construct an analysis which is capable of 

estimating treatment effects when there is selection on unobserved covariates. Additionally, 

near/far matching is also the correct analysis tool for many settings because it is one of just a 

few instrumental variable (IV) approaches which is appropriate for estimating causal effects 

when the outcome of interest is binary.

In this paper we demonstrate the near/far matching technique to estimate the comparative 

effectiveness of carotid arterial stents with cerebral protection (CAS) versus carotid 

endarterectomy. Section 2 introduces this motivating example. Section 3 details the data with 

particular attention to the instrumental variable. Section 4 offers a review of the literature 

with a focus on methods for estimating treatment effects for binary outcomes. Section 5 is an 

intuitive introduction to near/far matching and places near/far matching in context with 

already existing techniques. We introduce the notation and mathematical framework for 

near/far matching in Sect. 6. In Sect. 7 we present the results of our example. Section 8 of 

this paper discusses a few advantages of near/far matching as well pointing out a concern in 

designing such a study.
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2 Motivating example: comparing two interventions when there is selection 

bias

The motivating example for this paper comes from a comparison of carotid arterial stents 

(CAS) versus carotid endarterectomy (CEA) for the treatment of carotid stenosis. Carotid 

stenosis (i.e., narrowing of the carotid artery) is among the most common causes of stroke in 

the United States (Barnett et al. 1996; Dodick et al. 2004). For decades, CEA, a highly 

invasive vascular surgical technique, was the only effective interventional treatment for 

severe carotid stenosis. However, in late 2004 based on the result of a randomized clinical 

trial (Yadav et al. 2004), the FDA approved CAS for use in patients with severe carotid 

stenosis who were deemed “high risk” for CEA. Utilization of CAS in many U.S. hospitals 

grew rapidly in 2005–2006, yet uncertainty about the comparative effectiveness of the two 

treatment options was heightened by the publication of additional clinical trials with results 

that questioned the efficacy of CAS (Mas et al. 2006, 2008). The real-world comparative 

effectiveness of CAS versus CEA remains uncertain.

Use of CAS remains highly variable geographically, suggesting a lack of uniformity in 

which patients are being treated with CAS versus CEA nationwide. See Fig. 1 for a 

histogram of the rates of CAS utilization by hospital referral regions (HRRs). Figure 2 is a 

map of the HRRs and their CAS utilization. As with any new technology, there are early 

adopters and late adopters, resulting from a complicated process involving factors such as 

the number of teaching hospitals in a region, professional and institutional relationships 

between advocates of the new technology and those who are willing to try it, as well as 

logistical issues such as a hospital’s existing stock of the old technology and the difficulties 

involved in updating to the new technology, all of which may impact the rates of use of a 

new technology. Many of the factors which go into determining the treatment selection 

occur as a process which is unrelated to patient-level covariates. We will exploit geographic 

variation in the design of our study.

3 Description of data

Using health care utilization and outcomes data from the Medicare program for fee-for-

service beneficiaries over age 65, we compared the effectiveness (i.e., mortality rate at 180 

days following the procedure) of CAS to CEA for the treatment of carotid stenosis. The data 

includes patients treated from the years 2005–2008, during the period where both CAS and 

CEA were in use. In addition to those years, we used 2004 utilization data for CEA (i.e., 

pre-CAS), which we will make use of during our analysis to control for pre-existing patterns 

of care. The data set has information on approximately 325,000 patients treated with either 

CAS or CEA (approximately 13 % of were CAS recipients). These data indicate each 

patient’s demographic information, the date and location of procedure receipt, the presence 

of important comorbid conditions, and subsequent major clinical outcomes such as stroke or 

death.

We use the geographic variation in the uptake of CAS after 2004 FDA approval as an 

instrumental variable. Using the geographical conventions established by the Dartmouth 
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Atlas for Health Care, we use HRRs (n = 306) as our geographical unit of analysis. Our 

outcome of interest is mortality 90 days after intervention.

3.1 The instrument

An instrument is a random influence towards acceptance of a treatment which affects 

outcomes only to the extent that it affects acceptance of the treatment. Even in settings in 

which treatment assignment is mostly deliberate, there may nonetheless exist some 

essentially random influences to accept treatment, so that treatment assignment retains a 

random component. An instrument is weak if the random influences barely affect treatment 

assignment, or strong if they are decisive in influencing treatment assignment.

In this paper we use the HRR where the patient received care as the instrument. The patients 

sort themselves into different geographic areas for a variety of reasons: socioeconomic, 

familial and cultural. These imbalances are evident in Table 1. From Table 1 we can see that 

the patients in our data set which are treated in high utilization HRRs tend to be more 

racially diverse, have higher incomes and the HRRs tend to have higher medical expenditure 

per patient and have more beds available per capita at academic institutions. We attempt to 

control for these measured socioeconomic differences by matching on these variables at the 

HRR level (see methods below). Regional variation will function properly as an instrument 

if it is uncorrelated with the unmeasured patient-level confounders of concern after the 

measured confounders have been controlled for.

