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Abstract

A major initiative of the Quantitative Imaging Biomarker Alliance (QIBA) is to develop standards-

based documents called “Profiles”, which describe one or more technical performance claims for a 

given imaging modality. The term “actor” denotes any entity (device, software, person) whose 

performance must meet certain specifications in order for the claim to be met. The objective of this 

paper is to present the statistical issues in testing actors’ conformance with the specifications. In 

particular, we present the general rationale and interpretation of the claims, the minimum 

requirements for testing whether an actor achieves the performance requirements, the study 

designs used for testing conformity, and the statistical analysis plan. We use three examples to 

illustrate the process: apparent diffusion coefficient (ADC) in solid tumors measured by MRI, 

change in Perc 15 as a biomarker for the progression of emphysema, and percent change in solid 

tumor volume by CT as a biomarker for lung cancer progression.
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Introduction

The Quantitative Imaging Biomarker Alliance (QIBA) initiative is to advance quantitative 

imaging and the use of quantitative imaging biomarkers (QIBs) in both clinical trials and 

clinical practice [1]. One effort in this initiative is to develop standards-based quantitative 

imaging documents called “Profiles”. These Profiles describe the (1) clinical context for the 

biomarker, (2) one or more technical performance claims for a given imaging modality (e.g. 

precision of the measurement for CT, MRI, PET or ultrasound), (3) a list of actors including 

hardware and software that play defined roles in meeting the claims, (4) technical and 

performance requirements for each of those actors organized by activities they perform for 

achieving the claims, (5) summaries of the groundwork scientific studies that support the 

technical performance claims, and (6) procedures for testing conformity to the technical and 

performance requirements or an overarching claim. The term “actor” is used in QIBA 

Profiles to denote any entity (device, software, person or site) whose performance must meet 

certain specifications in order for the claim to be met.

Through a large volunteer effort, two workshops sponsored by QIBA were conducted to 

develop standard statistical methods for defining technical performance metrics for QIBs [2–

6]. These statistical methods provide the framework for comparing technical performances 

of imaging procedures in the groundwork studies and for characterizing the performance in 

the Profile claims.

The objective of this paper is to present the statistical issues in testing conformance to the 

performance requirements in the QIBA Profiles. In particular, we present the general 

rationale and interpretation of the claims, the minimum requirements for testing whether an 

actor achieves the performance requirements, the study designs used for testing conformity, 

and the statistical analysis plan for the test. We use three examples to illustrate the process:

1. Apparent diffusion coefficient (ADC) in solid tumors measured by MRI to gain 

insight into the microstructural composition of a tumor,

2. Change in Perc 15 (the 15th percentile of the attenuation curve as measured by CT) 

as a biomarker for the progression of emphysema, and

3. Percent change in solid tumor volume by CT as a biomarker for lung cancer 

progression.

The paper is organized as follows. First, we discuss the claims, their interpretation, and the 

rationale used to determine the performance values used in the claims. We then present the 

minimum requirements needed to evaluate an actor’s performance conformance based on the 

different types of claims. The steps in testing actors’ precision, bias, and linearity are 

described using the three examples for illustration. A Discussion follows.

QIBA’s Performance Claims

Understanding the Claim Statements

Claims involve one or more summary statements of the technical performance of the QIB. 

Currently, there are two kinds of claims: cross-sectional and longitudinal. A cross-sectional 
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claim describes the imaging procedure’s ability to measure the QIB at one time point, while 

a longitudinal claim describes the ability to measure the change in the QIB over multiple 

time points. The claim language is patient-centric, describing the quantitative interpretation 

of the measurements for the individual patient.

The MRI diffusion-weighted imaging (DWI) Profile [7] provides an example of a cross-

sectional claim (note that the Profile also includes a longitudinal claim, but for illustration in 

this paper we will focus on the cross-sectional one). The draft claim states, “For an ADC 
measurement of X mm2/s in solid tumors greater than 1 cm in diameter or twice the slice 
thickness (whichever is greater), a 95% confidence interval for the true ADC value is X ± 5 
×10−10 mm2/s.” To understand the claim, suppose that one follows the imaging 

specifications in the Profile and measures the ADC of a tumor to be 8 × 10−10 mm2/s. 

Taking into account the known measurement error, we can state the 95% confidence interval 

for the true ADC to be [3 × 10−10 mm2/s, 13 × 10−10 mm2/s]. The statistical interpretation of 

the CI is that if we were to measure the ADC multiple times and construct a CI each time, 

then the subject’s true ADC would be included in 95% of these CIs. A simpler interpretation 

is that the interval [3 × 10−10 mm2/s, 13 × 10−10 mm2/s] provides a plausible range for the 

true ADC value with 95% confidence.

