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Abstract

Since its first isolation in 1996 in Guangdong, China, the highly pathogenic avian influenza virus (HPAIV) H5N1 has
circulated in avian hosts for almost two decades and spread to more than 60 countries worldwide. The role of different
avian hosts and the domestic-wild bird interface has been critical in shaping the complex HPAIV H5N1 disease ecology,
but remains difficult to ascertain. To shed light on the large-scale H5N1 transmission patterns and disentangle the
contributions of different avian hosts on the tempo and mode of HPAIV H5N1 dispersal, we apply Bayesian evolutionary
inference techniques to comprehensive sets of hemagglutinin and neuraminidase gene sequences sampled between 1996
and 2011 throughout Asia and Russia. Our analyses demonstrate that the large-scale H5N1 transmission dynamics are
structured according to different avian flyways, and that the incursion of the Central Asian flyway specifically was driven
by Anatidae hosts coinciding with rapid rate of spread and an epidemic wavefront acceleration. This also resulted in long-
distance dispersal that is likely to be explained by wild bird migration. We identify a significant degree of asymmetry in
the large-scale transmission dynamics between Anatidae and Phasianidae, with the latter largely representing poultry as
an evolutionary sink. A joint analysis of host dynamics and continuous spatial diffusion demonstrates that the rate of viral
dispersal and host diffusivity is significantly higher for Anatidae compared with Phasianidae. These findings complement
risk modeling studies and satellite tracking of wild birds in demonstrating a continental-scale structuring into areas of
H5N1 persistence that are connected through migratory waterfowl.
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Introduction
Disentangling the complex contributions of various avian
hosts to the spread of highly pathogenic avian influenza
virus (HPAIV) H5N1 has been termed as one of the most
challenging tasks of HPAI disease ecology (Xiao et al. 2007).
HPAIV H5N1 is a strain from the Influenza virus A genus,
which belongs to the Orthomyxoviridae family, and is char-
acterized by a high mortality in bird populations (Webster
et al. 2006), thus imposing a very high economic burden.
HPAIV H5N1 was detected for the first time in 1996 in
geese from Guangdong, China (Xu et al. 1999) and has
since spread across Asia, Europe, and north African countries.
The extensive spread of HPAIV H5N1 in avian populations,
which took place despite several control measures, such as
culling, stamping out and cleaning or disinfection, had raised
the fear early on for human pandemic spread. Consequently,
poultry and wild bird vaccination has been taken into con-
sideration as a preventive measure, but only a few countries
have adopted it efficiently.

HPAIV H5N1 shows a considerable capacity for xenospe-
cific transmission, including to human hosts, and can lead to
infection through the fecal–oral route, oral–oral route,

consumption of raw infected birds, and by fomites
(Webster et al. 1992; Songserm et al. 2006; Gilbert et al.
2010; Pfeiffer et al. 2013; Poovorawan et al. 2013; Bett et al.
2014). For human infections, mortality rates of approximately
60% have been reported (WHO 2013) although the real mor-
tality rates are undoubtedly lower (Li et al. 2008).
Experimental studies in ferrets, which are used as models
for human transmission, indicate that there is only a relatively
small genetic barrier for HPAIV H5N1 to acquire the capacity
to efficiently transmit by droplets or aerosols (Herfst et al.
2012). However, some of the required substitutions are likely
to be negatively selected in birds, and viral variants transmis-
sible by respiratory droplets may not sufficiently contribute to
the within-host viral population to transmit successfully
(Russell et al. 2012).

The threat of pathogenic influenza viruses emerging in
avian populations has recently also been stressed by an out-
break of the novel H7N9 influenza virus in China around
February 2013 (Lam et al. 2013). Although less pathogenic
in avian species, the H7N9 virus resulted in 571 confirmed
cases and 212 deaths in humans over a 2-year span whereas
19 years of HPAIV H5N1 spread amounted to about 844 cases
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(WHO 2015; Wang et al. 2014). The rapid emergence and
relatively high incidence in the human population make
H7N9 an additional threat for triggering a human pandemic,
and it may shift the attention away from HPAIV H5N1
(To et al. 2013).

Although evolutionary analyses suggest that influenza A
virus may have been a more mammalian generalist in the
distant past (Worobey et al. 2014), wild waterfowl belonging
to the Anatidae family (including ducks, geese, and swans) are
now considered to be the natural reservoir because all known
subtypes (16 hemagglutinin [HA] and 9 neuraminidase [NA]
(Fouchier et al. 2005), except for HA17 and H18 which were
only detected in bats [Tong et al. 2012, 2013]) have been
isolated from aquatic birds. Viruses isolated from other
hosts in recent decades also find close relatives in waterfowl
(Webster et al. 1992).