The usual argument for the validity of regional variation as an instrument is: Though we 

note patients sort themselves based on socioeconomic differences across regions, it is 

unlikely that they sort themselves into different regions based on their medically relevant 

covariates. See Table 4 which shows the patient-level medically relevant covariates across 

the instrument. Note that they are quite similar, with standard differences of the means 

across the quartiles of the instrument which are all lower than 0.11. In fact, we will go to 

great lengths to control for all of the medically relevant covariates we have in our data set by 

pair matching at the patient-level. But we will also make use of which region the patient was 

from and therefore which treatment was more likely to be assigned for reasons that are 

extraneous to the particulars of the patient’s medical history. In the example at hand we 

should be a bit cautious, environmental factors such as dietary habits, levels of physical 

fitness and exertion and other culturally influenced behaviors may have an impact on 

medically relevant, patient-level covariates. This would imply that HRR may be correlated 

with unobserved patient-level covariates. In this paper we are using this example as an 

illustration of the methodology so we will not delve further into this issue; a more complete 

investigation of CAS versus CEA would need to engage this issue. We do point the 

interested reader to Sect. 8 and the brief discussion of sensitivity analysis for one potential 

statistical approach for addressing imperfect instruments.

An instrument can be thought of as an “encouragement” for the patient to take a given 

treatment. While a patient may be encouraged to take a treatment he/she is free to take the 

treatment or the control. See Holland (1986) and Angrist et al. (1996) for a discussion of this 

framework. In this framework it is possible that the intensity of encouragement can vary. In 
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our example, a few HRRs have rates of CAS as high as 50 % whereas about a dozen have 

zero CAS utilization.

4 Review of literature

Propensity score matching is a common tool of choice in the health services research 

literature. One of the primary reasons for its wide application is that propensity score 

matching emulates the study design approach taken in a clinical trial. The simplicity of a 

clinical trial and the resulting force gained from its clarity of design are attractive. In a 

complex setting, where both biology and human decision making is involved, a simple 

statistical method which is warranted by design is often preferable to the convolutions often 

required by highly parametric models. But this method is inappropriate in our setting 

because strongly ignorable treatment assignment is not realistic. Strongly ignorable 

treatment assignment requires that the joint distribution of the potential outcome be 

independent of the treatment assignment conditional on the covariates (Rosenbaum and 

Rubin 1983).

Many times instrumental variables (IV) is implemented using two-stage least squares 

(2SLS). This is appropriate when the outcome of interest is continuous. For example, if we 

were considering the change in weight (measured in pounds) due to a new surgical 

intervention it may be appropriate to use 2SLS because weight is a continuous variable. In 

our motivating example we have a binary outcome—patients will either be alive or dead at 

90 days after the intervention. Many research questions in health services have binary 

outcomes. It has been suggested that in some settings it may be appropriate to use a linear 

probability model in both stages of a 2SLS (Angrist 2001) as an approximation to a more 

correct procedure. In Bhattacharya et al. (2006) a simulation study demonstrated that bias is 

introduced by using linear probability models when the empirical probability of the event is 

up against the parameter space, that is if the event either occurs quite frequently (close to 

100 % of the time) or very infrequently (close to 0 % of the time). In our case only 2 % of 

the patients die, so we are in need of an approach more appropriate to binary outcomes.

In analogy to 2SLS, some researchers have used a logistic (or probit) model in the second 

stage of their regression when encountering a binary outcome, but this is problematic. The 

properties of linear models which allow 2SLS to work so nicely (e.g., orthogonality) are 

corrupted by the link functions in standard generalized linear models, and two stage logistic 

approaches can have biases even in large samples. See pages 190–192 of Angrist and 

Pischke (2009) and Cai et al. (2011) for discussion of biases for two stage logistic 

approaches.

In this paper we use a method we call “near/far matching,” which was first described in 

Baiocchi et al. (2010). Near/far matching is capable of estimating treatment effects even 

when the outcome is binary. This method is a matching-based approach, similar to 

propensity score matching, but uses information about the instrument to construct the most 

informative matched pairs from an observational data set.
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There are other IV techniques which have been developed to deal with binary outcomes. In 

particular, the two-stage residual inclusion model (2SRI) is a well-developed alternative see 

Terza et al. (2008) and Cai et al. (2011).

5 Near/far matching: overview of the method

Before explaining near/far matching we discuss a hypothetical study design approach 

researchers might take to investigate the relative efficacy of CAS versus CEA. We outline 

this hypothetical approach first in order to parallel its setup with near/far matching.

