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Abstract
The dyskinesia of Parkinson's Disease is most likely due to excess levels of dopamine in

the striatum. The mechanism may be due to aberrant synthesis but also, a deficiency or

absence of the Dopamine Transporter. In this study we have examined the proposition that

reinstating Dopamine Transporter expression in the striatum would reduce dyskinesia. We

transplanted c17.2 cells that stably expressed the Dopamine Transporter into dyskinetic

rats. There was a reduction in dyskinesia in rats that received grafts expressing the Dopa-

mine Transporter. Strategies designed to increase Dopamine Transporter in the striatum

may be useful in treating the dyskinesia associated with human Parkinson's Disease.

Introduction
The principle motor sign of Parkinson’s Disease (PD) arises because neurodegeneration of
Substantia Nigra pars compacta (SNpc) neurones and their axons, results in failing dopamine
(DA) neurotransmission in the dorsal striatum. At the onset of disease, treatment with levo-
dopa improves motor function, but within 5 years this beneficial effect is marred by “wearing
off” in about 50% of patients. “Wearing off” [1–5] refers to the increasingly shorter duration of
efficacy of a single administration of levodopa, which eventually comes to mirror the plasma
levels of levodopa [2,6]. The explanation provided for “wearing off” is that the physiological
capacity to store DA, which is rapidly synthesised by Aromatic Amino Acid Decarboxylase
(AADC), is eroded so that newly synthesised DA is immediately delivered into the synaptic
space and is available for neurotransmission. As synthesised DA is normally stored in vesicles
of DA terminals, the progressive loss of DA terminals in PD is the most likely explanation for
loss of storage. Dyskinesia almost invariably accompanies “wearing off”, and the threshold and
time-course for dyskinesia comes to parallel the anti-Parkinsonian effect of levodopa [1,7–10].

In a previous study, we examined the events leading to the loss of dopamine storage and the
emergence of dyskinesia [11] and briefly summarise these findings here. We found that in nor-
mal rats, there was either a modest, or no rise in striatal DA concentration ([DA], measured by
dialyses) following administration of levodopa, presumably because of rapid clearance of DA
from the synaptic space by re-uptake through the dopamine transporter (DAT). When lesions
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of varying size are made to the rat SNpc, DAT expressing DA terminals (and hence DAT) only
begin to fall when the lesion size is greater than ~70% (see also [11–15]). Furthermore, [DA] in
the striatum following administration of levodopa only began to increase when the number of
DAT expressing terminals in the striatum began to fall and dyskinesia (as measured by Abnor-
mal Involuntary Movements Scale: AIMS) increased linearly with the increase in striatal [DA].
AIMS increased sharply when less than 20% of DAT expressing terminals remain (S1 Fig). Lee
et al [11] proposed that the reason that [DA] and dyskinesia increased sharply was due to loss
of DAT function resulting from the loss of DAT expressing fibres. On the basis of this previous
study[11], we conclude that reinstating even a small amount of DAT expression in the striatum
might significantly ameliorate dyskinesia. DAT is reduced in dyskinetic rats, non-human pri-
mates [11,15], and in people whose PD is complicated by dyskinesia [16]. A previous study
demonstrated that grafting dopaminergic neurons expressing DAT reduced dyskinesia more
than grafts of dopaminergic neurons that did not express DAT[17]. In this study we tested the
proposition that a modest increase in DAT expression would significantly reduce levodopa
related dyskinesia in rats by grafting cells that express DAT into the striatum of dyskinetic
rats. A similar technique was used to show that expressing DAT in C17.1 cell grafted into the
rodent striatum reduced their alcohol consumption. We chose these cells in this study because
the previous study demonstrated that these cells could maintain stable expression of DAT
after transfection and because these cells were of mouse origin which has advantage for
immunohistochemistry if the rat is the host. The findings reported here suggest that increas-
ing DAT expression in the striatum as means to treating dyskinesia is worthy of further
investigation.

Methods
All methods conformed to the Australian National Health and Medical Research Council pub-
lished code of practice for the use of animals in research and were approved by the ethics com-
mittee of the Florey Institute for Neurosciences and Mental Health. Thirty-five male Wistar
rats weighing 250–275 g were used.

