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BACKGROUND AND PURPOSE

Hydrogen sulfide (H,S) is a gasotransmitter produced from L-cysteine through the enzymatic action of cystathionine-y-lyase (CSE)
and/or cystathionine-B-synthase. D-Penicillamine is the D isomer of a dimethylated cysteine and has been used for the treatment of
rheumatoid arthritis. As D-penicillamine is structurally very similar to cysteine, we have investigated whether D-penicillamine, as a
cysteine analogue, has an effect on the H,S pathway.

EXPERIMENTAL APPROACH

We tested the effect of D-penicillamine (0.01-1 mM) in mouse aortic rings mounted in isolated organ baths and determined
whether it could affect H,S biosynthesis. In particular, we investigated any possible inhibitor or donor behaviour by using
recombinant enzyme-based assays and an in vivo approach.

KEY RESULTS

D-Penicillamine, per se, showed little or no vasodilator effect, and it cannot be metabolized as a substrate in place of L-cysteine.

However, D-penicillamine significantly reduced L-cysteine-induced vasodilatation in a concentration-dependent manner through
inhibition of H,S biosynthesis, and this effect occurred at concentrations 10 times lower than those needed to induce the release
of H,S. In particular, D-penicillamine selectively inhibited CSE in a pyridoxal-5'-phospate-dependent manner.

CONCLUSIONS AND IMPLICATIONS

Taken together, our results suggest that D-penicillamine acts as a selective CSE inhibitor, leading to new perspectives in the design
and use of specific pharmacological tools for H,S research. In addition, the inhibitory effect of D-penicillamine on CSE could
account for its beneficial action in rheumatoid arthritis patients, where H,S has been shown to have a detrimental effect.

Abbreviations

MPST, 3-mercaptopyruvate sulfurtransferase; CBS, cystathionine-B-synthase; CSE, cystathionine-y-lyase; DPD, N,N-dimethyl-
p-phenylenediamine sulfate; D-pen, D-penicillamine; L-pen, L-penicillamine; H,S, hydrogen sulfide; IVM, intravital microscopy;
PAG, D,L-propargylglycine; PE, phenylephrine; PLP, pyridoxal-5’-phosphate; RA, rtheumatoid arthritis; TCA, trichloroacetic acid;
ZnAc, zinc acetate
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Introduction

Hydrogen sulfide (H,S) is a gaseous molecule endogenously
synthesized by cystathionine-y-lyase (CSE), cystathionine-f-
synthase (CBS) and 3-mercaptopyruvate sulfurtransferase
(MPST). These enzymes are differently distributed through-
out the human body and within cell compartments. MPST
is mainly expressed in mitochondria (Stipanuk, 2004;
Shibuya et al., 2009), while CSE and CBS show a wide distribu-
tion in diverse cell types. CSE and CBS can both metabolize
the substrate L-cysteine to release H,S, and this reaction is
strictly dependent upon the enzyme cofactor pyridoxal-5'-
phosphate (PLP). The role of H,S has been widely investi-
gated in several organs and tissues, and many studies have
confirmed its crucial role in body physiology. For instance,
CSE represents the prominent enzyme within the cardiovas-
cular system, where H,S is a major player involved in regulat-
ing the function of heart and blood vessels (Predmore and
Lefer, 2011; Wang, 2011). Yang and co-workers (2008) have
reported that a lack of functional CSE in mice leads to hyper-
tension and reduces endothelial activation (Yang et al., 2008),
while an increase in H,S levels leads to the attenuation of
ischaemia-induced heart failure in mice (Calvert et al.,
2010). These observations highlight a key role for H,S in car-
diovascular homeostasis. Moreover, recent reports have also
revealed that H,S has a key role in the inflammatory process.
Indeed, different studies have demonstrated that H,S is part
of the pro-resolutive system, stopping inflaimmation and
promoting healing (Zanardo et al., 2006; Wallace, 2012). H,S
has also been shown to counteract inflammation by trigger-
ing resolutive pathways through the engagement of annexin
A1l (Brancaleone et al., 2014). Conversely, other reports have
shown that H,S has a pro-inflammatory role (Collin et al.,
2005; Li et al., 2005; Zhang et al., 2006). Rheumatoid arthritis
(RA) represents one of those particular conditions, where H,S
has been described as a pro-inflammatory mediator and
arthritic patients have higher levels of H,S compared with
healthy subjects (Whiteman et al., 2010; Kloesch et al.,
2011; Muniraj et al., 2014). Interestingly, in the late 1970s
RA patients were treated with D-penicillamine (D-pen), a deg-
radation product derived from penicillin and used as a
disease-modifying anti-rheumatic drug. b-Pen was found to
be effective at reducing the rheumatoid factor and ameliorat-
ing the symptoms of the disease (Jaffe, 1964; Dixon et al.,
1975). From a purely chemical point of view, penicillamine is
a fB,p-dimethyl-cysteine (Figure 1). The structural analogy
between cysteine and D-pen recalled a similar analogy
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Figure 1