One can imagine doing an RCT to study the comparative efficacy of CAS versus CEA. A 

randomized, matched-pair study design would first match patients based on covariates and 

then randomize within the matched-pair. The pair matching in this design ensures the 

observed covariate distribution for the treated is similar to the control, thus reducing the 

extraneous variation in the null distribution due to differences in the observed covariates. 

The randomization supports the assumption that the unobserved covariates are also balanced 

between the two groups and thus strengthens the argument that the observed variation in the 

outcome is attributable to the difference in the level of the treatment. This is all standard 

thinking to most statisticians, but there are other considerations in designing a study.

Once the treatment assignments have been randomly assigned, it is then necessary to ensure 

the patients comply with their treatment assignment. In practice, if there is minimal 

encouragement from the researchers then the patients may decide to become noncompliant 

with the randomization. This encouragement can take many forms—for example, 

collaboration with treating physicians, as well as free/reduced cost of care or other monetary 

incentives for patients who are treatment “compliers.” The objective is to have the patients 

stay compliant with the treatment to which they were randomly assigned. One concern with 

high rates of noncompliance is that the patients would be no longer randomly assigned to 

treatment, and it becomes more likely that covariates, both observed and unobserved, are 

determining the treatment selection. Thus higher rates of compliance are desirable, hence 

encouragement to comply is a vital part of the study design.

In analogy to the RCT, at the outset of the analysis, it is advisable for the analyst performing 

a near/far matching to blind him/herself to three kinds of variables to ensure the information 

is not used in the matching procedure outlined below. The first variable is the outcome of 

interest. The second is covariate values which were recorded post-treatment (Rosenbaum 

1984). The third, which is a departure from propensity score matching, is to remove the 

variable which records which treatment the patient actually received. The variables the 

analyst uses to create the matches in near/far matching are pretreatment covariates and the 

instrument. The assumption of strongly ignorable treatment assignment implies that, 

conditional on the observed covariates, the potential outcomes are independent of the 

treatment assignment; this assumption is why treatment assignment is used in propensity 

score matching and why the analyst should not use it directly to construct pairs in near/far 

matching.
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There are two objectives in near/far matching. As in an RCT matched-pair design, one 

objective in near/far matching is to create matched pairs where the covariates are similar 

within a pair. Creating pairs with very similar covariate values (i.e., pairs which are “near” 

each other in covariate space) is used to improve efficiency. The other objective in near/far 

matching is to separate patients’ instrument values within a matched pair. In our example, 

within a matched pair we want one patient who was highly encouraged to have CAS and the 

other to be highly encouraged to take CEA. This is similar to the matched pair design when 

there is the potential for noncompliance. If we can vary the level of encouragement, then it is 

preferential to have two patients who are highly dissimilar (“far”) in their levels of randomly 

assigned encouragement because it is then more likely that within the pair the one patient 

will comply with the encouragement and take the treatment and the other will comply with 

the lack of encouragement and take the control. Using an algorithm outlined in the next 

subsection we will construct pairs which maximize both of these objectives at the same time.

In most real-world examples there will be a trade-off between the “near” and the “far” part 

of the matching. The technical aspects of this trade-off, and how to construct such pairs, will 

be discussed in the next subsection. The intuition is that as the analyst forces separation in 

the instrument values between pairs of patients it becomes more difficult to find patients 

with quite dissimilar instrument values but very similar covariates. The Baiocchi et al. 

(2010) paper outlines both theoretical arguments as well as practical reasons for designing 

studies with greater separation in the instrument.

It should be noted that we are referring to “pair” matching, but all of these arguments hold 

for larger block designs. Near/far matching would work with k:1 matching and other more 

exotic designs. The primary difference would be the optimization algorithm used to 

construct the sets. The nonbipartite algorithm we use in our analysis, developed in Derigs 

(1988) and first used in a statistical setting in Lu et al. (2001), is useful for pair matching.

5.1 Near/far matching when the instrument is applied at a group level

In this particular application there will be two rounds of matching. First we will match 

HRRs using near/far matching. Then we will use an optimal bipartite match to construct 

patient-level matches across HRR pairs.

The first stage of our matching uses near/far matching in order to construct the strongest 

instrumental variable design from what is, initially, a weak instrument. If we were to include 

all of the HRRs in our analysis, we would find that there are some HRRs with very different 

populations which would create covariate imbalance. Using all HRRs in our analysis would 

also mean using some with moderate use of CAS. HRRs with moderate use of CAS are not 

helpful for our analysis because these HRRs are not encouraging their patients very strongly 

in either direction, toward CAS or CEA, relative to other HRRs—thus it would be difficult 

to create much separation in the encouragement due to the instrument.

