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Abstract

The basic reproduction number, R0, is often defined as the average number of infections generated 

by a newly infected individual in a fully susceptible population. The interpretation, meaning, and 

derivation of R0 are controversial. However, in the context of mean field models, R0 demarcates 

the epidemic threshold below which the infected population approaches zero in the limit of time. 

In this manner, R0 has been proposed as a method for understanding the relative impact of public 

health interventions with respect to disease eliminations from a theoretical perspective. The use of 

R0 is made more complex by both the strong dependency of R0 on the model form and the 

stochastic nature of transmission. A common assumption in models of HIV transmission that have 

closed form expressions for R0 is that a single individual’s behavior is constant over time. In this 

paper we derive expressions for both R0 and probability of an epidemic in a finite population 

under the assumption that people periodically change their sexual behavior over time. We illustrate 

the use of generating functions as a general framework to model the effects of potentially complex 

assumptions on the number of transmissions generated by a newly infected person in a susceptible 

population. We find that the relationship between the probability of an epidemic and R0 is not 

straightforward, but, that as the rate of change in sexual behavior increases both R0 and the 

probability of an epidemic also decrease.
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1. Introduction

Human Immunodeficiency Virus (HIV) will elude control until we fully understand the 

theoretical conditions that allow it to persists in populations. Epidemiological models that 

assume mass-action dynamics have been informative for other sexually-transmitted 

infections (STI) [10]. However, those models are not well suited to understand the effects of 

variation in individual-level risk factors over time that drive the spread of HIV [28]. For 

example, prior models often assumed that high-risk people remain high-risk, forming a core 
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of infected people that are the source of many new infections. While the assumption of 

stable behavior over the course of an infection might be reasonable for short-lived infections, 

an HIV infected individual under proper medical care can live for decades. Our theoretical 

models of HIV transmission need to be able to account for the real possibility of time-

variable behavior at the individual-level over such long periods. In this paper we relax the 

assumption of constant behavioral patterns by introducing a simple model of HIV 

transmission that allows individuals to change their contact rate over time.

Contact rate heterogeneity (CRH), the variability in the distribution of sexual contact rates, 

has been recognized since Anderson’s 1988 paper as a key deviation from the homogeneous 

susceptible-infected (SI) models that typically describe STIs [1]. Empirical measurements of 

sexual contact rates by Halkitis et al. show more extreme values than homogeneous behavior 

assumptions would predict, because many people abstain from sex, while others are active to 

varying degrees [7]. Highly-active individuals comprise a large proportion of sexual 

contacts, skewing the contact rate distribution. Anderson and May calculated a closed form 

expression for the basic reproduction number in a susceptible-infected-removed (SIR) model 

with simple contact rate heterogeneity [2], showing that the basic reproduction number 

increases with increasing variance in the contact rate distribution. Contact rate heterogeneity 

makes elimination of the disease more challenging than would be expected in a 

homogeneous system with an equivalent average contact rate. Kretzschmar et al. showed 

how a small population of highly sexually-active individuals can define a core group within 

which transmission is maintained in the population [13].

Our model extends the formulation of CRH in Anderson and May by allowing individuals to 

re-sample their contact rate over time. We refer to this re-sampling of contact rates over time 

as contact rate volatility, CRV. In our formulation, the core group still exists, but it is 

populated by individuals experiencing brief episodes of high-risk behavior. Variation in 

individual-level contact rates could take many forms: slow-changing secular trends, faster 

periodic fluctuations that may correspond to partnership dynamics, and aperiodic random 

changes in sexual activity. We only deal with random fluctuations in contact rates here, 

characterized by a constant probability of resampling a new contact rate. This model is not 

indented to correspond to a particular population but rather illustrates the effects of contact 

rate volatility on the ability of HIV to establish and spread in a population.

In this paper we introduce CRV into the theory of stochastic branching processes to study 

the early epidemic behavior of an HIV epidemic. Probability generating functions (PGFs) 

were used to derive expressions for the random number of infections generated by newly-

infected individuals in a susceptible population. We calculated the basic reproduction 

number, the variance in the number of transmission caused by a newly infected individual, 

and the probability of an epidemic given a singular introduction (as in Newman [20]).