Chemical structures of (A) L-cysteine and (B) D-penicillamine.

occurring between arginine and its methylated derivatives,
L-N“-monomethyl-arginine (L-NMMA) and 1-asymmetric
dimethylarginine (ADMA). L-Arginine acts as the substrate
for nitric oxide synthase (NOS) leading to NO production.
However, L-NMMA and ADMA are both inhibitors of NOS ac-
tivity, and are obtained by inserting one or two methyl groups
on the L-arginine backbone. Although with penicillamine
this occurs on the nitrogen atom rather than the a-carbon,
we hypothesized that the dimethylated cysteine, penicilla-
mine, could inhibit H,S synthesizing enzymes. In the current
literature, among the compounds used to efficiently block
H,S biosynthesis, propargylglycine (PAG) is the most selective
(Asimakopoulou et al., 2013). However, for PAG to be effective
it has to be applied at concentrations within the millimolar
range (up to 10 mM) (Whiteman et al., 2011). Such a high
concentration can also lead to non-selective effects and could
interfer with the activity of other enzymes (Ressler et al.,
1964; Rej, 1977; Burnett et al., 1980; Ochs and Harris,
1980). Therefore, there is a strong need for compounds that
can be used at lower concentrations in order to minimize
interactions with other enzymes unrelated to H,S. Here, we
demonstrated that D-pen is a selective CSE inhibitor, and is
more potent at inhibiting the synthesis of H,S than PAG.

Methods

Animals

CD-1 male mice (8-12 weeks of age, 20-25 g of weight) were
purchased from Charles River (Milano, Italy) and kept in
animal care facility under controlled temperature, humidity
and light/dark cycle and with food and water ad libitum. All
animal procedures were performed according to the Declara-
tion of Helsinki (European Union guidelines on use of
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animals in scientific experiments) and following ARRIVE
guidelines (Kilkenny et al., 2010; McGrath & Lilley, 2015).
All procedures were approved by the local animal care office
(Centro Servizi Veterinari Universita degli Studi di Napoli
‘Federico II') and carried out following recommendations
for experimental design and analysis in pharmacology as re-
ported by Curtis et al., 2015. A total of 45 animals were used
for the experiments described here.

Vascular tissue preparation

Thoracic aorta from CD-1s male mice were used. Mice were
anaesthetized with enflurane (5%) and then killed in CO,
chamber (70%); the aorta was rapidly harvested, and adher-
ent connective and fat tissue were removed. Rings of
1-1.5 mm length were cut and placed in organ baths
(3.0 mL) filled with oxygenated (95% O,-5% CO,) Krebs solu-
tion and kept at 37°C. The rings were connected to an isomet-
ric transducer (7006, Ugo Basile, Comerio, Italy) and changes
in tension were continuously recorded with a computerized
system (DataCapsule-17400, UgoBasile, Comerio, Italy). The
composition of the Krebs solution was as follows (mM): 118
NaCl, 4.7 KCl, 1.2 MgCl,, 1.2 KH2POy4, 2.5 CaCl,, 25 NaHCO3
and 10.1 glucose. The rings were initially stretched until a
resting tension of 1.5 g was reached and then were allowed
to equilibrate for at least 30 min; during this period the ten-
sion was adjusted, when necessary, to 1.5 g and the bath solu-
tion was periodically changed.