This step, designing our analysis to include certain HRRs and exclude others, is similar to 

the inclusion/exclusion criteria of a randomized controlled trial. By restricting which units of 

observation can enter an analysis we are gaining in precision of analysis by (1) reducing 

heterogeneity in the covariates of the units of observation and (2) by increasing the strength 
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of the instrument. This must be balanced against the consideration that we are effectively 

limiting the generalizability of the results of our study. The issue is a bit more complicated 

by the fact that an instrumental variable estimate is on a subset of the population which 

enters our study—this is referred to as the “complier average causal effect” in Angrist et al. 

(1996). Specific advice for the trade-off is difficult to offer as context will drive the 

importance of the trade-offs. Researchers should take the following three items into 

consideration when deciding how to design their study: the strength of the instrument (e.g., 

if it is weak then more separation in the instrument may benefit the study which means 

potentially excluding more observations), any suspected violations of the instrument (e.g., it 

is well known that weak instruments are particularly susceptible to bias when violations of 

the instrumental variable assumptions occur—see Bound et al. (1995) for an excellent 

discussion), as well as starting sample size. Given a particular dataset, these items determine 

on what population the analysis can be run. By using calipers—see Rosenbaum (2010, §9.2)

—the researchers may construct different matched designs (stopping short of examining the 

outcomes), consider the units of observation which are included in the match, and then 

determine whether this sample is informative of the population the researchers are interested 

in investigating.

After the first round of matching we have pairs of HRRs that are quite similar in clinically 

relevant covariates but quite different in their usage of CAS. In the second round of 

matching we construct pairs of patients wherein one member of the pair—one who was 

treated in the HRR with higher CAS usage—is optimally matched to a patient from the 

paired HRR which had lower usage of CAS. Whereas the first round of matching is meant to 

control for HRR-level confounding covariates, the second round of matching addresses 

medically relevant patient-level covariates such as age, gender, race, and the presence of 

various comorbid conditions, thus improving the power of the inference.

To see a slightly simpler design using near/far matching see Baiocchi et al. (2010). That 

study used proximity to treatment facility as an instrument and created pair matches of 

premature babies which had similar covariates (near) but were quite dissimilar on their 

proximity to treatment facility (far). Both the instrument and the outcome were on the 

patient-level. In the current example the instrument is applied on the HRR level and the 

outcome is on the patient level.

5.2 Near/far matching: constructing the match

We will first pair-match HRRs using optimal nonbipartite matching, so they are as similar on 

clinically relevant HRR-level covariates as possible, while at the same time preferentially 

creating pairs of HRRs which are as dissimilar as possible in their percentage usage of CAS. 

For statistical applications of optimal nonbipartite matching, see Lu et al. (2001), Lu and 

Rosenbaum (2004), Lu (2005), and Rosenbaum (2005). One of the most important 

covariates we will pay attention to in this first round of matching is 2004 death rates. We 

focus on 2004 death rates because this is pre-CAS, so all HRRs were using CEA as the only 

surgical treatment of carotid stenosis. If these rates are stable, then post-treatment death rates 

in 2004 will reflect the HRR’s “base rate” of mortality before the introduction of CAS. If, 

pre-CAS, two HRRs have similar mortality rates but then, post-introduction of CAS, they 
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start to diverge in both CAS utilization and subsequently mortality then we have strong 

evidence in support of an efficacy difference between CAS and CEA. We will also pay 

attention to percentage of teaching hospitals in the HRR, socioeconomic and demographics 

in the HRRs, beds per capita and other potentially important HRR-level variables.

In the health policy literature the most common form of matching is a matching between two 

distinct groups—for example when patients who received the treatment are matched to those 

who did not receive the treatment, as in propensity score matching. This form of matching is 

called bipartite matching—matching made between two distinct groups. In matching the 

HRRs we are attempting to create pairs where the difference between one HRR’s usage of 

CAS is quite different from the other HRR’s. But each HRR has some level of usage of CAS 

so we cannot break the HRRs into two separate groups before the matching starts. We are 

operating under the dose matching framework as described in Lu et al. (2001). In this setting 

any HRR has the potential to be matched to any other HRR—this is referred to as 

nonbipartite matching. For implementation we used the nonbipartite algorithm developed in 

Derigs (1988). In this stage of the analysis we create pair matches that are as close as 

possible in HRR-level covariates but as dissimilar in CAS usage as possible because then the 

primary difference between HRRs will be their CAS usage, everything else being equal.