HPAIV H5N1 has rapidly evolved to evade host immunity
and achieved efficient transmission in new host species, such
as domestic poultry (Phasianidae, which includes pheasants,
chickens and quails among others) and the remaining
modern birds (Neoaves, which encompass the remaining
avian diversity, such as sparrows, pigeons and falcons, with
the exception of ratites) (Nelson and Holmes 2007). Despite
the importance for predicting and preventing viral spread,
transmission pathways and host-specific contributions to
spread between countries have been difficult to establish
and two competing views on the spread of HPAIV H5N1
have been put forward. On the one hand, Anatidae are
hypothesized to be the main spreaders of the virus in
mainly two ways. First, the long distance migration routes
expose the domestic or resident bird population at multiple
stopover sites to the virus, as observed in 2005 during the
rapid viral spread from Russia and Kazakhstan to Turkey,
Romania and Ukraine, or in the western European 2006 out-
breaks, where migration or unusual movement of wild birds
implicated their role as vectors to areas that had no previous
record of HPAIV H5N1 presence (Songserm et al. 2006; Kim
et al. 2009; Hill et al. 2012). Second, they may represent silent
spreaders, because often HPAIV H5N1 causes asymptomatic
infection in some species of domestic and wild ducks, as
demonstrated by the 2004 case study of ten flocks of grazing
ducks in Thailand, of which few were found to be symptom-
atic despite shedding the virus for 5–10 days (Songserm et al.
2006; Keawcharoen et al. 2008). Surveillance studies on the
other hand have suggested that HPAIV H5N1 transmission is
maintained by Phasianidae, largely due to the intensive move-
ment of poultry, and that transmission within poultry is the
major mechanism for sustaining viral endemicity rather than
by continuous reintroduction through migrating birds (Chen
et al. 2006; Fourni�e et al. 2013).

Because of the commensurate time-scale of evolutionary
and spatial dispersal dynamics, genetic data may offer a valu-
able source of information to reconstruct transmission for
rapidly evolving pathogens (Holmes 2008; Pybus and
Rambaut 2009). As a consequence, the field of viral phylody-
namics has witnessed a rich development of quantitative
approaches to effectively infer epidemic processes from viral
evolutionary histories (Pybus and Rambaut 2009). HPAIV

H5N1 represents in fact a prime example of viral phylogeo-
graphic reconstructions that stimulated methodological
developments, first within a parsimony context (Wallace
et al. 2007; Wallace and Fitch 2008), and more recently, in a
Bayesian statistical framework (Lemey et al. 2009). These anal-
yses focused on the location of HPAIV H5N1 emergence, and
provided descriptive analyses of source-sink dynamics and
restrictions to viral migration. Two stochastic models of
phylogenetic diffusion have been proposed to perform spa-
tiotemporal reconstructions in a Bayesian framework
(Bloomquist et al. 2010; Faria et al. 2011): A continuous-
time Markov chain (CTMC) process to model transitioning
among discrete location states throughout evolutionary his-
tory (Lemey et al. 2009) and a Brownian random walk process
to model diffusion in continuous space (the change in longi-
tude and latitude along phylogenetic branches) (Lemey et al.
2010). The discrete model has recently been extended to test
and quantify the contribution of potential predictors of viral
diffusion (Lemey et al. 2014). By evaluating competing hy-
potheses of spatiotemporal origins (Bouckaert et al. 2012)
and by providing estimates for key spatial epidemiological
variables (Pybus et al. 2012), the continuous diffusion
model has also proven to be a powerful hypothesis testing
tool. The latter work was performed on the West Nile
virus (WNV) invasion in North America, for which
phylogeographic estimates of the diffusion coefficient and
the variation in the spatial spread revealed that this inva-
sion was not characterized by a steady front of east-to-west
dissemination, but heavily impacted by rare long-range
movements. Although rooted in phylogeographic applica-
tions, Bayesian phylogenetic diffusion models are not
limited to geography and can be applied in various
studies that aim at jointly reconstructing evolutionary his-
tory and discrete or continuous trait evolution, including,
for example, viral host switching (Faria et al. 2013) and
phenotypic evolution (Bedford et al. 2014; Vrancken et al.
2014).

To gain further insight into the large-scale transmission
patterns of HPAIV H5N1, from its emergence in
Guangdong to its maintenance across Asia and Russia, and
to clarify the contribution of different avian host populations,
we here undertake a detailed phylogeographic analysis of
large data sets of HA and NA gene sequences from Russian
and Asian HPAIV H5N1 viruses. We apply discrete phylogeo-
graphic inference techniques and extend a recently developed
generalized linear model (GLM) approach to incorporate
random effects that allow identify spatial transmission pat-
terns that deviate from regular distance-based dispersal dy-
namics. We extend a continuous diffusion approach to
distinguish between different host populations when quanti-
fying spatial dynamics. Specifically, we jointly reconstruct
both spatial and host independent processes upon a posterior
sample of trees in a single probabilistic analysis and apply this
to large sets of HPAIV H5N1 sequence data sampled over 15
years to disentangle the contribution of the Anatidae and
Phasianidae hosts to the tempo and mode of HPAIV H5N1
epidemic expansion.
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Results
We analyze data sets comprising 806 HA and NA gene
sequences sampled between 1996 and 2011 from two avian
families, Anatidae and Phasianidae, and the Neoaves avian
superorder (supplementary fig. S1 and tables S1 and S2,
Supplementary Material online). Different data sets were pro-
duced by different subsampling strategies to mitigate sam-
pling bias, but we mainly report the results for randomly
downsampling overrepresented locations (based on compar-
isons of phylogeny-trait association and reconstruction
uncertainty; supplementary table S3, Supplementary
Material online), and mirror them with estimates for the
other data sets in the supplementary material,
Supplementary Material online. Our probabilistic analysis
approach encompasses model components of temporal
sequence evolution, geographic dispersal, and host switching.
Estimates of evolutionary rates and phylogenetic divergence
times are in agreement with previous studies (supplementary
table S3, Supplementary Material online) (Lemey et al. 2010).
We start by presenting spatial dispersal estimates in both
discrete and continuous spaces and subsequently introduce
the discrete host transmission to finally arrive at a joint anal-
ysis of both processes.