2. Methods

2.1. Analytical approach

We approached this problem by deriving probability generating functions to express the 

probability that a newly infected individual generates a given number of infections, a 
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random variable that we refer to as H*. Generating functions have been successfully applied 

to a wide variety of infectious disease epidemiology problems, including configuration 

model contact networks [17, 26, 19]. This approach, although analytically tractable in many 

situations, cannot capture the complex non-linear infection dynamics over the course of the 

entire epidemic. We limit the scope of this paper to statistics that we can derive from the 

properties of the early epidemic. We find closed-form expressions for E(H*), also known as 

the basic reproduction number, and Var(H*), as well as a numerical solution for the 

probability of an epidemic given a singular introduction into the population.

2.2. Nomenclature

All of the random variables used in this paper and their generating functions are listed in 

table 1. Transmission model parameters are listed in table 2. H is defined as the number of 

transmissions made by a individual selected with uniform probability in a fully susceptible, 

large population. H* is defined as the number of transmissions made by a individual selected 

with probability proportional to their contact rate in a fully susceptible, large population. 

The expectation of H* gives the standard definition of the basic reproduction number as 

defined by Anderson and May [2], which we will refer to as R*. Random variables are 

indicated with uppercase letters and generating functions of those variables use the 

corresponding lowercase letter with a dummy variable z. We will distinguish between 

contact rates of individuals selected at random from the population and individuals selected 

with probability proportional to contact rates. In the latter case, we will denote random 

variables with the symbol.

2.3. Stochastic branching processes

The work in this paper is based on the theory of stochastic branching processes [12] 

developed by Harris [8] and Athreya and Ney [3]. A stochastic branching process is a 

Markov process that models the probability of observing a population of a given size, at 

generation n + 1, given the current number of individuals and a known probability 

distribution of offspring per generation for each individual. Branching processes can 

likewise describe the early dynamics of epidemics, as done by Ball [4], but this 

approximation becomes poor as the epidemic progresses due to the depletion of available 

susceptible hosts. However, branching processes are ideal for calculation of key quantities 

such as R*, the initial growth rate, and the probability of observing an epidemic, which are 

properties of the early epidemic when the number of infected persons is very small.

Stochastic branching processes are analytically treated by the use of probability generating 

functions (PGFs). For a discrete random variable X with probability mass function Pr(x), the 

PGF of X is defined as

and as ∫ Pr(x)zxdx for a continuous random variable. The properties that we rely on for our 

derivations are listed below.
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• GX(1) = Pr(x1)1x1 + Pr(x2)1x2 + ⋯ + Pr(xf)1xf = 1

•

• The higher central moments can be calculated by further differentiation and 

algebraic manipulation. For example 

• The sum of a sequence of independent random variables, S = X1 + X2 + ⋯ + Xn 

can be represented as the product of n generating functions: 

• If n itself is a random variable, then the sum of random variables, S = X1 + X2 + ⋯ 

+ Xn, is generated by GSn(z) = Gn(Gs(z))

2.4. Infection model

Both the viral titre [22] and the per act transmission probability [25, 27, 11, 23] are variable 

over the course of infection. We reflect this variability in the natural history of infection by 

splitting the course of an infection into two distinct stages. The acute stage immediately 

follows infection and is characterized by a short average duration, , and high 

contagiousness, β1; the chronic stage follows the acute stage and is characterized by a long 

average duration, , and low contagiousness, β2. The optimal number of infection stages to 

represent the natural history of infection remains under debate; Bezemer et al. and Longini 

et al. have argued that more than two infection stages are required to model the epidemic [5, 

15]. Adding stages to our infection model is straightforward, but the algebra rapidly 

becomes cumbersome, obscuring the distinctiveness of CRV. Two stages enable us to 

capture the essence of the natural history of HIV and make it possible to represent the 

analysis in a concise way.

2.5. Contact rate heterogeneity and volatility model

Survey data reviewed by Anderon and by Liljeros et al. suggests that both sexual contact 

rates and partnership formation rates are heterogeneous between individuals [1, 14]. There 

exists growing evidence that contact rates too are heterogeneous within individuals over time 

(discussed in Romero-Severson et al. [24]). The contact rate heterogeneity model that we 

use in this paper attempts to integrate heterogeneity at both the population level between 

individuals and at the individual level over time.