Let us say there are 2N HRRs. First, a discrepancy is defined between every pair of HRRs, 

yielding a 2N × 2N discrepancy matrix. (The term ‘discrepancy’ is used in place of the more 

common term ‘distance’ to avoid confusion of covariate discrepancy with the geographic 

distance between HRRs.) An optimal nonbipartite matching then divides the 2N HRRs into 

nonoverlapping pairs of two HRRs in such a way that the sum of the discrepancies within 

the N pairs is minimized. That is, two HRRs in the same pair are as similar as possible in 

their covariates while also being quite different in their utilization of CAS. In order to get the 

best covariate balance between the two groups, and at the same time achieve good separation 

in the instrument (see Baiocchi et al. 2010 for a discussion of why separation in the 

instrument is desirable) some of the HRRs must be removed from the analysis. We do this in 

an optimal way by using “sinks” see Lu et al. (2001). To remove e HRRs, e sinks are added 

to the data set before matching, where each sink is at zero discrepancy to each HRR and at 

infinite discrepancy to all other sinks. This yields a (2N + e) × (2N + e) discrepancy matrix. 

An optimal match will pair e HRRs to the e sinks in such a way as to minimize the total of 

the remaining discrepancies within N − e/2 pairs of 2N − e HRRs; that is, the best possible 

choice of e HRRs is removed.

The discrepancy matrix was built in several steps using standard devices. Because we are 

matching HRRs from different parts of the US, and because socioeconomic and 

demographic factors have been linked to health outcomes we need to control for these HRR-

level covariates. Additionally, we want to make sure medically relevant covariates, such as 

2004/pre-CAS mortality rates are similar within pair-matched HRRs. The discrepancy 

between every pair of HRRs was calculated using Mahalanobis distance. A small penalty 

(i.e., a positive number) was added to the discrepancy for each of the following 

circumstances (1) if the average HRR-level spending for inpatients during their last 6 

months of life was too divergent between two HRRs (2) if the number of beds in 2005 at 

academic medical institutes per capita were too divergent (3) if median income of the HRRs 
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were too dissimilar. Two independent observations drawn from the same L-variate 

multivariate Normal distribution have an expected Mahalanobis discrepancy of 2L, so that, 

speaking informally, a penalty that is typically of size 2 will double the importance of 

matching on a variable. Small penalties are used to secure balance for a few recalcitrant 

covariates, usually those which are most systematically out of balance; see Rosenbaum 

(2010, §9.2) for discussion. It is typical to adjust small penalties to secure the desired 

balance. Finally, a substantial penalty was added to the discrepancy between any pair of 

HRRs whose CAS utilization differed in absolute value by at most Λ, where Λ = 19 %. 

Substantial (effectively infinite) penalties are used to enforce compliance with a constraint 

whenever compliance is possible and to minimize the extent of deviation from a constraint 

whenever strict compliance is not possible. This substantial penalty used a ‘penalty 

function,’ a continuous function that is zero if the constraint is respected and rises rapidly as 

the magnitude of the violation of the constraint increases; see Avriel (1976) for discussion of 

penalty functions and see Rosenbaum (2010, §8.4) for discussion of the use of penalty 

functions in matching.

The choice of Λ depends on the structure of the data. As Λ is increased, it is more difficult to 

find suitable pairs who have similar covariates. The covariance structure and distribution of 

the covariates in the data set, as well as the covariance of the instrument with the covariates, 

largely determine what values of Λ are possible. The selection of Λ occurs before we 

observe treatment selection or the outcomes, so the research may construct several matches 

using different values of Λ until a suitable match is found. In this paper we used this ad hoc 

approach to find a suitable match, one which maximized separation in the instrument, while 

keep covariates similar between the group, while also not removing an excessive amount of 

the observations from the analysis. The importance of these tradeoffs are driven by the 

specifics of the problem being analyzed. Further research is required to formalize a structure 

for determining optimal values for Λ.

See Table 1 to see prematch differences between HRRs and Table 2 to see post-match 

differences. The tables summarize match quality by showing means and absolute 

standardized differences in means, that is, the absolute value of the difference in means 

divided by the standard deviation before matching. We started with 306 HRRs and 

constructed 76 pairs of HRRs. By using sinks (Lu et al. 2001) we excluded from our study 

some HRRs which were quite different from other HRRs. By excluding some HRRs we 

improved the overall quality of the matches between those HRRs with high CAS usage and 

those HRRs with low CAS usage. Once we have constructed pairs of HRRs which are 

similar in covariates, but dissimilar in CAS usage, we can now move on to patient-level 

matching.

After the first stage, we have a list of HRR pairs. Within a given pair, one HRR has higher 

usage of CAS and the other HRR within the pair has lower levels of CAS usage. For the 

second stage of our analysis we look at people within the HRRs. First we select a given pair 

of HRRs. For example, in the first stage the algorithm matched San Francisco and San Luis 

Obispo. San Francisco has high usage of CAS and San Luis Obispo has low usage. We now 

consider patients treated in San Francisco as being randomly encouraged to take the CAS 

and those in San Luis Obispo as encouraged to take CEA. This is now a bipartite matching 
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problem, matching patients treated in San Francisco to patients treated in San Luis Obispo. 