The CT lung density Profile [7] has a longitudinal claim: “a decrease in Perc 15 of at least 
18 HU without volume adjustment is required for detection of an increase in the extent of 
emphysema, with 95% confidence” and “for a measured change of Δ HU in Perc15 without 
volume adjustment, a 95% confidence interval for the true change is [Δ −18 HU, Δ +18 
HU].” (HU refers to Hounsfield units, and Perc 15 refers to the 15th percentile of the 

attenuation curve.) The first part describes the requirement for confirmation that a true 

change from baseline has occurred (with 5% error rate that no real change from baseline 

occurred), while the second part characterizes the magnitude of the change with a 95% 

confidence interval. Note that these steps are similar to statistical hypothesis testing, where 

we first test the null hypothesis (i.e. “no change”). If there is evidence that change has 

occurred, then we construct the confidence interval for the magnitude of the change. Also 

note that since we cannot measure the correlation in the measurements of Perc 15 at the two 

time points, for a conservative estimate we assume that the correlation is zero. When there is 

positive correlation between the two measurements, the confidence interval given by the 

claim is a little too wide (i.e. conservative) (Negative correlation is unlikely.).

In CT Volumetry, from many groundwork projects, there is strong evidence that the 

precision in tumor volume measurements depends on the magnitude of the volumes, with 

greater precision for larger tumors. To quantify precision in the CT volumetry Profile [7], 

therefore, precision is expressed as a percentage of the magnitude of the measurements in 

the form of the within-tumor coefficient of variation (wCV) [3]. The draft longitudinal claim 

is “A measured change in tumor volume of % indicates that a true change in the tumor’s 
volume has occurred if Δ >40%, with 95% confidence” and “if Y1 and Y2 are the volume 
measurements at the two time points, then the 95% confidence interval for the true change is
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,” where the wCV is 0.15. Note that for this confidence interval we assume that the wCV is 

constant over the relevant range of tumor volumes. If this assumption is too strong, then a 

look-up table of wCVs can be included in the Profile so that users can insert the wCV 

appropriate for the measured magnitude of the tumor. Also note again that the correlation 

between Y1 and Y2 is set to zero for a conservative confidence interval.

Consider the following example. Suppose that one follows the imaging specifications of the 

CT Volumetry Profile and measures the tumor volume at the first time point to be 200 mm3 

and 380 mm3 at follow-up. The measured percent change is ((380−200)/200) × 100, or 90%. 

Since 90% > 40%, we can be 95% confident that a real change has occurred from baseline 

(analogous to a test of the hypothesis of “no change”). The plausible range for the true 

change is 180 ± 126 mm3.

Determining Appropriate Values to Use in the Claim Statements

When writing a QIBA Profile it is challenging to determine which values to use in the claim. 

There are many issues to consider. The main issue, however, is the trade-off between the 

strictness of the claim (i.e. how narrow the CI is around the measurement) and achieving 

conformance with the claim. If the claim is too lax, then it provides little value to the 

clinician trying to incorporate the information into clinical judgment. If the claim is too 

strict, then it is difficult for an actor to provide sufficient evidence that it conforms to the 

claim, thereby limiting availability of the biomarker in practice.

Table 1 lists the general steps that are used in QIBA for choosing the most appropriate 

values for the claims once a suitable QIB has been identified. We discuss each step briefly.

Step 1: Choose Metric—The first step in choosing a value for a claim statement is 

determining which statistical metric will be used. The choice of statistical metrics depends 

on: (1) whether the imaging biomarker measurements tend to be biased or unbiased and (2) 

whether the claim is cross-sectional or longitudinal. In Table 2 we present the statistical 

metrics used in the claim statements for our three example claims and the rationale. Note 

that the units for the metrics are chosen to be as clinically relevant as possible. If change 

over time in absolute units is used clinically, then performance is described in absolute units 

(e.g. HU or mm3). If change is typically measured as the percent change from baseline, then 

we express performance as a percentage.

Step 2: Determine Characteristics which Degrade Precision—When technical 

performance is affected by patient or tumor characteristics, and if these characteristics are 

prevalent in the general population, then the performance value used in the claim statement 

is often limited to apply only to the appropriate subpopulations of tumors or patients. For 

example, spiculated tumors may be more difficult to measure (i.e. result in less precision) 

than spherical tumors. Center of mass may be measured with less precision in patients with 

excessive head movement. The claim values need to account for imprecision in measuring 

the QIB for these characteristics based on their relative prevalence in the population. In these 

cases, there are several options: (i) the claim could be modified to specifically articulate any 

limitations or exclusions as may be needed based on specifics of the biomarker, (ii) the 

Profile could include separate claims based on the presence or absence of these 
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characteristics, or (iii) the confidence limits for precision expanded to account for the 

additional error. For example, in the CT volumetry Profile there is discussion that there be 

one claim statement for spherical tumors and a second claim statement for spiculated 

tumors.

Step 3: Identify Plausible Set of Values—Data from published papers and 

groundwork projects are used to identify a set of plausible field performance values. This set 

might be the 95% confidence interval (CI) of the performance from a meta-analysis of 

published studies using a variety of imaging vendors under relevant conditions [6]. 

Alternatively, this set might be based on results from groundwork projects in QIBA [8] or 

conducted by another outside group. For the Perc 15 Profile, a meta-analysis was performed 

based on a synthesis of existing test-retest literature. From the meta-analysis a summary 

measure of the repeatability coefficient (RC) (i.e. a weighted average of the published 

studies on RC) was calculated and a 95% CI constructed for the summary measure. For the 

CT volumetry Profile, multiple groundwork challenge projects were performed where 

various actors were invited to participate in studies involving a common set of images. The 

reproducibility coefficient (RDC) and bias were estimated from these studies under various 

scenarios (e.g. different lesion shapes, different subsets of actors) and the results were used 

to identify sets of plausible performance values.