Isolated organ bath study

In each set of experiments, rings were firstly challenged with
phenylephrine (PE, 1 uM) until the responses were reproduc-
ible. In order to verify the integrity of the endothelium, cumula-
tive concentration-response curves to ACh (10 nM-30 pM) were
performed with PE pre-contracted rings. Rings not reaching a
relaxation response of at least 75% were discarded. Tissues were
then washed and contracted with PE (1 uM) and, once the
plateau was reached, cumulative concentration-response curves
to L-cysteine (L-cys, 100 nM-1 mM) were obtained. D-Pen
was first tested for its own vasoactive response (100 nM-1-
mM). L-Penicillamine (L-pen, 100 nM-1 mM) was also tested
as an L-isomer control for D-pen.

In a separate set of experiments the inhibitory effects of D-pen
on L-cys-induced relaxation were assessed; rings were pre-
incubated with D-pen (0.01-0.1 mM) for 15 min and then an L-
cys cumulative concentration-response curve was performed.

In a third set of experiments we applied the same protocols in
the presence of an excess of PLP. Aortic rings were pre-incubated
with PLP (0.3 mM) for 5 min, then D-pen (0.1 mM) was added.
After 15 min, a cumulative concentration-response curve to L-
cys was performed. The optimal concentration of PLP used in this
setting was determined in preliminary experiments by assessing
the effects of different concentration of PLP (0.1-0.3 mM). The
% vasorelaxation was calculated as follows: [(maximal decrease
in tension)/total amplitude of contraction] x 100. Krebs solution
was used as the vehicle for all isolated organ bath experiments.

H5S assay

The concentrations of H,S in the thoracic aorta were deter-
mined by using a methylene blue-based assay (Stipanuk and
Beck, 1982). Briefly, thoracic aortas were dissected, placed in
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sterile PBS and any fat and connective tissue removed. Aortic
rings were homogenized in a potassium phosphate lysis buffer,
100 mM pH 7.4, containing sodium orthovanadate (1 mM) and
a protease inhibitor cocktail (1:1000 dilution), and the protein
concentration was determined by using the Bradford assay
(Bio-Rad Laboratories, Milano, Italy). The lysates were added in
a reaction mixture (total volume 500 pL) containing PLP
(0.08 mM), L-cys (0.4 mM) and saline (30 uL) in the presence of
D-pen (0.01-1 mM) or vehicle. D,L-Propargylglycine (PAG,
1-10 mM) was used as positive control for inhibition of H,S bio-
synthesis. Inhibitors were added 10 min before the addition of
L-cys addition. In another set of experiments, the effect of D-pen
(0.1 mM) on H,S production was also tested in the presence of
PLP (0.1-0.3 mM) in the reaction mixture. The reaction was
performed in parafilm-sealed eppendorf tubes and initiated by
transferring tubes from ice to a 37°C water bath. After 40 min in-
cubation, zinc acetate (ZnAc, 1%, 250 pL) was added to trap any
H,S produced followed by trichloroacetic acid (TCA, 10%,
250 pL). Subsequently, N,N-dimethyl-p-phenylenediamine sul-
fate (DPD, 20 uM, 133 pl) in 7.2 M HCI and FeCl; (30 uM,
133 uL) in 1.2 M HCl were added. After 20 min, absorbance values
were measured at a wavelength of 668 nm. All samples were
assayed in duplicate, and the H,S concentration was calculated
with reference to a calibration curve for NaHS (3.12-250 uM). Re-
sults are expressed as nmol mg™' of protein min™.

Recombinant CSE and CBS enzymes

The ability of D-pen to inhibit CSE and/or CBS was determined
by using GST-CSE (rCSE) or GST-CBS (rCBS) recombinant
enzymes (5 pg of protein 100 pL™" of reaction mixture) as previ-
ously described (Asimakopoulou et al., 2013). All samples were
assayed in duplicate, and H,S concentration was calculated with
reference to a calibration curve for NaHS (3.12-250 uM). Results
are expressed as nmol mg™ of protein min™.