Spatial Expansion

To capture the main spatial diffusion dynamics underlying
HPAIV H5N1 spread across Eurasia, we summarize the best
supported rates of discrete location transitioning among all
pairs of 19 locations as inferred using Bayesian stochastic
search variable selection (BSSVS) in figure 1. These dynamics
can be largely discriminated by two Asian migratory bird fly-
ways, the East Asian–Australasian flyway and the Central
Asian flyway, with a central connecting role for Mongolia
and North China where these flyways overlap. These patterns
also largely recover the gene flow structures recently esti-
mated for HPAIV H5N1 clade 2.3.2 (Tian et al. 2015), which
were shown to follow bird migration networks along these
two flyways. Taken together, these diffusion pathways repre-
sent 83% and 79% of the location state transitions in the HA
and NA evolutionary histories, respectively. As expected, root
state probabilities provide support for Southeast China
(mostly represented by samples from Guangdong and
Hong Kong) as the origin of HPAIV H5N1 emergence (sup-
plementary fig. S2, Supplementary Material online).

A more detailed picture of the HPAIV H5N1 spread
through time along this transmission network is provided
by a phylogeographic reconstruction in continuous space
(fig. 2 and supplementary fig. S4, Supplementary Material
online). This depicts that HPAIV H5N1 spread remained lar-
gely restricted to East and Southeast China up 2001, but mi-
gration events to North China and Japan as well as to
Vietnam are starting to emerge from this time. These migra-
tions became more pronounced by 2003 and include the
seeding of Thailand and Indonesia, with spread between dif-
ferent islands within the latter. The dynamics remain largely
restricted to the area encompassing the East Asian–
Australasian flyway, but westward movements from North

and East China into the area where both flyways overlap are
emerging. More phylogenetic branches have bridged these
flyways by 2005 in line with the multiple well-supported cor-
responding rates in the discrete analysis (fig. 1), but also
spread over a large geographic area to the west has now
been established. By 2011, the patterns of spread also encom-
pass South Asia (e.g., India, Nepal and Bangladesh) (Chen et al.
2006; Webster et al. 2006; Pfeiffer et al. 2013).

The extensive transmission within China (fig. 2), despite
that vaccination efforts that have been unrolled, is also
reflected in discrete diffusion estimates showing that the
virus remains circulating throughout a large proportion of
the evolutionary history in these areas (Southeast, East, and
to a lesser extent also Southwest China; supplementary figs.
S2 and S5, Supplementary Material online), a persistence that
may be attributed to intense duck production in terms of
flock size and movement (Tian et al. 2005; Gilbert et al. 2010).

The spatial expansion in continuous space is characterized
by an average invasion velocity of about 700 km/year, but
considerable diffusion rate heterogeneity underlies these dy-
namics as formal testing (using log marginal likelihood esti-
mation techniques; Baele et al. 2012, 2013; Baele and Lemey
2013) rejects a phylogenetic Brownian diffusion model in
favor of more flexible relaxed random walk (RRW) models
(supplementary table S4, Supplementary Material online).
Using a weighted average estimate for the diffusion coefficient
(a measure of the diffusivity of the viral transmission, cfr.
Materials and Methods), we arrive at estimates of 584
(503–665) and 712 (558–884) km2/year for HA and NA, re-
spectively, which is substantially higher than the comparable
estimate of 210.27 (174.36–25317) km2/year for WNV in
North America.

For the discrete partitioning of the large geographic scale
we focus on here, many of the well-supported diffusion path-
ways occur between locations that are in relative close prox-
imity from each other (fig. 1). To formally evaluate this
pattern, we perform an analysis using a recently developed
GLM diffusion model (Lemey et al. 2014), in which we include
geographic distance as a potential predictor, but that we also
extend here with random effects for the diffusion rates
(cfr. Materials and Methods). For all data sets, this analysis
yields a maximal posterior inclusion probability for geographic
distance, providing evidence that distance helps to explain
the diffusion dynamics. Because diffusion rates are parame-
terized as a function of geographic distance in this GLM, the
random effects may help to identify exceptions to relatively
regular distance-based diffusion patterns. To identify those
exceptions, we use a statistic that summarizes the probability
that a random effect is the highest on an absolute scale. When
random effects are ranked according to this statistic, its value
rapidly declines (supplementary fig. S7, Supplementary
Material online), and only the rate between Mongolia/
North China and West Russia/Kazakhstan is accompanied
by a high random effect with a probability of 0.4 or 0.5 for
being the top-ranked effect in the analysis of HA and NA,
respectively. This is indeed the rate that connects the two
most distant locations among all the well-supported diffusion
rates (fig. 1). When recording the number of transitions along
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FIG. 1. BF support for nonzero rates in HPAIV H5N1 HA and NA. Rates are represented for a BF 4 100 in either gene (dashed and dotted lines for HA
and NA, respectively) or both genes (full lines). The line color (in the online color figures) represents the relative strength by which the rates are
supported: green and red reflect relatively weak and strong support, respectively. When the rate is supported by both HA and NA, the color represents
the lowest support for the rate. The thickness of the lines representing the rates is proportional to the number of Markov jumps (MJ): thin and thick
reflect a relatively small and large number of MJ, respectively. When the rate is supported for both HA and NA, we set the thickness according to the
smallest number of MJ. The representation of the East Asian–Australasian flyway and the Central Asian flyway is adapted from data from the East
Asian–Australasian Flyway Partnership (www.eaaflyway.net/the-flyway, last accessed September 15, 2015). The well-supported rates for differently
downsampled data sets are shown in supplementary figure S3, Supplementary Material online.