Once this set of field values is estimated, the next two steps are used to determine which 

value in the set should be used in the claim statement.

Step 4: Consider Clinical Requirements—When available, the clinical needs for the 

QIB performance are considered. For example, we ask: How small does tumor perfusion 

change need to be before medication is changed? How precise does the volume of a lung 

nodule need to be estimated so suspicious nodules are appropriately biopsied and stable 

nodules are followed? When possible, these clinical needs are considered in determining the 

performance value for the claim. For example in the Perc 15 example, the weighted average 

of the RC from published studies was 11 HU. However, it was noted that 11 HU represents a 

very small percent change in lung density. Clinical experts in the field advised that a value 

somewhat larger than 11 HU would be acceptable in the Profile claim statement.

Step 5: Consider Sample Size for Conformance Test—Whereas many of the 

requirements documented in the Profile are declaratory in nature, a subset of the 

requirements need to be demonstrated by a given actor which seeks to indicate that they 

conform. In testing whether an actor conforms to the claim, the following null (Ho) and 

alternative (HA) hypotheses must be tested:

[1]

If an actor’s imaging device has precision very close to the required performance value, then 

very large studies are needed to verify that the actor’s imaging device conforms with the 

requirement (i.e. to reject Ho). If an actor’s imaging device has performance much better 
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than the required performance value, then smaller studies could be adequate. For example, if 

groundwork studies have shown that the RC for most actors is about 7% and if the 

performance requirement in the Profile is set at 10%, then a study with 30 subjects is needed 

to test the hypotheses in equation 1 (see section on Sample Size Requirements for Testing 

Conformity and Table 5). Alternatively, if the performance requirement in the Profile was set 

at 8%, then a study with nearly 200 subjects would be needed to show conformance of such 

actors. The performance values chosen must take into consideration the practicality of 

studies needed to test actors for conformity.

Step 6: Choose Performance Value—From the plausible set in step 3, and taking into 

consideration the clinical needs and sample size requirements for testing conformance in 

steps 4–5, experts from the fields of imaging physics and medicine choose a reasonable 

performance value for the Profile. For example, for the Perc 15 Profile a HU of 18 was 

chosen based on the fact that the clinical requirements do not demand detection of very 

small changes in lung density; furthermore, if most actors can show a RC near 11, then the 

sample size requirements for testing conformance are quite reasonable (i.e. a test-retest 

study of <17 cases is needed, based on Table 5).

Minimum Conformance Requirements

Within each Profile are steps which actors must take to test their conformance with the 

performance requirements. There are different types of actors (i.e. scanners, software, 

readers) with different requirements for each. Scanners are usually evaluated on phantoms 

(i.e., physical test objects) and must conform to scanner-specific requirements. Software 

algorithms used to measure the biomarker are tested on representative clinical data 

according to requirements often similar to the claim statements themselves. If human 

technologists and/or readers are required to perform the scan or run the algorithm, then 

multiple readers must be included in the conformance testing of the algorithm to ensure that 

compliance is not reader-dependent. Readers can also be certified as ‘conformant readers’. 

They can be tested on multiple scanners and/or algorithms; their compliance is specific to 

the scanners or algorithms they were tested on. The process is illustrated in Figure 1. Note 

that actors are assessed singly, thus there are no actor-to-actor comparisons just comparisons 

to the specific stated criteria in the Profile.

In some Profiles, one or more datasets are explicitly defined to be used for the conformance 

testing, but other Profiles articulate statistical criteria as means to document a sufficiently 

representative test set. Ideally, the test datasets are complex, providing images from multiple 

(compliant) scanner types and representing the clinically relevant spectrum of disease. When 

such a rich test dataset is not available, however, the conformance test requirements are more 

stringent. The rationale is that any lack of trueness or imprecision in an algorithm’s 

measurements is not only attributable to the algorithm, but also to the scanner and any 

human reader interaction. This is because the biomarker measurements’ errors are due in 

part to three main sources of imaging variability: the scanner, reader, and algorithm, along 

with patient factors, including patient prep. If a test dataset includes images from only one 

scanner, which had lower intra-scanner variability than other scanners, then we cannot let 

the algorithm or reader spend the remaining allowable error since the scanner in the test set 
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under-represents error due to scanners. Groundwork studies are performed in QIBA to 

estimate the percentage of the total variability attributable to different sources of variability 

so that the spendable error for each source of variability, and potentially interactions 

between sources, can be allocated in the conformance testing.

The requirements of testing vary from a few simple checks to more involved steps, 

depending on several factors:

1. Cross-sectional or longitudinal claim,

2. Tendency (if any) for imaging procedure to over- or under-estimate the measurand 

(i.e. the true value of the biomarker), and

3. For longitudinal claims, whether the imaging systems and scan parameters are the 

same or different at the two time points.

Depending on these factors, there are five test scenarios illustrated in Figure 2. With each 

scenario a different set of requirements is needed for testing conformance with the claim 

statement.