We model the population distribution of contact rates at time t as Xt ~ Γ(k, θ) such that a 

randomly selected individual will have contact rate greater than or equal to x as 

. Our analysis is focused on the early epidemic period, so we 

assume that k and θ are constant over time, which is equivalent to a stationary secular trend 

in a large population. We modeled population-level heterogeneity as a Γ random variable for 

two primary reasons. First, the Γ distribution has a convergent closed form for its probability 

generating function, making it easier to find closed form expressions for the normalized 

moments of H*. Second, the Gamma distribution phenomenologically captures several of the 

features of observed contact rate distributions such as long tails and a high degree of positive 
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skew. Also, at certain parameterizations, this type of between individual heterogeneity can 

be easily simulated using the traditional compartmental models that are common in 

epidemiology.

Individuals experience periods of stable behavior (a behavioral interval), i.e., their contact 

rates are constant over the duration of a behavioral interval. At the beginning of a new 

interval, an individual re-draws a new contact rate from the population distribution. Figure 1 

shows each possible type of behavioral interval based on in which infection state they occur. 

Termination of a behavioral interval occurs at the same rate for all individuals such that the 

length of behavioral intervals are exponentially distributed. The contact rate volatility model 

has a single parameter, ρ, that defines the rate that behavioral intervals terminate. The 

volatility model could be made more sophisticated by considering multiple types of 

behavioral intervals with different lengths, correlated contact rates, or periodicity in trend. 

However, more complex models not only get away from the fundamental effects of volatility 

on the statistics we are interested in, but they also make closed-form solutions less 

obtainable.

3. Results

3.1. Derivation of generating functions for the number of transmissions per behavioral 
interval

We must consider the first behavioral interval separately from the remaining intervals, 

because the contact rates in the first interval are generated by x̃(z), while in the remaining 

intervals contact rates are generated by x(z). We also need to consider if the interval occurs 

in the acute stage, spans the acute and chronic stages, or occurs in the chronic stage. These 

combinations define 5 possible types of intervals illustrated in figure 1.

Neither c(z)1,2,s nor c̃(z)1,2,s has a closed form. However, we are only interested in 

derivatives evaluated at z = 1, which do have closed forms. The following is a step-by-step 

derivation of  and . First we integrate over the probability of the interval length, 

T1, and the contact rate, X, to get an expression for c1(z):

which by the law of logarithms can be re-written as

(3.1)

By the definition of PGFs, the expression ∫ Pr(X) [eT1β1(z−1)]X dX is formally equivalent to 

x(eT1β1(z−1)) which upon substitution gives

Expanding Pr(T1)
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The value of that integral would have to be approximated if we wanted to work with that 

function directly. However we are only interested in the derivative of the function where z = 

1

The order of integration and differential can be reversed by Leibniz’s rule

Rearranging gives

(3.2)

Evaluating the inner derivative

Substituting kθT1β1 in gives

The quantity ∫ T1λ1e−λ1T1 dT1 is the average interval duration in the acute stage which can 

be written in terms of the model parameters as . The final result is then

which in plain English is the mean effective contact rate, kθβ1, multiplied by the mean 

interval duration, 
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The derivation of  follows the same steps as before. However, the substitution in 3.1 is 

with x̃(eT1β1(z−1)) which changes the inner derivative in equation 3.2 to

Differentiation by the quotient rule gives (k+1)θβ1. Continuing the logic in the previous 

derivation gives a final result of

The second derivative of c1(1) can be calculated by replacing equation 3.2 with the second 

derivative.

which after rearranging becomes

The quantity  is integrable by substituting ψ = λ1T1:

∫ ψ2e−ψdψ is the Gamma function Γ(z + 1) = ∫ ψ2e−ψdψ = Γ(3) = 2, therefore 

. Substituting in we get a final expression

The second derivative of c̃1(1) proceeds in the same fashion as above.
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The derivations of c2(z) and c̃2(z) are identical to the above, albeit with subscripts 

corresponding to the chronic stage parameters.

In the interval that spans the transition from the acute to chronic stage, an individual’s 

contact rate is constant, but the probability of transmission per contact changes. To account 

for this correlation, we need to integrate over the lengths of the spanning interval on the 

acute side and on the chronic side respectively. The resulting integral is

The inner integrals can be rewritten as an exponential probability generating function ∫ 

Pr(T2)e(z−1)(Xβ2T2)
dX = T2(e(Xβ2)(z−1)) giving

The same can be done for the next integral giving

(3.3)

Equation 3.3 has no closed form but, as before, we only want to work with its derivatives. 