FIG. 2. Spatiotemporal dispersal of HPAIV H5N1 in Eurasia reconstructed using continuous phylogeographic analysis of HA. Dispersal patterns are
shown up to four different years: 2001, 2003, 2005, and 2011. The black lines project the part of the MCC tree up to each of those times, whereas the
contours represent statistical uncertainty of the estimated locations at the internal nodes (95% credible contours based on kernel density estimates).
The dispersal patterns for the differently downsampled data sets are shown in supplementary figure S4, Supplementary Material online.
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this connection in the evolutionary history using Markov
jumps, we infer an average of 8.18 and 13.76 transitions for
HA and NA, respectively, suggesting multiple migration
events over long distance.

Host Transmission Patterns

We investigated the coarse-grain host switching dynamics in
our analysis by including a discrete diffusion process among
the avian families, Anatidae (n = 299) and Phasianidae
(n = 428), and the Neoaves superorder (n = 74), from which
our samples were obtained (supplementary table S6,
Supplementary Material online). To characterize the overall
dynamics between the most abundantly sampled Anatidae
and Phasianidae hosts, we estimated model fit for four differ-
ent models: A bidirectional symmetric and asymmetric model
and two different unidirectional models (table 1). This iden-
tifies a directional asymmetric model as the best-fitting model
for both HA and NA, suggesting transmission in both direc-
tions but with a relatively strong preference for one of the
directions.

To quantify the host transitions in the ancestral history of
our sample under this model, as well as the time spent in each
of these avian hosts, we summarized Markov jumps and
Markov reward estimates in table 2. These revealed about
three times as many Anatidae to Phasianidae jumps as vice
versa. The estimates are unlikely to be impacted by sampling
bias because more samples were included from Phasianidae,
and accordingly, more time appears to be spent in this
Phasianidae host (table 2). The same differences in transmis-
sion preference can also be deduced from the host transition
rate estimates in an asymmetric diffusion model that con-
siders all three host orders (supplementary table S7,
Supplementary Material online). The overall preference of
Anatidae to Phasianidae transmission is also apparent from
the ancestral host reconstructions in the HA and NA phylog-
enies, which reveals a general backbone associated with
Anatidae (supplementary fig. S8, Supplementary Material
online).

To further disentangle the host contributions in the spatial
expansion of HPAIV H5N1, we summarized specific estimates
from a joint analysis of discrete host and continuous spatial
diffusion (cfr. Materials and Methods). In accordance with the
Anatidae phylogenetic backbone, this reveals a large overall
contribution of this host to the epidemic wavefront (fig. 3A),
summarized by the largest great-circle distance traveled from
the root location estimate divided by the time since the most
recent common ancestor. In the HA history, a comparatively
high contribution of Phasianidae can be noted in the early
wavefront around 1997, but this subsequently decreases, per-
haps due to intensive poultry culling (Yee et al. 2009). The
higher contribution for Anatidae is particularly noticeable
during the HPAIV H5N1 epidemic wave dynamics between
2004 and 2005 (fig. 3A).

To demonstrate how the Anatidae-driven expansion spa-
tially manifests in the invasion dynamics, we summarize phy-
logeographic realizations by host in the posterior distribution
of trees on a fine spatial grid to visualize both host-specific

densities and dispersal rates through time and space (cfr.
Materials and Methods). In figure 3B and C, we focus on
2004 in the HA analysis, which marks the acceleration in
wavefront for both HA and NA (fig. 3A). In agreement with
the host-specific wavefront contribution (fig. 3A), this dem-
onstrates that the forefront of the westward expansion
appears to be dominated by the Anatidae host. This finding
does not reflect a biased sampling to the west of Qinghai lake,
which includes 53 sequences from Anatidae, 46 from
Phasianidae, and 21 samples from Neoaves. In agreement
with accelerated spread, the westward expansion through
Anatidae is also characterized by relatively high rates of dis-
persal (fig. 3C).

In Indonesia, the almost exclusive sampling of Phasianidae
explains the highly specific host density in this region. Despite
this however, the seeding from South China is still at least
equally likely to have occurred in association with the
Anatidae host (cfr. the connecting density in fig. 3B). A high
density of Phasianidae samples generally coincides with areas
of relatively low dispersal rates (fig. 3B), which may point to
more localized persistence dynamics in poultry.

Host-specific diffusion statistics also allow to quantify the
overall rate of viral spread and the intrinsic diffusivity of the
infected host through the diffusion coefficient (Pybus et al.
2012) (fig. 4). These estimates reveal a significantly higher rate
of spread and diffusivity in Anatidae as compared with
Phasianidae. Due to a relatively large degree of uncertainty,
the posterior distributions for these statistics overlap, most
notably for the rate of spread. Therefore, to formally asses the
difference between Anatidae and Phasianidae, we compute
Bayes factor (BF) support based on the prior and posterior
expectation that a statistic is larger for one host compared
with the other (cfr. Materials and Methods). For both the
diffusion rate (BF = 332 and 999 for HA and NA, respectively)
and the diffusion coefficient (BF = 20 and 999 for HA and NA,
respectively), this provides strong support for higher esti-
mates for Anatidae. Rates of diffusion and intrinsic diffusivity
in the Neoaves host appear as low or lower than that for
Phasianidae. However, due to the sparsity of sampling from
this host order, we caution against drawing strong conclu-
sions for the contribution of Neoaves to HPAIV H5N1 spread
from this analysis.