The cross-sectional claim for the DWI Profile falls under scenario 5. The requirements 

needed to support the claim statement are based on the precision of the measurements since 

any known bias is removed. Conformance to these requirements has three parts: (1) Test that 

the within-subject (or within-tumor) standard deviation, wSD, of the measurements is non-

inferior to (i.e. not larger than) the required performance, (2) Estimate the imaging system’s 

precision profile to ensure that the precision is acceptable over the range of relevant subject 

or disease characteristics, and (3) Evaluate the bias to ensure that it is negligible. (Note that a 

precision profile is a table or plot of precision estimates stratified by one or more variables, 

e.g. precision estimates grouped by ranges of the magnitude of the measurand [3–5]).

The longitudinal lung density claim falls under scenario 1. The same imaging procedures 

(i.e., same scanner and scan parameters) will be used at the two time points. The 

repeatability coefficient (RC) is the statistical metric used in this scenario [3]. Testing 

conformance involves a statistical test that shows that the RC for these measurements, when 

estimated under the setting prescribed in the Profile, is non-inferior to the RC stated in the 

claim statement. In addition, there is a check that the RC is reasonably constant over subject/

disease characteristics (precision profile), and a test that any systematic bias in the 

estimation of the measurand by the imaging system remains constant so that at two time 

points such bias either cancels out or can be corrected for (i.e. test of linearity and estimation 

of the slope – discussed in the next section).

The longitudinal CT Volumetry claim falls under scenario 3. Different imaging procedures 

will be allowed at the two time points, and differential bias in the measurement by the 

imaging procedures is expected. A statistical metric called the total deviation index with 

95% coverage (TDI95%) is used to evaluate the technical performance of the biomarker. It is 

an aggregate measure of performance, aggregating both bias and variability into one metric 

[4]. Testing conformance of scanner hardware is done using a phantom according to tests of 

such factors as noise content and resolution, which is not considered here. Testing 
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conformance of software algorithms involves three parts. First, a statistical test is needed to 

show that the software system’s precision is non-inferior to the stated precision in the 

Analysis sub-section of section 3 in the Profile. If the precision is within the stated 

requirement, then the second step is to determine the bias of the measurements. Actors with 

good precision are allowed more bias such that the TDI is still within the requirement (see 

details in the next section). Last, there is an evaluation of the assumption of linearity to 

ensure that the bias is proportional over the range of expected tumor volumes.

Testing Conformity

In this section we discuss the statistical steps used in testing conformity of readers and 

algorithms to the performance requirements in the Profile. In some of the QIBA Profiles, one 

or more test data sets are identified which actors will use to measure their performance. In 

other Profiles, actors must conduct a full study in which scanning of new patients and/or 

phantoms is required to test their performance as part of the conformance test.

Steps in Testing Conformity

The objectives of the conformity test are to determine if an actor’s performance is at least as 

good as the required performance, and to evaluate relevant assumptions about the 

measurements (e.g. homogeneity, linearity). In Section 4 of the Profile, specific steps are 

provided to actors for testing conformity. An example of these steps, using CT Volumetry 

for illustration, is given in Tables 3 and 4. Since precision can best be estimated in a clinical 

test-retest study, while bias can only be assessed by a phantom study (because truth must be 

known), both types of studies are needed to test for conformity for this biomarker. Thus, 

Table 3 describes the steps for evaluating precision from a test-retest study, while Table 4 

describes the steps for evaluating bias and linearity.

Precision

Steps 1 and 2 in Table 3 describe the measurements and calculations that must be performed 

to estimate the biomarker’s precision. In steps 3 and 4 an overall estimate of measurement 

precision is derived, assuming wSD or wCV is constant across the cases. Following these 

steps, the actor’s performance can be tested (step 5) for the following set of hypotheses:

where θ is the actor’s precision (e.g. the actor’s RC, where larger values indicate worse 

precision) and δ is the precision value from the claim statement. This is a one-side test, i.e. 

under the null hypothesis the actor’s precision is considered inferior to the Profile claim. If 

the null hypothesis is rejected, then we conclude that the actor’s precision is at least as good 

as the performance in the claim statement (alternative hypothesis).

Note that the statistical test described in step 5 relies on asymptotic theory. This test may not 

always be appropriate for testing conformity because the sample size for clinical test-retest 

studies are typically small. In a simulation study we found that asymptotic methods worked 

well for sample sizes of 30 or larger. We also investigated the situation where there are 
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multiple regions of interest (ROIs) (e.g. tumors) per patient and found that the coverage of 

the asymptotic confidence intervals was reasonable unless the between-ROI correlation was 

quite high (>0.4). An alternative to the asymptotic test is to construct a bootstrap confidence 

interval for the precision estimate. In our simulation study we found that the bootstrap 

method does not provide adequate coverage for the RC unless the sample size is much larger 

(~120), though this method’s coverage was not affected by correlation between multiple 

lesions because the resampling is conducted at the patient level.

