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ABSTRACT: In this report, we establish that DM-Segphos
copper(I) complexes are efficient catalysts for the enantiose-
lective borylation of para-quinone methides. This method
provides straightforward access to chiral monobenzylic and
dibenzylic boronic esters, with enantiomeric ratios up to 96:4,
using a commercially available chiral phosphine. Standard
manipulations of the C−B bond afford a variety of chiral diaryl
derivatives.
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Chiral secondary boronic esters are important intermedi-
ates in organic synthesis, because they are precursors of

chiral alcohols, chiral amines, and tertiary stereocenters.1

Among them, dibenzylic boronates such as B are especially
interesting, because they can provide a variety of enantiomeri-
cally enriched diaryl derivatives (see Scheme 1). The
diarylmethane framework represents a privileged structural
motif widely found in pharmaceuticals.2 Most of these
biologically active compounds present a chiral center at the

benzylic position with a stereodefined C−O, C−N, or C−C
bond. We envisioned that functionalization of the C−B bond in
B could offer a unified strategy for the preparation of these
compounds, from a common intermediate. However, the
enantioselective synthesis of dibenzylic boronic esters is still a
difficult challenge in chemical synthesis.
At the outset of this project, the only method available for

the synthesis of boronates such as B involved the use of chiral
lithiated carbamates and aryl boronic esters (Scheme 1).1b

Despite the undoubted significance of this approach, the yields
were moderate, and a stoichiometric amount of a chiral ligand
was required. As part of our interest in unconventional C−B
bond formation,3 we envisioned a new approach toward the
synthesis of dibenzylic boronates through the enantioselective
1,6-addition of a chiral copper-(I) boryl complex to a p-quinone
methide (Scheme 1).4,5 Formally, p-quinone methides are
neutral entities with a zwitterionic resonance structure that
enhances the electrophilic character at the δ-position.
Surprisingly, while ortho-quinone methides have been broadly
used in asymmetric synthesis,6 only two catalytic enantiose-
lective additions to para-quinone methides have been
reported.7,8 Both methods use carbon-based nucleophiles and
an organocatalyst to control the enantioselectivity. Therefore,
we became intrigued in exploring these compounds for several
reasons:

(1) the use of asymmetric metal catalysis to functionalize p-
quinone methides remained unexplored;
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Scheme 1. Chiral Dibenzylic Boronic Esters
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(2) the introduction of a boronic ester unit in ortho- or para-
quinone methides had not been reported; and

(3) the stereoselective addition of heteroatomic nucleophiles
to p-quinone methides had not been studied to date.

Herein, we describe the synthesis of dibenzylic boronates
through the borylative aromatization of p-quinone methides
with good yields and high enantiomeric ratio (er) values, under
mild reaction conditions and using a commercially available
chiral phosphine.9,10

While unsubstituted p-quinone methides (R2, R3 = H) are
too reactive to be isolated, 2,6-disubstituted derivatives are easy
to handle. We began our study with p-quinone methide 1a,
which contains removable t-Bu groups at the α-positions
(Table 1).11 When 1a was treated in THF with Cu-

(CH3CN)4PF6 (10 mol %), B2pin2 (1.5 equiv), NaOt-Bu (0.2
equiv), and methanol (MeOH) (4 equiv) in the absence of
ligand, we observed the formation of product 2a with moderate
yield (Table 1, entry 1). This background reaction showed the
feasibility of the transformation but also revealed a serious
handicap for the development of an asymmetric version. We
soon realized that the yields and stereoselectivities were highly
dependent on the ligand (Table 1, entries 2−7).12 Commer-
cially available (R)-DM-Segphos was superior to other chiral
ligands affording the desired dibenzylic boronate 2a in good
yield and high enantiomeric ratio at room temperature (Table
1, entry 7, er = 96:4). The reaction can be carried out with 5
mol % copper salt and 5.5 mol % of chiral phosphine (Table 1,
entry 8) without affecting the enantioselectivity, although the

yield observed under these conditions was slightly lower.
Interestingly, in the absence of MeOH, we observed product
formation but moderate er values (Table 1, entry 9).
With the optimal conditions in hand, we studied the scope of