Discussion
In this phylodynamic study, we combine spatial and host
dynamics to disentangle the contributions of different avian
hosts to the viral invasion dynamics. We first reconstructed
the spatial diffusion dynamics using different Bayesian phylo-
genetic diffusion models and demonstrated that the spread of

Table 1. Log Marginal Likelihoods Estimated by Stepping Stone
Sampling for Four Discrete Host Transmission Scenarios.

HA NA

Bidirectional Asymmetric �551.50 �599.47

Bidirectional Symmetric �558.91 �603.75

Unidirectional Ana-to-Pha �650.02 �682.37

Unidirectional Pha-to-Ana �638.12 �695.69
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HPAIV H5N1 is a heterogeneous process that is structured
according to avian flyways in Asia and Russia. Together with
dispersal pathways that bridge large geographic distances
(Mongolia/North China to West Russia/Kazakhstan), this sug-
gests a role for wild bird migration in the expansion dynamics
of H5N1. In a second part, we infer host transmission dynam-
ics to demonstrate that highly asymmetric jumping between
Anatidae and Phasianidae underlies the patterns of spread.
Anatidae have driven the epidemic wavefront, in particular
for the incursion of the area coinciding with the Central Asian
flyway. These findings complement risk modeling and
satellite-tracked wild waterfowl studies in suggesting that
the continental-scale dynamics of HPAIV H5N1 are struc-
tured into persistence areas delineated by domestic ducks
and connected by relatively rare transmission through migra-
tory waterfowl (Gilbert et al. 2010).

Although we identify a wavefront dominated by
Anatidae and a faster and more diffusive viral spread in
this avian family, it remains difficult to determine the
exact contributions of domestic and wild ducks to these
dynamics because this information was unavailable for
many of the isolates we investigated. The Anatidae isolates
for which this information was available appeared to be a
roughly equal mix between wild and domestic, whereas
most Phasianidae isolates were known to be sampled
from domestic hosts. Long-distance dispersal events, like
the ones we identify between the region of Mongolia and
North China and the region of West Russia and Kazakhstan,
can be attributed to wild migratory birds, but the tempo of
spatial spread in domestic ducks may also be higher than in
chickens because of differences in farming practices. In
southeast Asian countries in particular, duck flocks are al-
lowed to free-graze nearby wet lands or rice cultivations, not
only because of pest control and fertilization advantage but
also because it cuts down food consumption by up to 50%
(Gilbert et al. 2007; Pfeiffer et al. 2013). Here, domestic ducks
may become infected as silent carriers of HPAIV H5N1, and
subsequently spread the disease to other poultry flocks
(Phasianidae) when returning to their farms (Songserm
et al. 2006; Kim et al. 2009; Cappelle et al. 2014).
Transmission in the opposite direction may also sustain
spillover from domestic poultry to wild birds, which is con-
sidered to be a unique feature of HPAIV H5N1 (Gilbert et al.
2010). If a distinction between domesticated and wild birds
could be made for the currently available sequence data, it
may be possible to further quantify differences in spatial
spread within the avian hosts families. However, given the
potentially close contact between domesticated and wild

ducks as suggested above, disentangling these transmission
patterns is also likely to require a denser sampling of the
different hosts in space and time and a better differentiation
between domestic and wild ducks in the sequence data
annotation.

Our analyses do not argue against movement of poultry as
playing an important role for HPAIV H5N1 spread, but this is
likely to be less important for connecting more distant areas
of persistence on the geographic scale that we consider here.
The importance of domesticated ducks, as also recognized by
HPAIV H5N1 risk mapping (Hulse-Post et al. 2005), ex-
plains why controlling this virus has been particularly chal-
lenging. Compared with chickens, domestic ducks not only
exhibit fewer clinical signs of disease while shedding virus
up to 17 days (Hulse-Post et al. 2005), but vaccination is
difficult to implement for ducks because they have longer
production cycles and show lower vaccine efficiency, requir-
ing repeated injections throughout the animal’s life (Tian et al.
2005).

The impact of bird migration on HPAIV H5N1 spread has
very recently been highlighted using a combination of
HPAIV H5N1 outbreak records, whole-genome data, and
satellite tracking data (Tian et al. 2015). This demonstrated
that virus migration across six regions in Asia coincided well
with bird migration networks in both the East Asian–
Australasian flyway and the Central Asian flyway for
HPAIV H5N1 clade 2.3.2. We expand the scale of this
study and recover similar gene flow dynamics with a central
connecting role for Mongolia and North China, including
lake Qinghai. Lake Qinghai is an important breeding place
for migratory bird species in East Asia, and wild waterfowl
were also likely to be responsible for viral spread through
Mongolia because it has very few poultry production areas
(Tian et al. 2005; Gilbert et al. 2012). As predicted earlier by
satellite-tracked waterfowl (Gilbert et al. 2010), and con-
firmed by recent satellite tracking and phylogeographic
analysis (Tian et al. 2015), we also identified a link between
this northern area and South Asia (Bangladesh, and con-
nected with this, India; fig. 1). We further complement
these findings by demonstrating relatively frequent long-
distance dispersal to West Russia and Kazakhstan. This is
likely to be associated with wild bird migration to the west
Siberian lowlands, which is an important breeding area and
by far the largest wetlands in the world (Gilbert et al. 2006).