Step 6 evaluates the assumption of homogeneity in precision descriptively, i.e. that the wSD 

or RC is fairly constant over the range of disease and subject characteristics. For the CT 

Volumetry example, tumor size is known to affect precision. Thus, the tumors may be 

divided into multiple strata based on size, and the RC is estimated separately for each 

stratum, constituting a precision profile [4–5].

Bias

While a test of an actor’s precision is key to the statistical requirement for assessing 

conformance with the Profile, an evaluation of bias is also necessary for the claims in both 

the ADC and the CT Volumetry Profiles. In the ADC cross-sectional claim, the 95% CIs for 

the bias must be within pre-specified bounds because the ADC claim statement is based on 

the assumption of negligible bias. Specifically, when measuring an ice-water phantom at 

isocenter, the ADC measurement should exhibit no more than a 5% bias from the true value 

of 1.1 × 10−9 mm2/s. For the Lung Densitometry Profile, there is no assessment of bias, only 

linearity (see section on linearity below).

For the CT Volumetry Profile, a dataset different from the one used for testing precision is 

planned to evaluate actors’ bias. The dataset is from a large phantom study involving tumors 

covering a large spectrum of sizes and shapes. Steps 7 and 8 in Table 4 describe collection of 

the measurements and estimation of the individual bias. In step 9 the overall bias is 

estimated and its 95% CI is constructed in step 10 (assuming that the individual bias is 

similar across cases). Note, however, that when the data is a mixture of different cohorts, it 

may not make sense to report a single estimate of bias as a conglomeration of the cohort 

data. Bias across a mixed dataset can be inconsistent with the bias of any individual cohort, 

for example, when grouping the data produces a distribution with multiple peaks (around 

individual cohorts) or when large negative and positive biases cancel out to result in an 

overall zero bias. When this occurs, the bias can fall outside any achievable bias for 

individual cohorts and likely doesn’t represent achievable performance. In this situation, 

only a bias profile (step 11) should be reported. A bias profile provides estimates of the bias 

for subgroups, based on relevant disease and subject characteristics. For example, bias for 

tumors of different sizes, shapes, and densities would be reported as part of the bias profile 

for CT volumetry [9]. The bias profile ensures that the bias for relevant disease and subject 

characteristics is within acceptable parameters.

Linearity

Linearity is a critical assumption in constructing the CI around the amount of change for the 

longitudinal claims. It is the “ability to provide measured quantity values that are directly 
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proportional to the value of the measurand in the experimental unit” [2]. In other words, the 

measurements are proportional to the true value by a constant amount (i.e. constant slope) 

and this constant does not change over the range of true values. To assess linearity, the 

measurements (Y values) are regressed on the true values (X values). If the relationship 

between Y and X is well explained by a line, then the assumption of linearity is met (see 

step 12).

The linearity assumption allows us to estimate the true change as: (Y(t=1) − Y(t=2))/β1, where 

Yt=1 and Yt=2 are the measurements at the two time points, and β1 is the slope of the 

regression line of Y on X [3]. For the volumetry Profile, it is specified that β1 must be 

sufficiently close to unity so that the measured change of (Yt=1 − Yt=2) is an estimate of the 

true change, (Xt=1 − Xt=2). If β1 is not sufficiently close to one, then an estimate of β1 would 

be needed in order to estimate the true change.

For the Lung Densitometry claim, a metric Perc15, obtained from an area under the whole 

lung histogram, is one of the main indicators for emphysema quantification. It is assumed 

that the measured CT Hounsfield Unit (HU) of a given lung region approximates the lung 

density in that region in g/L. For example, a Perc15 value of −950 HU corresponds to a 

density of 50 g/L, which signifies that 15% of the lung volume is occupied by regions with a 

density of approximately 50 g/L or less [10]. The assumption of linearity is assessed via a 

phantom study by regressing the measured HU value on the known value of density. The 

phantom study includes calibration using low density foams of known density values 

representing the range of clinically relevant values considered in the Profile.

The assumption of linearity with the additional requirement that the slope be close to one is 

also required for the CT Volumetry example. In order to determine how close to one the 

slope should be, it is helpful to think about how biased the measurements of change become 

as the slope departs from one. Figure 3 illustrates the effects of a 5% departure from β1 = 1 

on the estimates of change. The figure shows the estimated change measurement when the 

slope is 0.95 (blue) and 1.05 (red) in comparison to the desired slope of 1.0 (green). As the 

magnitude of the change increases, the estimated change becomes increasingly more biased. 

For example, suppose that a tumor is measured at 20 cm3 at time point 1 and doubles to 40 

cm3 at time point 2. The measured change is 20 cm3. When the slope of the regression line 

of the measured volume on the true volume is unity, 20 cm3 is an unbiased estimate of the 

true change. However, when the slope is different from unity, say 0.8, this measured change 

underestimates the true change by 20%. In general, a 5% departure from linearity (i.e. the 

95% confidence bounds on the slope are contained in the interval [0.95, 1.05]) may be 

acceptable.