See Tables 3 and 4 for results. We used the package optmatch in R to perform this matching 

(Hansen and Klopfer 2006). We summarized 27 covariates by calculating the Mahalanobis 

distance and using this to populate the discrepancy matrix for the function fullmatch(). 

Within any given HRR we allowed patients to be matched to sinks in order to improve the 

quality of the covariate balance between the encouraged and unencouraged groups. Out of a 

population of approximately 325,000 patients, our analysis was run on 85,284 patients 

because we were able to obtain a good study design which had (1) good covariate balance 

between the groups, as measured by the standardized difference column in Table 4 and (2) 

modest separation in the instrument between the encouraged and unencouraged groups.

6 Analyzing the near/far matching design

6.1 Notation

We follow the notation and motivation from Baiocchi et al. (2010).

There are I matched pairs i = 1, …, I, with 2 subjects, j = 1, 2, one encouraged subject and 

one unencouraged, or 2I subjects in total. If the jth subject in pair i receives the 

encouragement, write Zij = 1, whereas if this subject receives the control, write Zij = 0, so 1 

= Zi1 + Zi2 for i = 1, …, I. In our study, the matched pairs consist of one patient from a high-

CAS HRR, the other from a low-CAS HRR.

The matched pairs were formed by matching for an observed covariate xij, but may have 

failed to control an unobserved covariate uij; that is, xij = xik for all i, j, k, but possibly uij ≠ 

uik. This structure is in preparation for the inevitable comment or concern that the pairs in 

Table 1 look similar in terms of the variables in Table 1, but the table omits the specific 

covariate uij which might bias the comparison. Write u = (u11, u12, …, uI2)T for the 2I-

dimensional vector.

For any outcome, each subject has two potential responses, one seen under encourage-ment, 

Zij = 1, the other seen under unencouragement, Zij = 0; see Neyman (1923) and Rubin 

(1974). In our analysis, speaking in this way of two potential responses entails imagining 

that a patient ij who lived either in a low-CAS HRR (Zij = 0) or in a high-CAS HRR (Zij = 

1) might instead have lived in the opposite circumstances. Here, there are two responses, 

(rTij, rCij) and (dTij, dCij) where rTij and dTij are observed from jth subject in pair i under 

treatment, Zij = 1, while rCij and dCij are observed from this subject under control, Zij = 0. In 

our example, (rTij, rCij) indicates death in the 90 days following intervention, 1 for dead, 0 

for alive, and (dTij, dCij) indicates whether the patient was treated with CAS, 1 if yes, 0 if no. 

For instance, if (rTij, rCij) = (0; 1) with (dTij, dCij) = (1; 0) then: (i) if a patient lived in a high-

CAS HRR (Zij = 1), he/she would be treated with CAS (dTij = 1) and would live (rTij = 0), 

but (ii) if the patient had lived in a low-CAS HRR (Zij = 0), then he/she would have been 

treated with CEA instead of CAS (dCij = 0) and he/she would have died (rCij = 0).

A word on notation: To maintain consistency with the prior literature we use notation which 

the subscripts on the potential outcomes which contain a capital “C” and “T.” These do not 
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refer to control (i.e., CEA) and treatment (i.e., CAS), but rather map onto the encouragement 

levels from the instrument.

The effects of the treatment on a subject, rTij − rCij or dTij − dCij, are not observed for any 

subject; that is, each patient received treatment in either a high or a low CAS HRR, and the 

outcome under the opposite circumstance is not observed. However, Rij = ZijrTij + (1 − 

Zij)rCij, Dij = ZijdTij + (1 − Zij) dCij and Zij are observed from every subject.

Fisher’s sharp null hypothesis of no treatment effect on (rTij, rCij) asserts that H0: rTij = rCij, 

for i = 1,…, I, j = 1, 2. In our example, this says that receiving treatment in a low-CAS HRR 

does not change the outcome compared to if the patient had received care in a high-CAS 

HRR, even if where the patient received care changes which kind of treatment the patient 

receives. If Fisher’s null hypothesis were plausible, it would be difficult to argue that CAS 

and CEA produce different outcomes.

The exclusion restriction asserts that dTij = dCij implies rTij = rCij, see Angrist et al. (1996). 

In our example, the exclusion restriction says that patient outcomes are only affected by 

receiving care in a high-CAS HRR if receiving care in a high-CAS HRR changes the type of 

treatment the patient receives. This assumption may be dubious if we believe that there is a 

benefit to treating more patients; perhaps the surgeons become more skilled at performing 

the procedure meaning receiving CAS in a high-CAS region is different than receiving CAS 

in a low-CAS region. This is an important challenge to this study. If the analysis we are 

presenting was more than for illustrative purposes the discussion of the exclusion restriction 

would need to be carefully considered.