As an extension of the GLM diffusion model (Lemey et al.
2014), we here introduced random effects to identify excep-
tions to diffusion modelled by a specific predictor. The ra-
tionale of this approach is that if a predictor does not
explain the intensity of viral migration very well between a
specific pair of locations, then an additional effect for the
corresponding rate may be needed to adequately explain
the location transitions. As for a standard discrete phylogeo-
graphic analysis, this requires a large number of parameters
to be estimated from a single observation of location states
at the tip of the tree, and as a consequence, random effects
estimates will be associated with high uncertainties. For this
reason, we only consider these effects to be important if the
estimates yield consistently high absolute effects on a log

Table 2. Host Transitions and Host Reward Time under the
Bidirectional Asymmetric Model.

HA NA

Ana-to-Pha jumps 122 (105–139) 131 (99–154)

Pha-to-Ana jumps 43 (30–57) 48 (30–74)

Ana reward time (years) 352 (321–385) 382 (329–434)

Pha reward time (years) 400 (370–431) 424 (377–480)

NOTE.—Values in brackets represent 95% HPD intervals.
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scale, which may be a fairly conservative approach. In the
future, it may be useful to explore search variable selection
approaches that try to identify a restricted number of

nonzero effects, but current prior specification on the
random effects complicates such strategies.

Similar to a recent WNV analysis (Pybus et al. 2012), our
continuous phylogeographic reconstruction indicates a con-
siderable heterogeneity in the spatial HPAIV H5N1 diffusion
dynamics. In fact, the diffusion coefficient we estimate for
HPAIV H5N1 is higher than for WNV (supplementary fig.
S6, Supplementary Material online), suggesting an even stron-
ger impact of long-range movements on avian influenza
spread. Here, we hypothesized that the host dynamics are
responsible for a large degree of the heterogeneity in spatial
spread and we attempt to quantify this based on summaries
of a joint analysis of continuous spatial and discrete host
traits. We rely on stochastic mapping techniques to obtain
realizations of the host jumping process throughout the pos-
terior distribution of trees and summarize the continuous
spatial diffusion process according to host-specific trajectories
in these jump histories. The ability to find clear differences in
spatial statistics (e.g., fig. 4), and in spatial visualizations (e.g.,
fig. 3), by host using this approach is remarkable because the
current analysis integrates host transmission and spatial dif-
fusion as conditionally independent processes. Ancestral trait
reconstruction processes are inherently uncertain, and the
statistics that incorporate time inherit also the uncertainty
of the phylogenetic divergence time estimation. This hints at
the potential of future approaches that would aim at intro-
ducing an estimable dependency between the two trait pro-
cesses, such that cross talk is allowed between the different
processes and different ancestral reconstructions can borrow
strength from each other.

Despite efforts to downsample particular locations to
arrive at equitable numbers of sequences, we acknowledge
that sample sizes for both location and host have an impor-
tant impact on ancestral reconstruction approaches, and the
results we obtained for the discrete location estimation are
specific to the spatial partitioning we applied. In addition, we
note that the sequence data we examined generally lacked
detailed annotation on the specific sampling date (day and
month), and not all isolates could be assigned to a specific city
or region within a country. Sampling time uncertainty can
now readily be taken into account in recent versions of the
BEAST software and there are also possibilities to accommo-
date the location uncertainty in continuous spatial diffusion
(Bouckaert et al. 2012; Nylinder et al. 2014). However, given
the time-scale and geographic scale of our analysis, we do not
expect that these aspects will considerably impact our esti-
mates and the main point of attention probably remains
representative spatial and host sampling, and specific knowl-
edge about the host (domestic or wild hosts, as argued
above).

The framework we introduce here and the model exten-
sions we hint at may find applications to various pathogen
systems for which the spatial dynamics involve a multiplicity
of host species. The approach is also not restricted to spatial
applications and readily generalizes to any trait of interest.
Staying close to the current application however, the emer-
gence and continuing spread of avian influenza A H7N9 in
multiple waves is now receiving considerable attention (Lam

FIG. 3. Host-specific wavefront distance estimates for HA and NA (A).
These estimates summarize for each host (Anatidae—Ana,
Phasianidae—Pha, and Neoaves—Neo), the fraction of estimated
amount of great circle distance from the phylogeographic origin to
the wavefront that can be associated with that host according to the
host ancestral reconstruction. Host-specific wavefront distance esti-
mates for HAD and NAD are shown in supplementary figure S9,
Supplementary Material online. Host-specific densities (B) and diffu-
sion rates (C) summarized for the year 2004 from a joint spatial and
host diffusion analysis for HA. The Ana and Pha samples in this analysis
are separately represented in the rate (C) and density (B) plot for
clarity. In the density plot (B), Ana and Pha densities are represented
by a transparent blue and red color (in the online color figures),
respectively. High and low dispersal rates are represented by a red-
yellow color gradient in the rate plot (in the online color figures) (C).
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et al. 2013; Gilbert et al. 2014). Despite the pandemic potential
and high mortality rate of these viruses in humans, low path-
ogenic avian influenza virus H7N9 seems to mainly affect
poultry in live markets. Although the importance of live poul-
try market networks has also been demonstrated for the
persistence and spread of HPAIV H5N1, the relationship
between disease and markets appears to be even stronger
for H7N9 (Cowling et al. 2013; Han et al. 2013; Li et al.
2014). However, H7N9 spread has remained difficult to con-
tain along the poultry market chain, and as pointed out by
Gilbert et al. (2014), together with the persistence between
subsequent waves, this may indicate H7N9 spread beyond the
distribution of human cases. Surveillance may need to take
this into account as well as possible spillover at the domestic–
wild bird interface.