Trade-off between Precision and Bias

In the Perc 15 example, the Profile specifies that the same imaging procedures will be used 

at the two time points. Thus, even if the imaging procedure generates biased estimates of 

Perc 15, as long as linearity holds over the range of interest and the slope is one, the bias in 

the measurements cancels out when measuring change. In contrast, in the CT Volumetry 

example different imaging procedures (scanner, software algorithm, and/or reader) may be 

used at the two time points with each having a potentially different bias. One option in this 
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situation is to require that all actors’ measurements be made without bias. An alternative 

approach is to allow actors’ measurements to have some bias. However, the bias and 

imprecision in the measurements must be balanced so that the total error is within the 

requirement. To balance bias and imprecision, QIBA is using a performance metric called 

the total deviation index with 95% coverage (TDI95%). Assume that the difference between 

the measured value and ground truth follows a normal distribution. Then the TDI95% is 

defined as:

where Φ−1 is the inverse cumulative normal distribution (i.e. 1.96 for 95% coverage) and ε̂ is 

the estimate of the root mean square deviation (RMSD):

where bias is an estimate of the bias of the measurements (from step 9 in Table 4) and  is 

an estimate of the within-subject (e.g. within-tumor) variance (from step 3 in Table 3).

For the CT Volumetry Profile, actors first test that their RC meets the requirements (i.e. 

Table 3). If these requirements are met, then the actors estimate their measurement bias from 

Table 4. The actors are allowed some bias, but the magnitude of the bias depends on their 

RC. The lower the RC, the more bias allowed such that the estimated TDI can still meet the 

Profile claim. Figure 4 illustrates the trade-off between bias and precision such that the 

TDI95% is maintained at a constant 40%. Note that when the actor’s estimated RC 

approaches 40%, little bias is allowed. In contrast, when the RC is very small, much greater 

bias is allowed. In this illustration, we expect the RC of most actors to be near 15%, thus 

allowing for a bias of ≤13.4%.

Sample Size Requirements for Testing Conformity

The following set of hypotheses is evaluated for testing conformity to the precision 

requirement:

where θ is the actor’s precision and δ is the precision value from the claim statement. In 

order to compute sample size for a study to test this set of hypotheses, the following must be 

specified:

1. Power: This is the probability that we will reject the null hypothesis when it is 

incorrect. We typically consider power levels of 80–90%.

2. Type I error rate: This is the probability of rejecting the null hypothesis when it is 

correct. We set this at 5%.
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3. Hypothesized ratio of RCs: If RC is expected to be much smaller than the 

precision value in the Profile, then a small study suffices. If RC is expected to be 

very similar in magnitude to the precision value in the Profile, then a much larger 

study is required.

Table 5 provides sample size requirements for a study with 80% power [13–14]. One must 

specify the ratio: θ/δ. The table then provides the number of cases needed. Suppose that 

precision is expressed in the Profile as a RC with a stated claim that RC=10%. Suppose that 

an actor hypothesizes that his RC is 7%; thus, (θ/δ)2=0.49. Then a sample size of about 29 

cases is required to have 80% power (5% type I error) to show that the actor’s RC is ≤ the 

RC in the Profile claim.

For assessing bias, a phantom study is usually performed where measurements are taken at 

multiple values over the relevant range of the true value, X. Ideally, 10 nearly equally-spaced 

values should be chosen [3]. A 95% CI should be constructed for the bias, as described in 

Table 4. Sample size requirements are given in Table 6 for constructing the CI for bias, as a 

function of the specified half-width of the CI and the between-case variability. For example, 

to estimate the bias to within ±1% when the variance between cases is 10%, 42 cases are 

needed. For estimating the slope of the regression line of Y on X, the sample size 

requirements depend on the variability in the Y’s around a fixed X and on the desired 

precision for the slope estimate. For many applications, we have found that 3–4 

measurements at each fixed value of X is sufficient to estimate the slope to within ±2% (i.e. 

total sample size of 30–40). Since linearity is usually assessed from phantom data, these 

requirements are usually quite workable.

Discussion

In this paper we have presented the current status and rationale behind QIBA’s claim 

statements and corresponding tests of actor conformity with the requirements to support 

them. Over the last year, the claim statements have evolved from multiple statements about 

the performance of the imaging procedures (e.g. The %bias is <5%, the %RC is <15%, and 
the inter-reader RDC is <25%) to a single statement (e.g. For a measured tumor volume of 
Y, a 95% confidence interval for the true tumor volume is [Y −30%, Y +30%].) The latter 

does not require familiarity with definitions for bias, repeatability coefficient (RC), and 

reproducibility coefficient (RDC). Furthermore, it is not left up to the user to determine how 

to aggregate bias and precision into a single value of performance. The intent of the current 

verbiage is to provide a more intuitive claim about performance.

The claim statements are written to be patient-centric, focusing on a quantitative 

interpretation of the measurements for the individual subject. In order to keep this focus, 

most of the Profiles have used longitudinal claims, where precision and linearity are the key 

components, rather than bias. For a cross-sectional claim, knowledge of and the ability to 

test for bias are essential. In order to estimate bias, truth must be known. While simulated 

data have been used extensively for studying the bias of many QIBs, it is often difficult to 

simulate the complexities seen in real subjects. Thus, the bias calculated from simulated data 

often underestimates the bias of measurements on real subjects. For this reason, many of the 
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QIBA Profiles have not made cross-sectional claims. QIBA is investigating several strategies 

that would enable it to make cross-sectional claims in future Profiles. However, these claims 

are likely to differ in content from the patient-centric longitudinal claims, focusing more on 

discrimination performance of the QIB rather than on its calibration performance.