HS release in cell-free assay

The ability of D-pen to evoke the release of H,S was evaluated in
an amperometric approach by using an Apollo-4000 Free Radical
Analyzer (WPI) detector and H,S-selective minielectrodes, as pre-
viously described (Martelli et al., 2014). Briefly, the H,S-selective
minielectrode (polarizing voltage 150 mV) was equilibrated in
10 mL of the PBS solution at pH 7.4. Then, 100 pL of D-pen
solution were added to achieve a final concentration of 1 mM,
and the generation of H,S was monitored for 15 min. The assay
was performed in the presence of L-cys, used as nucleophilic
agent. L-Cys per se does not cause the release of H,S (Martelli
etal., 2014). The H,S concentration was determined by referring
to a calibration curve plotted as amperometric currents (recorded
in pA) against corresponding H,S standards obtained with NaHS
(1-10 uM) at pH 4.0. In a separate set of experiments, we also
evaluated the non-enzymatic H,S release mediated by L-pen.
PBS was used as a vehicle control.

Intravital microscopy (IVM) in mouse
mesenteric microcirculation

IVM was performed as previously reported (Gavins et al., 2003).
Mice were treated with TNFa (500 ng per mouse i.p., 2 h) alone
(vehicle, 0.2% carboxymethylcellulose, oral gavage 1 h before
TNFa injection) or in combination with D-pen (30 mg-kg ",
oral gavage, 1 h before TNFa injection). PAG (10 mgkg”, i.p.



30 min before TNFa injection) was also used as control inhibi-
tor of H,S biosynthesis. In all cases, CD-1 mice were anaesthe-
tized with ketamine (100 mgkg ') in combination with
xylazine (10 mg-kg™ ") and placed in the supine position on a
heating pad (37°C). The level of anaesthesia was assessed by
checking the hind limb pinch reflex. A cautery incision was
made along the abdominal region, and the vascular bed was
exposed and positioned under the microscope while
superfused with warmed (37°C) bicarbonate-buffered solution
at a rate of 2 mL-min~'. Recording started after a 5 minute
equilibration period and was made in one to three randomly
selected postcapillary venules for each mouse (20-40 pm
diameter; visible length > 100 um). Thus, leukocyte adhesion
reflected cells stationary for 30 s or longer, while leukocyte
emigration was calculated as the number of cells in a 100 x
50 pm? area, on both sides of the 100 um vessel segment. At
the end of the experiment, because this was a terminal
procedure, all animals were killed by dislocation of the neck
while still anaesthetized.

Materials

NaCl, KCl, MgCl,, KH,PO,4, CaCl,, NaHCO3;, glucose, PE,
ACh, NaHS, L-cys, PAG, PLP, D-pen, L-pen, K;HPOy4, KH,POy,
PLP, ZnAc, DPD, FeCl; TCA, ketamine, xylazine, sodium
orthovanadate and protease inhibitors were all purchased
from Sigma-Aldrich (Milan, Italy). The TNFa was obtained
from eBioscience (Hatfield, UK).

Statistical analysis

Statistical analysis was performed by using GRAPHPAD Prism
5.0 software (San Diego, CA, USA). All data are reported as
mean + SEM, and the number of replicates was at least n of
5 per group for each data set. Statistical analysis was
performed by using one-way ANOVA followed by Dunnett’s
post test when comparing more than two groups or two-
way analysis of variance (ANOVA) for multiple comparisons
followed by Bonferroni’s post test. Post hoc tests were per-
formed when ANOVAs indicated that a significant difference
existed between the groups. All statistical tests performed
showed no significant variance in data set homogeneity. Data
were considered statistically significant when a value of P <
0.05 was achieved. The data and statistical analysis comply
with the recommendations on experimental design and
analysis in pharmacology (Curtis et al., 2015).

Results

Effect of D-pen on isolated aorta

In a preliminary set of experiments, we first evaluated whether
D-pen could induce a vasoactive effect by itself. Therefore, we
performed a concentration-response curve on aorta rings pre-
contracted with PE 1 pM. As reported in Figure 2, b-pen did
show a very weak vasodilator effect (~16%) when compared
with that induced by L-cys (Figure 2A). In addition, we also
tested the L isomer of penicillamine (L-pen) as a control. In
contrast to D-pen, L-pen showed a consistent vasodilator effect,
almost overlapping that induced by L-cys (Supporting Informa-
tion Fig. S1). Because penicillamine displays a free thiol group,
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we hypothesized that the -SH moiety might allow for non-
enzymatic release of H,S (Bucci et al., 2014). The amperometric
measurement, a validated method for measuring H,S release
(Supporting Information Fig. S2) (Martelli et al., 2014), revealed
that D-pen did not induce the release of appreciable amounts of
H,S. However, in the presence of L-cys, used as nucleophilic
agent, a small effect was detectable. Conversely, when L-pen
was tested, the release of H,S was significantly higher than that
detected for D-pen (Supporting Information Fig. S3).