Reversing the order of integration and differentiation and setting z = 1 gives

(3.4)

∫ Pr(X)XdX is E(X) = kθ. Substituting in gives

To get the , we substitute the first for the second derivative in equation 3.4 giving
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The quantity ∫ Pr(X)X2 dX is the expectation of X2 which is

Substituting in gives

 is obtained by substituting X̃ for X in equation 3.4 and proceeding as before. The 

quantity ∫ Pr(X̃)X̃ dX̃ = E(X̃) = (k + 1)θ which gives

To get  we have to find ∫ Pr(X̃)X̃2 dX̃ = E(X̃2).

Substituting in gives

3.2. The expectation and standard deviation of H* given heterogeneous and invariant 
contact rates

The basic reproduction number (R* = E(H*)) is commonly defined as the average number of 

infections generated by an average index case in a fully-susceptible population. In 

homogeneous systems, a randomly selected individual is, by definition, average, which 

simplifies the calculation of R*. However, in systems with heterogeneous contact rates, we 

need to take additional care in what is meant by the notion of an average infector, 

specifically with respect to the hazard of transmission. The risk of an individual becoming 

infected is proportional to their contact rate; an individual that has higher sexual activity 

levels is at greater risk of infection. The index case is more likely to be have greater than 

average sexual activity levels [21].

The contact rate C of an individual selected at random in the population is generated by c(z). 

If we select an individual with probability proportional to contact rate, their contact rate C̃ is 

Romero-Severson et al. Page 9

Math Model Nat Phenom. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



generated by c̃(z). If contact rates are stable over time, a newly infected individual maintains 

the same contact rate over the course of their infection such that the rate in the first and 

second stages are perfectly correlated. The number of transmissions produced by the index 

case is generated by c̃s(z), which has no closed form for the Gamma distribution. However, 

the expectation and variance of C̃ do have closed form and can be calculated using the 

derivatives of c̃s(z). The expectation is

and the variance is

Collapsing into one infection stage recovers the classic result by Anderson and May that

where β1kθ, β1kθ2, and  are the mean and variance of the effective contact rate 

distribution and the mean duration of an infection respectively. Both the expectation and the 

variance in the number of infections generated by the index case are monotonically 

increasing with increasing variance in the contact rate distribution given a fixed mean value.

3.3. The basic reproduction number with heterogeneous and volatile contact rates

If the first interval terminates in the first stage then the number of transmissions is generated 

by

If the first interval terminates in the second stage, then it must have spanned the entire first 

interval generating C̃
s transmissions. In the second stage the index case experiences I2 

behavioral intervals within each they generate C2 transmissions. If the first interval 

terminates in the second stage, then the number of transmissions is generated by

The total number of transmissions is generated by the sum of H*1 and H*2 weighted by their 

respective probabilities
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Differentiating H* and setting z = 1 gives the basic reproduction number

Figure 2 shows the effect of volatility on R* at various levels of σ. The first stage is 

parameterized to be 50 times more contagious but much shorter than the second stage of 

infection. The transmission parameters were taken from a analysis by Pinkerton [23] of a 

longitudinal cohort of HIV serodiscordant couples. As expected from theory, R* increases 

with increasingly heterogeneous contact rates (increasing σ). Volatility has an opposing 

effect, decreasing R*. The reduction in R* is monotonic in ρ and in the limit converges to the 

fully homogeneous model . The reduction in R* is caused by shorting of 

the first behavioral interval as volatility increases. By definition, the contact rates in the first 

interval are higher than in successive intervals, such that any process (e.g., increased 

volatility) that reduces the length of the first interval will reduce the average number of 

transmissions generated by the index case.

The variance of H* can be found by differentiating . For example,

The variance of H* can also be expressed in terms of the model parameters by substituting in 

the expressions for the generating functions in table 1.

Figure 3 shows the effect of contact rate volatility on the standard deviation in the number of 

transmissions made by the index case, SD(H*), at various levels of σ. Volatility has a similar 

effect on the standard deviation of H* as it does on the expectation as seen in figure 2. The 

effect is due to both the reduction in contact rates by the shortening of the first behavioral 

interval and the reduction of the variance of average contact rates between individuals. 