For longitudinal claims where the imaging procedure actors are allowed to vary at the two 

time points, evaluations of precision and linearity alone are not sufficient for showing 

compliance. The same imaging procedure with different actors can have different 

magnitudes of bias; thus, the change measurement may be biased. The TDI95% is used to 

account for both bias and imprecision. When bias and precision can be estimated from the 

same study, TDI can be estimated directly and a 95% CI for it can be constructed. This is 

often not possible. When estimating the TDI for the CT Volumetry claim, for example, bias 

and precision are estimated in different studies. Both bias and precision are estimated with 

uncertainty, and how this uncertainty should be incorporated into the estimate of the TDI is 

unclear. One approach is to use the upper 95% confidence bound for bias and for precision 

in calculating the TDI; however, this would seem to be a very conservative approach. 

Alternatives are being considered in future work.

QIBA Profiles provide data on the technical performance of the QIB that can be used to 

understand the measurements on an individual patient. They do not, however, provide all of 

the information that would be needed to plan a clinical trial with the QIB. In a clinical trial 

the focus is usually on the mean measurement or mean change in the QIB for a specified 

population of patients. Often, the population is identified by having a certain condition (e.g. 

lung cancer) and perhaps undergoing a certain treatment. In order to calculate sample size 

for a clinical trial, one would need an estimate of the precision of each measurement (which 

is provided in the Profile), and also estimates of the expected effect size and the variability in 

the QIB measurements between patients in the study population. The latter two estimates are 

specific to the clinical trial and thus will vary depending on the trial details.

Much of the groundwork for the QIBA Profiles is based on simulated data and literature 

review. The claim statements, although based on the best available data, are often driven by 

expert opinion. QIBA is currently designing and conducting several field studies. These 

studies will be used to evaluate the feasibility of the Profiles and test the adequacy of its 

claim statements. These are critical studies to the completion of the Profiles.
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Figure 1. 
Illustration of the concepts discussed in this paper, with the Profile content identified on the 

left and the testing identified on the right. Proceeding diagonally down from top left hand 

side, QIBA Profiles identify Claims in Section 2 of the document template and 

Requirements for each type of Actor in Section 3 of the document. Section 3 may also 

articulate requirements for an ongoing QA activity to be conducted at sites if it is judged by 

Profile authors that stability of the system is not assured. Proceeding from left to right are 

successive scopes of testing. Whereas at the highest level, the Profile Claims are tested by all 

Actors working together in a Field Test, Conformance Tests are performed for individual 

Actors according to the Requirements set for them, and if requirements for QA have been 

documented, these are further tested. At the bottom of the diagram are individual patient 

studies themselves.
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Figure 2. 
Flow chart of five testing scenarios and minimum testing requirements for each.
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Figure 3. 
Illustration of the Effect of Slope ≠ 1 on Measurements of Change
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Figure 4. 
Illustration of the trade-off between Precision (expressed as the RC) and Bias for Constant 

TDI95% of 40%
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Table 1

Guidelines for Choosing Values for Claim Statements

Step Description

1 Choose statistical metric for performance

2 Determine patient and/or tumor characteristics that can degrade performance for the quantitative imaging biomarker

3 Identify plausible set of values for performance

4 Consider clinical requirements for performance

5 Consider the sample size requirements for actors to test their imaging procedure against the claim value

6 Choose the performance value from the plausible set of values in step 3, taking into consideration steps 4–5.
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Table 2

Statistical Metrics Used in the Claim Statements

Example Rationale Statistical Metric Interpretation

ADC in solid 
tumors

Cross-sectional 
claim with 
negligible bias

Within-subject (or within-tumor) 
Standard Deviation (wSD) × (95% 
confidence factor)

The variability seen in multiple measurements on a subject 
when no biologic change has occurred and the same 
imaging procedures are used for all measurements.

Change in Perc 
15 for 
monitoring 
emphysema

Longitudinal 
claim; Same 
imaging 
procedures at 2 
time points

Repeatability Coefficient (RC) The difference between any two measurements on a case 
is expected to fall between −RC and +RC for 95% of 
replicated measurements. It represents the minimum 
detectable difference, with 95% confidence.

% change in 
CT tumor 
volume

Longitudinal 
claim; Different 
imaging 
procedures at 2 
time points

Reproducibility Coefficient (RDC) is 
used in the claim statement. The Total 
Deviation Index with 95% coverage for 
change (TDI95%) is used for testing 
conformance.

The RDC is a measure of precision that is used when 
imaging procedures differ at the two time points. It has a 
similar interpretation as the RC: it is the minimum 
detectable difference, with 95% confidence. Since it can 
be measured directly from clinical studies, it is used in the 
claim statement. When testing conformance, the bias of 
the imaging procedures at the two time points will likely 
differ and this must be accounted for. Thus, the TDI is 
used for conformance testing. It includes components of 
both precision and bias. 95% of the differences between 
the measurements and their true value are <TDI95%. The 
TDI cannot be measured directly; rather, an actor’s bias 
and precision are estimated in separate studies. See section 
on Trade-off between Precision and Bias
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Table 3

Testing Precision using CT Volumetry for Illustration*

STEP DESCRIPTION

1. Make measurements 
on N cases

For each case, measure the tumor volume at time point 1 (denoted Yi1) and at time point 2 (Yi2) where i denotes the 
i-th case (i=1, 2, …N).