In order to further clarify whether D-pen might act as a
substrate for H,S production, we performed H,S biosynthesis
assay in homogenated aorta samples. Whole aorta lysate was
used as an enzyme source and D-pen was added to the sample
instead of L-cys to induce H,S production. As shown in
Figure 2B, in contrast to L-cys, the addition of D-pen up to a
concentration of 20 mM did not cause any significant in-
crease in H,S production (Figure 2B). Therefore, in order to
test its putative inhibitory profile, aortic rings were pre-
incubated with D-pen (0.01-0.1 mM) and were challenged
with L-cys (0.1 pM-1 mM). On the basis of a preliminary set
of experiments, the optimal time of pretreatment was deter-
mined as 15 min (Supporting Information Fig. S4). We ob-
served that D-pen significantly inhibited L-cys-induced
relaxation in a concentration-dependent fashion (Figure 2
C). PAG, tested as a comparative control, produced a similar
inhibitory effect, although at concentrations higher than
those tested for D-pen (1-10 mM) (Figure 2D).

Effect of D-pen on H,S biosynthesis and on
rCSE or rCBS

Because D-pen inhibited L-cys-induced relaxation, we investi-
gated whether this effect was related to suppression of H,S
biosynthesis. Therefore, we performed an in vitro assay by
using homogenated aorta samples as an enzyme source. The
assay was run in the presence of different concentration of
D-pen (0.01-1 mM), and H,S production was assessed. As
shown in Figure 3, following incubation with the substrate
L-cys, H,S biosynthesis was significantly reduced by D-pen
in a concentration-dependent fashion (Figure 3A). In a paral-
lel experiment, PAG, a selective CSE inhibitor, was used as a
positive control (Figure 3A). The inhibition observed with D-
pen was achieved at concentrations lower than those of PAG
(ICs0 0.044 mM and 1.7 mM, for D-pen and PAG, respec-
tively). Because the inhibitory effect of D-pen was achieved
in homogenated samples of whole aortas, we could not dis-
tinguish whether D-pen blocked CSE, CBS or both enzymes.
In order to further elucidate this point, we used recombinant
CSE and CBS (rCSE and rCBS) (Asimakopoulou et al., 2013),
and we tested the effect of b-pen on H,S biosynthesis in this
cell-free system. D-Pen significantly inhibited both enzymes
in a concentration-dependent manner (Figure 3B). However,
more interestingly, the concentration of D-pen needed to in-
hibit CSE (range of 0.01-1 mM) was lower than that required
to block CBS (range of 1-10 mM). Therefore, because the ICso
of D-pen against CSE is 0.27 mM, and the ICs, for CBS is
8.5 mM, D-pen is about 30 times more selective for CSE.

Inhibitory effect of D-pen is PLP-dependent
Because D-pen inhibited L-cys-induced vasodilatation and
H,S biosynthesis, we investigated the mechanism by which
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Figure 2

Vasoactive effect of D-penicillamine (D-pen). (A) Concentration-response curves for D-pen, L-cysteine (L-cys and the vehicle in aortic rings
contracted with phenylephrine (1 uM, n = 6). * Indicates significant differences (P < 0.05) for comparisons with vehicle. (B) H,S production assay
in homogenated whole aorta samples following L-cys (0.4 mM) or D-pen (0.4-20 mM) added as substrate for H,S biosynthesis (n = 6). * Indicates
significant difference (P < 0.05) for comparison with no L-cys. (C) Effect of D-pen (0.01-0.1 mM, 15 min) on L-cys induced vasodilatation in iso-
lated aortic rings (n = 6). * Indicates significant difference (P < 0.05) for comparison with vehicle. (D) Effect of propargylglycine (PAG, 1-10 mM,
15 min, n = 6) on L-cys-induced vasodilatation in isolated aortic rings. * Indicates significant difference (P < 0.05) for comparison with vehicle.
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Figure 3