Increasing ρ increases the number of behavioral intervals a single individual experiences, 
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which reduces between-individual variance. In the limit of ρ, the between individual 

variance in the number of contacts converges to the expectation, which is consistent with a 

simple Poisson process.

4. Probability of an epidemic

The probability of an epidemic is one minus the probability that an epidemic goes extinct if 

we infect a single individual with probability proportional to contact rate. The extinction 

probability of a branching process can be solved by a simple recurrence relation derived in 

Athreya et al. [3]. The variable u will denote the probability that an epidemic does not occur 

upon infecting a single individual with contact rate C̃. A necessary condition for a branching 

process to go extinct is that if a transmission occurs, the branching process initiated by the 

newly infected individual also goes extinct. Therefore, u must satisfy the self-consistent 

equation

This equation can be solved by finding the equilibrium of a simple iterated map

and starting from u0 << 1.

The probability of an epidemic if we initially infect someone with probability proportional 

contact rate is 1 − h*(u). If, on the other hand, the infected is selected uniformly at random, 

the probability of an epidemic is 1 − h(u).

5. Discussion

This study of CRV and R* is the first, to our knowledge, that explicitly focuses on isolating 

the effects of volatility on R* using methods that incorporate stochasticity. In Diekmann et 

al. the authors formalized a method for the calculation of R* in a generalized heterogeneous 

transmission system as the dominant eigenvalue of the next generation operator. Their 

approach can be though of as formalizing an expression for the infectivity, A, as a function 

of time from infection, τ, and then integrating over τ to get an expression for R*, ∫ A(τ)dτ = 

R*. The next generation operator gives the value of the ∫ Ah(τ)dτ for each possible 

heterogeneity state; if we assume that transmission is dependent only on the heterogeneity 

state of the infector, then deriving the next generation matrix can be (in simple cases) 

straightforward. Their method nonetheless requires either the assumption of a deterministic 

system as noted in Heestereek and Dietz [9].

Explicit inclusion of the stochasticity inherent in transmission systems allows us to treat the 

quantity of interest realistically, not merely as a scalar, but as a random variable. R* alone 

can give an idea how hard an infection is to eliminate. When the population of infected 

individuals is very small, such as during the early epidemic period, the system is dominated 

by stochastic effects, and R* will not give a comprehensive picture of the rate of epidemic 
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spread and the probability of the disease taking hold in the population [18]. Consider the 

result from Anderson and May [2] that  in a simple SI model with 

heterogeneous contact rates, where μc is the average contact rate and  is the variance of the 

contact rate distribution. This relation implies that while holding the average contact rate 

constant, increasing the variance of the contact rate distribution, increases R* and, by the 

standard interpretation of R*, makes controlling the epidemic more difficult. However, as we 

showed, that qualitative nature of the effect is unchanged, its magnitude is greatly reduced in 

the presence of contact rate volatility.

The functional form that the contact rate distribution takes is also important. Liljeros et al. 

[14] found that a cross-sectional distribution of the number of sexual partners from a large 

Swedish cohort followed a power law distribution with scaling exponent of 2.3 for males 

with more than 5 reported lifetime partners. Sexual networks with power-law distributed 

node distributions are referred to as scale-free networks. May and Lloyd [16] showed that, 

for infinite population sizes, scale-free networks do not show threshold behavior; for any 

non-zero transmission probability an epidemic can occur. The lack of threshold behavior 

emerges as a result of the underlying degree distribution having divergent variance (i.e. the 

variance goes to infinity as the number of nodes becomes large).

The concept of volatility would prove challenging to unify with work on scale-free 

networks. Networks are often thought of as static, or at least static over some period of time. 