In conclusion, we have introduced a framework to simul-
taneously reconstruct the spatial dynamics and transmission

patterns among different hosts in time-calibrated phyloge-
nies. By applying this to a comprehensive data set of H5N1
sequences sampled throughout the HPAIV H5N1 expansion
across Asia and Russia, we demonstrate differences in the
tempo and mode of spread between different avian hosts
and a key role for Anatidae in the invasion dynamics. Such
phylodynamic analyses contribute to our understanding of
the impact of specific hosts on pathogen dispersal and may
assist disease surveillance and pandemic preparedness.

Materials and Methods

Data Collection

To assemble comprehensive genetic data sets representative
of the HPAIV H5N1 expansion, we first retrieved the HA and
NA gene sequences for all available (n&3; 000) Russian and
Asian HPAIV H5N1 avian isolates from the public Influenza
Research Database (www.fludb.org accessed on January 11,

FIG. 4. Posterior dispersal rate (top) and diffusion coefficient (bottom) distributions for each host (from left to right: yellow—Neoaves, red—
Phasianidae, greengeneral, and blue—Anatidae, in the online color figures) obtained by the joint host analysis of HA (left) and NA (right).
Posterior dispersal rate and diffusion coefficient distributions for differently downsampled data sets are shown in supplementary figure S10,
Supplementary Material online.
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2012). From this sequence set, we selected the strains with
known sampling location, sampling year (ranging from 1996
to 2011) and host, for which both an HA and NA sequences
were available. In case identical HA or NA sequences were
present, we retained only a single isolate and we also excluded
sequences with less than 75% of the total length of the seg-
ment. The sequences were grouped by country of sampling,
and also by Province for China, to investigate which discrete
partitioning scheme (according to geography and administra-
tive borders) would enable downsampling to roughly equita-
ble numbers of sequences per location. This led us to
condition on 19 geographic regions to subsample the HA
and NA sequence data to obviate some of the biases in sur-
veillance intensity in the different geographic regions (supple-
mentary table S1, Supplementary Material online). More
detail on the subsampling procedure is provided in the sup-
plementary materials and methods, Supplementary Material
online. In the section describing the discrete phylogeographic
diffusion model we extend in this study, we describe how we
partition the subsampled data in a geographically more
coherent way, arriving at the data sets summarized in sup-
plementary figure S1 and file S1, Supplementary Material
online.

The sequences of each genome segment were aligned
using the Multiple Alignment using Fast Fourier Transform
(MAFFT) program version 6.864b (Katoh and Toh 2008) and
manual editing was carried out to delete indels occurring in
more than 50% of the sequences.

Bayesian Evolutionary Inference

Our interest lies in integrating spatial diffusion and host jump-
ing processes with sequence evolution in a phylogenetic con-
text. Although our Bayesian framework allows tackling such
problems using a joint inference approach, it remains com-
putationally challenging for the data set sizes we examine
here, in particular when model testing needs to be performed
(Baele et al. 2012, 2013; Baele and Lemey 2013). Because of this
and the fact that both diffusion processes are modelled inde-
pendently from the substitution process throughout evolu-
tionary history, we split up the inference problem into two
steps: We first focus on the sequence evolution process to
generate an empirical distribution of trees, and then condi-
tion on this set of posterior trees to fit several discrete or
continuous trait diffusion processes. In the supplementary
materials and methods, Supplementary Material online, we
describe how we model the more standard sequence evolu-
tionary process.

All Markov chain Monte Carlo (MCMC) sampling analyses
were performed using BEAST in conjunction with the Broad-
platform Evolutionary Analysis General Likelihood Evaluator
library to enhance computation speed (Suchard and
Rambaut 2009; Ayres et al. 2012). A subset of 500 trees
were selected from the combined posterior distribution and
used as an empirical distribution in the subsequent spatial
and host diffusion inference. Following Pagel et al. (2004), we
achieved this by incorporating a proposal mechanism that
randomly draws a new tree from the empirical distribution

(Lemey et al. 2014). We used TreeAnnotator to summarize a
maximum clade credibility (MCC) tree and FigTree version
1.4.1 to visualize annotated trees.

Discrete Geography

We estimated spatial diffusion dynamics among a set of 19
geographic regions using a Bayesian discrete phylogeographic
approach (Lemey et al. 2009). This approach conditions on
geographic locations recorded at the tips of the (empirical)
HA and NA phylogenies and models the transition history
among those locations as a CTMC process, allowing the in-
ference of unobserved locations at the ancestral nodes in each
tree of the posterior distribution. We used a nonreversible
CTMC model (Edwards et al. 2011) and incorporated BSSVS
to identify a sparse set of transition rates that adequately
summarizes the epidemiological connectivity (Lemey et al.
2009). As part of these analyses, we also incorporated poste-
rior inference of the complete Markov jump history through
time (Minin and Suchard 2008; Lemey et al. 2014), allowing to
quantify state transitions and the time spent in a particular
location state along each phylogenetic branch.

The discrete diffusion model has recently been extended to
test and quantify potential predictors of the diffusion process
(Lemey et al. 2014). This has been achieved by adopting a
GLM approach that parameterizes the log of the rates in the
CTMC matrix as a log-linear function of several potential
predictors of viral diffusion. Here, we extend this approach
to identify long-distance dispersal dynamics that significantly
stand out from a more regular, distance-based diffusion pro-
cess by introducing random effects (supplementary materials
and methods, Supplementary Material online).