Effect of D-pen on enzymatic H,S biosynthesis in homogenated mouse aorta samples and recombinant (r) CSE and CBS. (A) H,S production in
homogenated aorta samples following L-cys (1 mM) stimulus in the presence of increasing concentration of D-pen (0.01-1 mM) or vehicle.
Propargylglycine (PAG, 1-10 mM) has been used as a control for inhibition of H,S biosynthesis (n = 6). (B) H,S production in rCSE and rCBS
following L-cys stimulus in the presence of increasing concentrations of D-pen (0.01-1 mM for rCSE, 1-10 mM for rCBS) or vehicle (n = 6). *
Indicates significant difference (P < 0.05) for comparison with vehicle.

interfers with the H,S pathway. Based on the fact that CBS to verify this hypothesis, we added PLP to the organ bath and
and CSE enzymatic activity is PLP-dependent and several performed concentration-response curves to L-cys in the
inhibitors inactivate this cofactor, we investigated the presence of D-pen (0.1 mM). As shown in Figure 4, the
involvement of PLP in the inhibitory effect of D-pen. In order vasodilatation induced by L-cys and blocked by the addition
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Figure 4

Effect of the addition of pyridoxal-5'-phosphate (PLP) on the inhibitory effect of D-pen in mouse aorta. (A) L-Cys concentration-response curve in
isolated aortic rings in the presence of D-pen alone (0.1 mM, 15 min) or D-pen in combination with PLP (0.3 mM, 15 min, n=6). * and # indicate
significant differences (P < 0.05) for comparisons with vehicle and D-pen, respectively. (B) H,S production following stimulation with L-cys in
homogenated aorta samples in the presence of D-pen alone (0.1 mM) or D-pen in combination with increasing PLP concentrations
(0.1-0.3 mM) or vehicle (n = 6). * and # indicate significant difference (P < 0.05) for comparisons with vehicle and D-pen, respectively.
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Figure 5

Effect of D-pen on TNFa (500 ng per mouse, i.p., 2 h)-induced mouse mesenteric inflammation. (A) b-Pen (30 mg-kg ™, oral gavage 1 h before TNFa
injection) negatively modulated levels of adherent leukocytes (n = 5). * Indicates significant difference (P < 0.05) for comparison with vehicle. (B) D-
Pen (30 mg-kg ™, oral gavage 1 h before TNFa injection) exacerbated vascular inflammation measured as number of emigrated leukocytes (n = 5). *
Indicates significant difference (P < 0.05) for comparison with vehicle. PAG (10 mg-kgq, i.p. 30 min before TNFa injection) was used as a control.
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plain arrow (—) indicates physiological pathway for H,S biosynthesis anti-inflammatory effects that have been demonstrated in
from L-cysteine. The dashed line (----) indicates inhibitory effect of b- different settings (Zanardo et al., 2006; Brancaleone et al.,
pen on CSE, occurring in a PLP-dependent manner. 2014). Thus, inhibiting the synthesis of H,S should have a
detrimental effect on an inflammatory response. In order to
further confirm that the inhibitory effect D-pen on H,S
of D-pen was significantly restored by the addition of PLP biosynthesis also occurred in vivo, we tested its effect on a
(0.3 mM) (Figure 4A). In order to further confirm this finding, mouse model of inflammation, TNFa-induced mesenteric
we applied the PLP supplementation approach to the H,S inflammation followed by IVM analysis. Results from the
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IVM analysis demonstrated that administration of D-pen
significantly exacerbated the TNFo-induced vascular inflam-
mation. In particular, a significant increase in the number
of adherent leukocytes was observed (Figure 5A). Similarly,
IVM analysis also showed that D-pen significantly aug-
mented the transmigration of leukocytes (Figure 5B); this
effect was also observed following the administration of
PAG (Figure 5).