A patient with (dTij, dCij) = (1, 0) is said to be a complier, in the sense that he/she would 

receive CAS if he lived in a high-CAS HRR (dCij = 0), but he/she would receive CEA if 

he/she lived in a low-CAS HRR (dTij = 1).

6.2 The effect ratio

The effect ratio, λ, is the parameter

where it is implicitly assumed that the instrument does influence the treatment, 

. Because (rTij, rCij) and (dTij, dCij) are not jointly observed, λ 

cannot be calculated from observable data so inference is required. Notice that under 

Fisher’s sharp null of no effect, H0:rTij = rCij for all individuals ij, implies that λ = 0.

The effect ratio is the ratio of two average treatments effects. In a paired, randomized 

experiment the mean of the treated-minus-control difference provides unbiased estimates of 

numerator and denominator effects separately, and under mild conditions as I → ∞, the ratio 

of these unbiased estimates is consistent for λ. The effect ratio measures the relative 
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magnitude of two treatment effects, here the effect HRR treatment preferences on mortality 

compared to its effect on what treatment the patients receive. For instance, if λ=1/100 then 

for every hundred patients who would have received CAS if they had sought treatment in a 

high-CAS region, but received CEA because they sought care in a low-CAS region, there is 

one additional patient death. As discussed by Angrist et al. (1996), with assumptions such as 

the exclusion restriction and monotonicity, λ would be the average increase in mortality 

caused by treating with CAS among compliers, that is, patients with (dTij, dCij) = (1, 0).

6.3 Inference about an effect ratio

Consider the null hypothesis H0:λ = λ0. Following Baiocchi et al. (2010) we can use the 

following test statistics for this null.

where, because Rij − λ0Dij = rTij − λ0dTij when Zij = 1 and Rij − λ0Dij = rCij − λ0dCij if Zij = 

0. Thus we may write

Also define

From Baiocchi et al. (2010) we know that if the instrument has indeed been randomly 

assigned then for large I the hypothesis H0:λ = λ0 can be tested by comparing T(λ0)/S(λ0) to 

the standard Normal cumulative distribution.

7 Results

The quality of the matching at the individual level is summarized in Table 3. Once we have 

constructed pair matches the analysis is executed as outlined in Sect. 6.3. The point estimate 

for death within 90 days of treatment is for an increase in the rate of death of 2.21 % for the 

compliers in the study if they were switched from CEA to CAS. The confidence interval is 

(−0.37 %, 4.48 %). The width of the confidence interval is largely driven by the weak 

instrument we obtained in this example. Though we were able to force 1.23 units of 

standardized difference in the instrument in the HRR matching (see Table 2), the actual 

difference in CAS utilization once we matched on the individual level only had a separation 

of 0.21 units of standardized difference (see Table 3).
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8 Discussion

Near/far matching is a study design approach to instrumental variables. It combines the 

relative simplicity of propensity score matching with the ability of an IV to address 

unobserved selection.

The complexity of near/far matching is in the study design portion of the procedure; that is, 

most time and consideration is spent on the matching. The statistical analysis is quite simple 

and is analogous to a paired t-test. More complex IV methods exist which are capable of 

estimating treatment effects for settings with binary outcomes. These methods tend to 

require maximization of a complex likelihood, which can be computationally taxing. 

Additionally, the recommendation for estimating standard errors is usually to use a 

bootstrapping approach, which requires additional iterations of an already complex 

maximization step. In contrast, near/far matching simply requires inverting the hypothesis 

test in the standard way in order to form a confidence interval.

One more advantage of a simple statistical procedure is researchers can construct a 

sensitivity analysis to help quantify the impact of violations of the assumptions of the 

analysis. For an introduction to sensitivity analysis see Rosenbaum (2002, §4.4–5). For 

discussion of alternative methods of sensitivity analysis see Imbens (2003), Robins et al. 

(1999) and Small (2007). Baiocchi et al. (2010) provides a sensitivity analysis for the 

situation where, even post near/far matching, some set of unobserved covariates is still 

unbalanced between the two groups.