The power law distribution found by Liljeros et al. aggregated the total number of lifetime 

partners, so it loses any measure of volatility in either the number of partnerships or the 

number of contacts. Even in a dynamic network, it is hard to imagine how volatility as we 

have implemented it here could be integrated into a network model. The problem arises 

because an individual’s actual contact rate is limited by the number of available contacts in 

the network at any point in time. Contact rates could be conceived as a preferred number of 

partners that would govern whether or not an individual would accept a new partner or 

terminate an existing partnership. Before branching into that line of research, we would 

conceptualize volatility in the broader context of stable and casual partners.
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Figure 1. 
Transmissions generated by various behavioral intervals. Interval type one begins after 

infection and terminates in chronic stage, the number of transmissions made in this interval 

is C̃
s; interval type two begins after infection and terminates in acute stage, the number of 

transmissions made in this interval is C̃
1; interval type three begins after re-sampling a new 

contact rate in the acute stage and terminates in the acute stage, the number of transmissions 

made in this interval is C1; interval type four begins after re-sampling a new contact rate in 

the acute stage and terminates in the chronic stage, the number of transmissions made in this 

interval is Cs; interval type five begins after re-sampling a new contact rate in the chronic 

stage and terminates in the chronic stage, the number of transmissions made in this interval 

is C2.
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Figure 2. 
Effect of contract rate volatility on R*. We display (left panel) the effect of the mean (x-axis) 

and standard deviation (y-axis) of the contact rate distribution on the basic reproduction 

number without contact rate volatility. The panel on the right shows the effect of the 

standard deviation of contact rates (y-axis) and the degree of contact rate volatility (x-axis) 

on the basic reproduction number. The average duration of a behavioral interval is ρ−1 such 

that low values of ρ signify essentially-static contact rates. The average duration of infection 

is 148 months with the first 2 months being the first stage and the remainder in the second. 

The probabilities of infection given contact are 0.05 and 0.001 in the first and second stages 

respectively.
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Figure 3. 
Effect of contract rate volatility on SD(H*). This plot shows the effect of the mean (x-axis) 

and standard deviation (y-axis) of the contact rate distribution on the standard deviation of 

the number of transmissions generated by an index case, SD(H*), without contact rate 

volatility (left panel). The panel on the right shows the effect of the standard deviation of 

contact rates (y-axis) and the degree of contact rate volatility (x-axis). The average duration 

of a behavioral interval is ρ−1 such that low values of ρ mean essentially static contact rates. 

The average duration of infection is 148 months with the first 2 months being the first stage 

and the remainder in the second. The probabilities of infection given contact are 0.05 and 

0.001 in the first and second stages respectively.
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Figure 4. 
Effect of contract rate volatility on the probability of an epidemic. This plot shows the effect 

of the mean (x-axis) and standard deviation (y-axis) of the contact rate distribution on the 

probability of an epidemic without contact rate volatility (left panel). The panel on the right 

shows the effect of the standard deviation of contact rates (y-axis) and the degree of contact 

rate volatility (x-axis). The average duration of a behavioral interval is ρ−1 such that low 

values of ρ mean essentially static contact rates. The average duration of infection is 148 

months with the first 2 months being the first stage and the remainder in the second. The 

probabilities of infection given contact are 0.05 and 0.001 in the first and second stages 

respectively.
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Table 1

Random variables

Variable Type Description Generating function

I1 Geometric Total number of behavioral intervals in the first stage

I2 Geometric Total number of behavioral intervals in the second stage

X̃ Gamma Contact rate primary interval

X Gamma Contact rate secondary intervals (1 − θ log(z))−k

T1 Exponential Interval duration during acute stage

T2 Exponential Interval duration during chronic stage

C̃
1

Poisson Number of transmissions in the primary interval in the acute stage

C̃s Poisson Number of transmissions in the primary interval in the spanning stage

C̃
2

Poisson Number of transmissions in the primary interval in the chronic stage

C1 Poisson Number of transmissions in a non-primary interval in the acute stage

Cs Poisson Number of transmissions in a non-primary interval in the spanning stage

C2 Poisson Number of transmissions in a non-primary interval in the chronic stage
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Table 2

Transmission parameters

Parameter Description

θ Gamma shape parameter for contact rate distribution

k Gamma scale parameter for contact rate distribution

ρ Contact rate volatility parameter

δ1 Rate of progression from acute to chronic stage

δ2 Rate of progression from chronic stage to death

ω Natural removal rates

ε Entry rate

β1 Transmissibility per acute contact

β2 Transmissibility per chronic contact

λ1 = ω + ρ + δ1 Rate that an acute interval terminates

λ2 = ω + ρ + δ2 Rate that an chronic interval terminates

ϕa = 1 − ρ/λ1 Probability that an acute interval ends in removal or progression

ϕc = 1 − ρ/λ2 Probability that a chronic interval ends in removal
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