Discussion and conclusions

In this work, we have investigated whether D-pen, used as
an anti-rheumatic drug in the late 1970’s and still present
in British National Formulary, can interfere with the H,S
biosynthetic machinery. We formulated this hypothesis
based on the structural similarity that penicillamine shares
with cysteine, the physiological precursor for the genera-
tion of H,S. The key role of H,S plays in physiopathology
has been widely established; however, there is a need for
novel inhibitors as the present compounds, such as PAG,
have been found to interfer with other unrelated pathways
(Rej, 1977; Burnett et al., 1980; Papapetropoulos et al.,
20159).

Firstly, we tested the ability of D-pen to induce vasodilata-
tion, and found it had almost no relaxant effect in vitro
(~16%). D-Pen, used in place of L-cys in the biosynthesis assay,
up to a concentration of 20 mM, did not trigger any H,S
production. These findings clearly demonstrated that D-pen
is unable to metabolize and produce H,S in vitro. Indeed, this
finding led us to check whether the free -SH moiety could
somehow release H,S in a non-enzymatic manner, as
described for other molecules with free thiol groups (Bucci
et al., 2014). The amperometric analysis, which evaluates
the spontaneous generation of H,S, demonstrated that D-
pen did not induce the release of appreciable amounts of
H,S and the weak release observed, in the presence of the
nucleophilic agent, could be ascribed to contaminant traces
of polysulfides, thus being irrelevant to our study. Conversely,
D-pen at 0.1 mM completely blocked L-cys-induced vasodila-
tation. Therefore, D-pen acts as an inhibitor at a concentra-
tion 10 times lower than that needed to directly cause the
weak relaxing effect observed on aortic rings. In order to
further characterize the D-pen inhibitory profile, we tested
its potential as an inhibitor in an H,S biosynthesis assay by
using homogenated aorta samples as an enzyme source. D-
Pen significantly inhibited L-cys-stimulated H,S production,
thus indicating that its inhibitory effect observed in vitro in
isolated aortas involves the modulation of H,S-synthesizing
enzymes. In order to further determine whether this inhibi-
tory effect of D-pen was associated with the inhibition of
CSE and/or CBS, we tested its effect in a cell-free assay by
using recombinant enzymes and measuring H,S production
in this setting. We found that D-pen, also in this case, reduced
H,S biosynthesis in a concentration-dependent manner.
More interestingly, we also observed that D-pen was about
30 times more selective for CSE than for CBS. Indeed, the
ICs of D-pen for rCSE was calculated to be 0.271 mM.

One of the mechanisms involved in CSE and CBS inhibi-
tion mediated by commonly used inhibitors involves
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binding to PLP, which is an essential cofactor for CBS and
CSE. Indeed, PAG, the most selective and widely used CSE in-
hibitor, forms a bridge with PLP and binds to Tyr''*, thereby
blocking the catalytic activity of CSE (Sun et al., 2009).
Therefore, we investigated whether the inhibitory effect of
D-pen might depend on its ability to interfer with the func-
tion of PLP, rather than on a direct interaction with the en-
zyme. To this purpose, we performed experiments aimed at
evaluating the effect of D-pen in the presence of PLP, and
we found that the inhibitory effect of D-pen was reversed
by the addition of an excess of PLP. It should be noted that
the addition of PLP normally only has an effect if its
original concentration is lower than its physiological level
(Elsey et al., 2010; Mikami et al., 2013). The additional PLP
used in our study was kept within 0.1-0.3 mM, a concentra-
tion range shown to have no non-specific effects (Stipanuk
and Beck, 1982; Li et al., 2005; Asimakopoulou et al., 2013;
DeRatt et al., 2014). Taken together, the results from the tis-
sue and biochemical experiments indicate that D-pen exerts
its effect on the activity of CSE and synthesis of H,S by inter-
fering with PLP.