A concern with near/far matching is that during the matching phase it is often necessary to 

remove observations from the analysis which are “unsuitable”—that is, their covariates are 

dissimilar from most other observations and/or they are not sufficiently dissimilar in their 

levels of encouragement from the instrument. In our example 50 % of the HRRs were 

removed from the analysis in order to create as much separation as possible in the 

instrument while still maintaining good balance in the covariates. Over and above the usual 

identification issue with IV estimators, which is that they are estimating a treatment effect on 

just the compliers, near/far matching limits the population by excluding observations from 

the analysis. This is a common study design problem. Consider a randomized controlled 

study; it is common for a study to have a list of exclusion criteria which precludes portions 

of the population from participating in the study and therefore narrows the population for 

which the estimate is valid. As in a clinical trial, the researcher must weigh the tradeoffs 

between having greater internal validity versus the benefits of the generalizability of the 

trial.
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Fig. 1. 
A histogram of the percent of CAS utilization in the 306 hospital referral regions. The 

median value is 10.2 %. The mean is 11.6 %. The interquartile range goes from 4.9 % up to 

15.4 %. Thirty-two of the HRRs (slightly more than 10 % of the HRRs) had a CAS 

utilization of 1 % or less
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Fig. 2. 
This is a heath map of CAS utilization in the HRRs. To aid visualization, the HRRs have 

been color coded by quintiles with the HRRs with the highest rates of CAS utilization 

colored a deep blue and those HRRs with the lowest rates of CAS utilization colored a light 
gray (Color figure online)
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Table 1

Prematch HRRs

1st Quartile means 4th Quartile means |St-dif|

Instrument

% CAS utilization 1.8 % 23.8 % 2.32

Covariates

% Age over 65 in HRR 14.5 % 12.3 % 0.66

% White in HRR 84.1 % 75.0 % 0.71

% Urban in HRR 63.9 % 75.8 % 0.64

Median income in HRR 38,683 43,212 0.49

Mean education 12.8 12.8 0.27

Medicare spend 11,463 13,935 0.76

Academic beds per 1000 1.44 4.00 0.64

2004—death within 90 day 2.46 % 2.00 % 0.35

Comparing the means of the 76 HRRs in the lowest quartile of the instrument (lowest rates of CAS utilization) to the 76 HRRs in the highest 
quartile. Median income in the HRR and the average Medicare spend in the last 6 months of the patients’ month (both measured in dollars). Mean 
education in the HRR is measured as an ordinal variable
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Table 2

Postmatching HRRs

Unencouraged means Encouraged means |St-dif|

Instrument

% CAS utilization 2.9 % 14.5 % 1.23

Covariates

% Age over 65 in HRR 13.6 % 13.2 % 0.12

% White in HRR 81.7 % 79.8 % 0.15

% Urban in HRR 68.3 % 71.6 % 0.18

Median income in HRR 40,792 41,862 0.11

Mean education 12.9 12.8 0.06

Medicare spend 12,470 12,861 0.12

Academic beds per 1000 2.23 2.97 0.18

2004—death within 90 day 2.36 % 2.26 % 0.08

The “Encouraged Means” column summarizes the 76 HRRs within a match which had the higher rate of CAS utilization. In contrast to Table 1, the 
standardized differences for the covariates show the two groups have comparable means
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Table 3

Individual level matching

Matches 42,642 Type Encouraged mean Unencouraged mean |St-dif|

CAS utilization (1/0) Instrument 0.13 0.06 0.21

Age (years) Covariates 74.56 74.58 0.00

Female (1/0) 0.42 0.42 0.00

CHF (1/0) 0.09 0.09 0.00

Cardiac arrhythmia (1/0) 0.18 0.18 0.00

Cardiac valvular disease (1/0) 0.08 0.08 0.01

Pulmonary circulation disease (1/0) 0.01 0.01 0.00

Peripheral vascular disease (1/0) 0.25 0.24 0.02

Paralysis (1/0) 0.02 0.03 0.01

Neurologic disorder (1/0) 0.02 0.02 0.01

Chronic pulmonary disease (1/0) 0.25 0.24 0.02

Diabetes uncomplicated (1/0) 0.29 0.29 0.00

Diabetes w/complication (1/0) 0.04 0.04 0.01

Hypothyroidism (1/0) 0.10 0.10 0.01

Renal disease (1/0) 0.08 0.08 0.01

Liver disease (1/0) 0.00 0.00 0.01

AIDS (1/0) 0.00 0.00 0.01

Lymphoma (1/0) 0.00 0.00 0.01

Metastatic cancer (1/0) 0.00 0.00 0.00

Tumor no met (1/0) 0.02 0.02 0.00

Rheumatoid arthritis (1/0) 0.02 0.02 0.01

Coagulopathy(1/0) 0.01 0.01 0.00

Obesity (1/0) 0.05 0.05 0.00

Weight loss (1/0) 0.01 0.01 0.00

Depression (1/0) 0.04 0.05 0.01

Hypertension (1/0) 0.83 0.83 0.01

Acute myocardial infarction (1/0) 0.03 0.03 0.00

Coronary artery disease, no AMI (1/0) 0.51 0.50 0.01

Death within 90 days (1/0) Outcome 0.0202 0.0189 0.01

The “Encouraged Mean” column summarizes the means of the 42,642 individuals within a pair who were treated in a high-CAS HRR and were 
matched to an individual wish similar observed covariates who received treatment in a low-CAS HRR
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