Continuous Geography

As a complementary approach to discrete phylogeographic
inference, we also estimated the HPAIV H5N1 diffusion
dynamics in continuous space using a Brownian motion
random walk mode (Lemey et al. 2010). We relax the
constant-variance assumption of the standard Brownian dif-
fusion model by allowing for branch-specific scaling factors
that are drawn from an underlying distribution. We evaluate
different probability distributions (Cauchy, gamma, lognor-
mal) as RRW model and compare it with the homogenous
process (Lemey et al. 2010) using log marginal likelihoods
obtained by path sampling and stepping stone sampling
(Baele et al. 2012, 2013; Baele and Lemey 2013).

To draw inference under these models, we employ a
Bayesian inference method that incorporates a dynamic pro-
gramming approach to achieve an analytic solution for the
trait likelihood (integrating over all possible realizations of the
unobserved traits; Pybus et al. 2012). To visualize the dispersal
process through time, we use the Spatial Phylogenetic
Reconstruction of Evolutionary Dynamics application
(Bielejec et al. 2011) to complement an MCC tree with loca-
tion kernel density estimates through time and to convert
these estimates to the keyhole markup language format.

The spatiotemporal realizations of the continuous diffu-
sion process can be used to draw different statistics about the
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spatial epidemic dynamics without the need to account for
autocorrelation as is required for mathematical models in
spatial ecology (Pybus et al. 2012). Here, we use several such
statistics, either for the entire evolutionary history or for a
particular time interval, to characterize the dispersal dynamics
of HPAIV H5N1, including the dispersal rate or the phyloge-
netic great-circle distance travelled per unit time (km/year)
and the wavefront distance, which tracks the largest great-
circle distance between each phylogenetic lineage and the
estimated origin of the epidemic at a particular time.

We also employ an estimator of the diffusion coefficient, D̂,
a fundamental ecological measure of the intrinsic diffusivity of
infected hosts. Pybus et al. (2012) showed that this measure
can be estimated using

D̂ ¼
1

n

Xn

i¼1

d2
i

4ti
; ð1Þ

where di represents the great-circle distance covered along a
branch, ti represents the time elapsed on the branch, and n
represents the number of branches in the phylogeny. This
estimator can however be sensitive to uncertain diffusion
and time estimates for very short branches and hence
suffer from high variances. Therefore, we here explore a
weighted average alternative that divides the total squared
phylogenetic displacement by four times the total phyloge-
netic time in the evolutionary history:

D̂ ¼

Xn

i¼1
d2

iXn

i¼1
4ti

: ð2Þ

This statistic arrives at consistently lower estimates with
considerable less variance (supplementary fig. S9,
Supplementary Material online).

Combining Host and Geography

Phylogenetic diffusion models are general trait evolutionary
models and are therefore not restricted to spatial locations
(Faria et al. 2013; Bedford et al. 2014). We exploit this gener-
ality to examine HPAIV H5N1 host transmission throughout
the viral evolutionary history. Given the multitude of avian
hosts from which HPAIV H5N1 viruses were samples, we
follow a coarse-grained approach and consider transmission
among Anatidae, Phasianidae, and Neoaves hosts using a
nonreversible CTMC model. As with the discrete location
inference, we also map the complete Markov jump history
for the host trait in the posterior tree distribution and sum-
marize the number of Markov jumps as well as the time spent
in a particular host populations (Markov rewards).

To formally assess the directionality and symmetry in viral
jumps between the two largest host populations (Anatidae
and Phasianidae), we follow Mather et al. (2013) in setting up
four different models: Two unidirectional models for
Anatidae to Phasianidae jumps and vice versa, by fixing one
of the rates in a nonreversible model to zero, and two bidi-
rectional models, including one that enforces symmetric tran-
sition rates and another that allows for different intensities in

host jumping. We compare the different models using log
marginal likelihoods obtained through stepping stone sam-
pling (Baele et al. 2012, 2013; Baele and Lemey 2013).

To help elucidate the role of different avian host popula-
tions in the expansion dynamics of HPAIV H5N1, we incor-
porate both a continuous spatial diffusion process and a
discrete host transmission process in a single Bayesian analy-
sis. Although both processes are modelled independently, the
joint inference allows us to summarize host-specific contri-
butions to the spatial dispersal dynamics. To this end, we map
the complete host trait history in the posterior tree distribu-
tion and condition on this to delineate host-specific trajecto-
ries in the phylogeographic history. If branches would be
entirely associated with one specific host population, then
the host-specific summaries described above (e.g., the dis-
persal rate or diffusion coefficient) can be obtained by con-
ditioning on the relevant branch set identified by the host
mapping. However, a CTMC process realization involves
transmission among (potentially multiple) discrete states at
specific time points along a branch. In this case, we impute
the bivariate location at these time points and draw our sta-
tistics from the compound host-specific trajectories.

We provide new statistics (implemented as of BEAST
v1.8.1) to obtain such estimates. To evaluate differences in
spatial statistics between two different hosts, we conduct a BF
test (Suchard et al. 2005) that expresses the posterior odds
over the prior odds that the statistic for host i is larger than for
host j. To determine the posterior odds, we set up an indica-
tor function that expresses this difference and note that its
MCMC sample average converges to the posterior probability
of that model.

In addition to host-specific statistics, we developed a novel
visualization approach of continuous phylogeographic dis-
persal on a two-dimensional grid (described in detail in sup-
plementary materials and methods, Supplementary Material
online) that integrates three dimensions (time, space, and
host).

Supplementary Material
Supplementary file S1, tables S1–S7, figures S1–S11, and
materials and methods are available at Molecular Biology
and Evolution online (http://www.mbe.oxfordjournals.org/).
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