However, our in vitro results do not necessarily reflect
what would be the outcome in vivo following the administra-
tion of D-pen. Indeed, this non-conventional aminoacid has
been reported to reach only low micromolar concentrations
in plasma despite the high doses administered to humans
(Muijsers et al., 1984; Joyce and Day, 1990). This discrepancy
might be explained by the fact that D-pen quickly forms
disulfides, and can be stored as a different species. For
instance, the formation of D-pen disulfide conjugated with
plasma albumin or cysteine has been well documented and
may be responsible for the drastic reduction in the bioavail-
ability of D-pen (Nakaike et al., 1983). This aspect needs to
be considered with respect to the clinical relevance of D-pen
treatment, as its blood concentration may fluctuate depend-
ing on several kinetic factors and, thus, affect the clinical out-
come. However, it is noteworthy to underline that the high
potency of D-pen in inhibiting CSE demonstrated here might
overcome this issue. Indeed, the plasma concentration of free
D-pen could be enough to achieve a reliable inhibitory effect
on CSE and, in turn, a relevant clinical effect. Furthermore,
the formation of D-pen disulfides, although reducing free
compound levels, could enable D-pen to be available for a
longer time within the body. Based on these observations,
we decided to test whether D-pen was also effective as an in-
hibitor of H,S biosynthesis in vivo. In the current literature
it has been reported that H,S has an anti-inflammatory role
in diverse preclinical experimental settings (Brancaleone
et al., 2014) (reviewed in (Wallace et al., 2015)). To this
purpose, we tested the effect of D-pen on mesenteric inflam-
mation triggered by TNFo by using IVM analysis (Zanardo
etal., 2006; Brancaleone et al., 2014). In contrast to the effects
described for H,S donors (Sidhapuriwala et al., 2007; Jain
et al., 2010; Ekundi-Valentim et al., 2013; Wallace et al.,
2015), the oral treatment with D-pen increased the trafficking
of leukocytes triggered by TNFa, exacerbating the inflamma-
tory response and, thus, confirming it also has an inhibitory
action on H,S biosynthesis in vivo. It is important to note that
the role of H,S in inflammation is still questionable. In partic-
ular, despite its well known anti-inflammatory properties,
H,S clearly has a detrimental effect in RA patients, where its



levels have been found to be higher than those detected in
healthy volunteers (Whiteman et al., 2010; Kloesch et al.,
2011; Muniraj et al., 2014). Therefore, if we consider this clin-
ical setting and we bear in mind the inhibitory effect of D-pen
on H,S production, it is not difficult to speculate that such a
mechanism could account for the beneficial effects observed
following its administration in arthritic patients.

In conclusion, we demonstrated that the D isomer of pen-
icillamine is a selective inhibitor of CSE, as it reduced H,S
biosynthesis in a PLP-sensitive fashion both in vitro and in
vivo (Figure 6). In all the in vitro assays performed D-pen was
about 30 times more potent than PAG, the most widely used
CSE inhibitor. Finally, D-pen could represent a useful scaffold
for the development and design of novel and more selective
inhibitors of H,S based on the cysteine structure.
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Figure S1 Concentration-response curves for L-pen, L-cyste-
ine (L-cys) and the vehicle in aorta rings contracted with
phenylephrine (1uM, n = 6). * indicate significant differences
(P < 0.05) for comparisons with vehicle.

Figure S2 (a) Calibration curve for H,S non-enzymatic re-
lease measured as known concentration of H,S vs current
measured in pAmps (pH 4) (* = 0.966). Data are expressed
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as mean+SEM. (b) Representative graph showing increase in
current (pAmps) induced by H,S release vs time (pH 4). In ad-
dition, the effect of zinc acetate [1% w/v Zn(AcO),] addition
on H,S non-enzymatic release is also displayed. The graph
shows that H,S-induced current decreased as soon as Zn
(AcO), was added to the reaction mixture.

Figure S3 Amperometric measurement vs time of cell free
H,S release by D-pen (1 mM) or L-pen (1 mM) in aqueous
buffer vehicle (n = 6). The assay has been run in presence of
L-cysteine, used as nucleophilic agent. ° indicates significant
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difference (P < 0.05) for comparisons with L-pen. * indicates
significant difference (P < 0.05) for comparisons with assay
run in absence of L-cysteine.

Figure $4 Effect of D-pen 100 uM on L-cys induced vasodila-
tion in isolated aorta rings at different time of incubation (5,
15, 30 min). D-pen was already effective after S min pre-incu-
bation, however maximum effect was achieved after 15 min.
Pre-incubation for 30 min did not result in any significant ef-
fect on L-cys-induced vasodilation. * indicates significant dif-
ference (P < 0.05) for comparison with vehicle.
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