the borylative aromatization. The catalytic system was robust
for p-quinone methides with different aromatic R1 substituents
at the δ-carbon (Table 2, structures 2a−2g). Dibenzylic
boronic esters with a larger naphthyl group (2b) or with
electron-rich aromatic substituents (2c and 2d) were prepared
in similarly good yields and high er values.
Diaryl derivatives with electron-withdrawing groups at the

meta- (2e), para- (2f), or ortho- position (2g) were also
synthesized, with excellent stereocontrol. In addition, the
absolute configuration of 2g was determined by single-crystal
X-ray crystallography.13 Importantly, a p-quinone methide
bearing an alkyl group at the δ-carbon afforded the
monobenzylic boronic ester 2h with good yield and high er
value. Alkyl groups with different steric hindrance (methyl
(Me) and isopropyl (i-Pr)) can also be introduced at the α-
position (R2) without affecting the yields and enantioselectiv-
ities (2i−2n).
To further explore the scope of this reaction, we studied the

borylative aromatization reaction with more challenging
nonsymmetric p-quinone methides (1o and 1p; see Scheme
2). These substrates were synthesized as E/Z mixtures of the
exocyclic double bond. Surprisingly, E/Z p-quinone methides
1o and 1p afforded dibenzylic boronic esters 2o and 2p with
high enantioselectivities. This result is striking and significantly
increases the potential structural scope of the method. These
experiments indicate that the stereodiscrimination of the
prochiral Si-face is not dependent on the geometry of the
exocyclic double bond in the p-quinone methide.14,15

Overall, commercially available DM-Segphos consistently
provides high er values and overcomes some of the structural
limitations found with the use of chiral sulfoxide-phosphine
ligands (prepared in four steps), recently reported by Liao.10 In
the latter case, p-quinone methides with ortho- substitution on
the aromatic ring (similar to 1g) and groups with less steric
hindrance α to the carbonyl (similar to 1i−1n) afforded only
moderate enantioselectivities (er = 84:16/75:25). Our catalyst
system provides similar compounds with higher stereocontrol
(compounds 2g, 2i−2n, er ≥ 95:5). More significantly, we have
expanded the scope of the reaction to p-quinone methides
bearing alkyl substituents at the R1 position (1h) and to the
challenging nonsymmetric p-quinone methides (1o and 1p),
which previously have not been studied.
Functionalization of the C−B bond provided several

monobenzylic, dibenzylic, and triaryl derivatives (Scheme 3).
Oxidation of the C−B bond allows for the synthesis of
enantiomerically enriched diarylmethanols in high yields. In
addition, we have prepared triarylmethane 5 from boronate 4
with excellent stereoretention (97% specificity).1c To the best
of our knowledge, this transition-metal-free C(sp3)−C(sp2)
coupling has not been used before with secondary dibenzylic
boronates. Homologation and oxidation of monobenzylic
boronate 2h gave alcohol 6 in good overall yield. Finally,
treatment of 6 with AlCl3 in refluxing benzene resulted in
removal of the tert-butyl groups, followed by Friedel−Crafts
reaction to afford phenol 7.
In order to gain insight into the reaction mechanism and to

ascertain the reasons for the observed enantioselectivity, we
performed quantum calculations at the DFT level. For this
study, we used (R)-Segphos-Cu(I) complexes and p-quinone

Table 1. Effect of the Chiral Ligand in the Borylative
Aromatization of p-Quinone Methides[a]

entry L* enantiomeric ratio, er[b] yield (%)[c]

1[a] 35
2[a] L1 54.5:45.5 47
3[a] L2 65:35 52
4[a] L3 77:23 76
5[a] L4 83:17 68
6[a] L5 66.5:33.5 41
7[a] L6 96:4 95
8[d] L6 94:6 79
9e L6 74:26 54