2. For each case, 
calculate mean and 
wSD2 For each case, calculate the mean and within-tumor SD: Ȳi = (Yi1 + Yi2)/2 and . 

(Note that some authors suggest a correction to this wSD estimate [11] or a model-based estimate [12] to account 
for the small number of replicate measurements.)

3. Estimate wSD or 
wCV

From the N cases, estimate within-tumor SD (wSD) or CV (wCV):  and 

. (Note that averaging over the N cases is appropriate when we can 
assume that the wSD is constant over the range of tumor volume values.)

4. Estimate RC or 

%RC* Estimate the Repeatability Coefficient (RC) or %RC:  and 

. For the CT volumetry example, %RC is used.

5. Calculate test statistic 
and assess compliance The null hypothesis is that the RC does not satisfy the requirement in the Profile (i.e. the RC is too large); the 

alternative hypothesis is that the RC does satisfy the requirement. The test statistic T is: , 
where δ is the performance value from the Profile claim statement (i.e. δ = 40%). Compliance with the claim is 

shown if , where  is the α-th percentile of a chi square distribution** with N dfs (for a one-sided 
test with α type I error rate).

6. Construct precision 
profile

Estimate %RC as a function of tumor size and check that all %RC ≤ δ.

*
The process above is applicable for testing a reader’s conformance using a specific algorithm or for testing a fully-automated algorithm (no reader 

interaction). For testing an algorithm that requires manipulation by human readers, usually, 3–5 independent readers not involved in developing the 
algorithm should be included in the conformance study. Steps 1–4 are repeated for each reader separately. Thus, in step 4 there will be an estimate 
of the RC for each reader. Instead of using the test in step 5, a different statistical approach is used, which assesses whether the average readers’ RC 
satisfies the performance requirements in the Profile. A generalized linear model can be built for the RC, treating readers as a random effect nested 
in cases [5]. From the model, a 95% CI for the mean RC is constructed and used to evaluate the actor’s performance relative to the requirement in 
the Profile.

**
A chi square distribution is a commonly used probability distribution that is used when constructing a CI for a population standard deviation of a 

normal distribution, e.g. wSD or RC, from a standard deviation estimated from a sample of size N.
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Table 4

Testing Bias and Linearity using CT Volumetry for Illustration*

STEP DESCRIPTION

7: Make 
measurements from 
N cases

For each case calculate the tumor volume (denoted Yi), where i denotes the i-th case (i=1, 2, …N).

8. Calculate 
individual bias

For each case calculate the bias or % bias: bi = (Yi − Xi) and %bi = [(Yi − Xi)/Xi] × 100, where Xi is the measurand 
value (i.e. true value). For CT volumetry, %b is used.

9. Estimate overall 
bias and its 

variance*
Over N cases, estimate the bias: . The estimate of the variance of the bias (i.e. between-case 

variance) is .

10. Construct 95% 
CI for b̂

The 95% CI for the bias is , where tα=0.025,(N−1)df is from the Student’s t-

distribution** with α=0.025 and (N−1) degrees of freedom. To test whether the actor’s bias satisfies the performance 
requirement in the Profile, the smallest and largest values in the 95% CI are examined. If the smallest value is greater 
than the minimum requirement stated in the Profile and the largest value is less than the maximum requirement stated 
in the Profile, then the performance requirement for the overall bias is met.

11. Bias Profile Separate the cases into strata based on covariates known to affect bias (tumor size and density). For each stratum 
estimate the bias.

12. Perform OLS 
regression

Fit an ordinary least squares (OLS) regression of the Yi’s on Xi’s. A quadratic term is first included in the model to rule 
out non-linear relationships: Y = βo + β1X + β2X2. Then a linear model should be fit: Y = βo + β1X where R-squared 
(R2) >0.90.

13. Construct 95% 
CI for slope Let  denote the estimated slope from step 12 (assuming β2 = 0). Calculate its variance as 

, where Ŷι is the fitted value of Yi from the 

regression line and X̄ is the mean of the true values. The 95% CI is 

*
As in Table 3, if multiple readers are studied, then the bias of the average reader must be compared to the performance requirement in the Profile. 

A generalized linear model can be built for the bias, treating readers as a random effect nested in cases [5]. From the model, a 95% CI for the 
readers’ mean bias is constructed and used to evaluate the actor’s performance relative to the requirements in the Profile.

**
Student’s t-distribution is a commonly used probability distribution that is used when a statistic, like the bias estimator, is normally distributed 

but the study sample size is small (sample size of N) and the population standard deviation is unknown and must be estimated from the data.
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Table 5

Sample Size for Test of Precision Using RC

(θ/δ)2 # cases needed

0.1 4

0.2 7

0.3 11

0.4 17

0.5 29

0.6 51

0.7 102

0.8 256
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