[a]Reaction conditions: 1 (0.2 mmol), B2pin2 (0.30 mmol), NaOt-Bu
(20 mol %), Cu(CH3CN)4PF6 (10 mol %), L* (11 mol %), MeOH
(0.8 mmol), THF (0.2 M). [b]er determined by chiral SFC previous
oxidation of the C−B bond. [c]Yield of isolated 2. [d]Reaction
conditions: 1 (0.2 mmol), B2pin2 (0.30 mmol), NaOt-Bu (20 mol %),
Cu(CH3CN)4PF6 (5 mol %), L* (5.5 mol %), MeOH (0.8 mmol),
THF (0.2 M). eThe reaction was carried out in the absence of MeOH.
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methide 1i (R2 = Me, R1 = Ph) as models. Noteworthy, no
simplification of the ligand structure was used in order to
properly consider the steric effects around the metal center. As
shown in Scheme 4, the boryl cupration is a highly exoergic
and, therefore, irreversible process. Since the absolute
configuration of the new stereogenic carbon is fixed in this
step, enantioselectivity is kinetically controlled. Transition
states for the boryl cupration (TSR and TSS) were located
and allowed the calculation of the corresponding activation
energies for the formation of both enantiomers. The free
energy of TSS is 0.9 kcal mol−1 lower than that corresponding
to TSR, because of better substrate accommodation within the

Table 2. Substrate Scope[a],[b]

[a]Reaction conditions: 1 (0.2 mmol), B2pin2 (0.30 mmol), NaOt-Bu (20 mol %), Cu(CH3CN)4PF6 (10 mol %), (R)-DM-Segphos (11 mol %),
MeOH (0.8 mmol), THF (0.2 M). [b]Yield of isolated 2. [c]er value as determined by chiral SFC or HPLC previous oxidation of the C−B bond. [d]

er value as determined by chiral SFC.

Scheme 2. Borylative Aromatization of Nonsymmetric p-
Quinone Methides

Scheme 3. C−B Bond Functionalization
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complex pocket for the former. This value is in accord with the
observed enantioselectivity using 1a and (R)-Segphos (Table 1,
entry 6). Intrinsic reaction coordinate studies connect these TS
with long distance association adducts formed prior to the boryl
cupration step (IS and IR; see Scheme 4).16 Calculated energies
suggest the boryl cupration reaction as the rate-limiting step, as
well as the enantioselective step.
The Cu complexes formed after the alkene insertion show a

long Cu−C distance with the C atom involved in the reaction
(IIS and IIR; see Scheme 4). In fact, the structure is reminiscent
of a (π-allyl)Cu complex. These complexes would become
protonated in a subsequent step. We have also calculated the
energy for isomer IIIs corresponding to the slipping of the
borylated substrate to afford a copper-phenoxide complex
(Figure 1). This process is highly exoergic, and for that reason,
we propose that protonation most likely takes place at the Cu−
O bond.17

In summary, we have developed a new method for the
asymmetric synthesis of useful monobenzylic and dibenzylic

boronic esters via a novel copper-catalyzed borylation of p-
quinone methides. For the first time, consistently high
enantioselectivities are observed using a commercially available
phosphine ligand. The products are versatile intermediates for
the enantioselective synthesis of monoaryl, diaryl, and triaryl
derivatives. Calculations at the density functional theory (DFT)
level fully agree with experimental observations and provide
insight for the development of new asymmetric trans-
formations.
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R.; Parra, A.; Alemań, J.; García Ruano, J. L.; Tortosa, M. J. Am. Chem.

Scheme 4. Calculated Reaction Profile for Both
Diastereomeric Approaches (Re and Si) of the Boryl
Cupration at the B3LYP/6-31G(d) (C,H,B,O,P) LANL2DZ
(Cu) Level[a]

[a]ΔG values are represented in kcal mol−1, considering IS as 0.0.

Figure 1. Calculated energy difference and equilibrium geometries for
the formation of the copper phenoxide complex at B3LYP/STO-3G
(C,H,B,O,P) LANL2DZ (Cu) level. Δ(E +ZPE) and ΔG values
(given in brackets) in kcal mol−1.

ACS Catalysis Letter

DOI: 10.1021/acscatal.5b02742
ACS Catal. 2016, 6, 442−446

445

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acscatal.5b02742
http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b02742/suppl_file/cs5b02742_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.5b02742/suppl_file/cs5b02742_si_002.cif
mailto:mariola.tortosa@uam.es
http://dx.doi.org/10.1021/acscatal.5b02742


Soc. 2012, 134, 15165. (c) Parra, A.; Amenoś, L.; Guisań-Ceinos, M.;
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