Generation of DAT expressing construct
The full length rat DAT cDNA was amplified from rat stratium total RNA (extracted using
Qiagen RNeasy kit, Chadstone, Australia) by high fidelity RT-PCR (Transcriptor HF, Roche,
Castle Hill, Australia; Phusion HF DNA polymerase, Finnzymes, Espoo, Finland; GC buffer;
primers). PCR primers were designed based on rat DAT NCBI Reference Sequence
NM_012694.2; forward primer includes the EcoRI and Kozak sequences before the start codon
5’CGG^AATTCTGCCACCATGAGTAAGAGC 3’ whereas the reverse primer includes the
XbaI downstream of the stop codon 5’GCCTAGT^CTAGACACTTTACAGCAACAGCC 3’.

The amplified rat DAT cDNA (1869bp) was cloned into EcoRI/XbaI sites of the pcDNA3.1/
Zeo vector (Invitrogen, Carlsbad, CA) with expression under the control of CMV promoter.
The identity of the cloned amplicon was confirmed by Sanger sequence analysis (Applied Bio-
systems 3130xl Genetic Analysers, MHTP Medical Genomics Facility, Australia).

Cell lines
C17.2 cells (an immortalised mouse neural progenitor cell line derived from postnatal mouse
cerebellum[18]) was transfected with either rat DAT construct (DAT cells) or vector control
plasmid (Null cells) as described above[19]. Selection pressure was asserted by addition of the
antibiotic Zeocin (Invitrogen) to the complete DMEMmedia. Briefly, 48h after transfection,
C17.2 cells were passaged into 12-well plates, in 1:10, 1:20, and 1:40 dilutions, and cultured in
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selection medium (i.e. complete DMEM containing 400 μg/mL Zeocin) for 2 weeks. Media
were changed every 2 days. Only cells expressing the pcDNA3.1/Zeo(+) plasmid would be
resistant to Zeocin toxic effect. Each confluent well (i.e. each stable line) was expanded into
T25 flasks with selection medium. At 80% confluency, two-thirds of the cells were harvested
and frozen into aliquots and one-third of the cells were passaged into new T25 flask. The selec-
tion process was repeated 13 times; cells were harvested and frozen down after each selection
cycle. Total RNA and protein were extracted from harvested cells using the Paris kit
(Ambion1, Life Technologies, Mulgrave, Australia) and DAT expression was analysed by
RT-PCR according to manufacturers’ instructions (RT: Superscript II Reverse Transcriptase/
random primers, Life Technologies; PCR: GoTaq Green/rDAT primers, Promega) and West-
ern Blot analyses. DAT cell lines that continuously expressed DAT transcript and protein in all
selection rounds were expanded and frozen in liquid nitrogen. Null cell lines that survived 13
rounds of selection were also expanded and frozen in liquid nitrogen. For transplantation, fro-
zen cell aliquots were expanded using the selection medium. Harvested DAT or Null cells were
rinsed three time in Earle's Balanced Salt Solution (EBSS, Gibco, USA), and resuspended in
EBSS to a density of 8.5X104 cells/μl for grafting.

Surgery and dyskinesia
Anesthesia was induced by inhalation of 5% isoflurane (Delvet, Seven Hills, NSW, Australia),
and maintained with 1.5% isoflurane through a nose cone. Large (> 90%) unilateral lesions of
the nigrostriatal pathway were made in rats by injecting 4 μl of a 3.5 μg/μl solution of 6-hydro-
xydopamine (6-OHDA; Sigma-Aldrich, St. Louis, MO) in 0.9% NaCl containing 0.02% ascor-
bic acid, into the right medial forebrain bundle at 4.4 mm caudal and 1.2 mm lateral to
Bregma, and 7.8 mm below dura (Paxinos andWatson, 1998). Fourteen days later (see timeline
in Fig 1), the number of rotations in the 90 mins following administration of amphetamine
(2.5-5mg/kg i.p) was counted as an initial estimate of the extent of nigral cell loss: lesions that
resulted in more than 90% loss of dopaminergic cells were expected to produce more than 5
rotations per min.

Twenty-one days after 6-OHDA administration, levodopa (levodopa methyl ester hydro-
chloride (Sigma, #D1507) and benserazide (Sigma, #B7283) (6 and 15 mg/kg, respectively, i.p),
in 0.9% saline and 0.02% ascorbic acid), was administered daily for 20 days to induce dyskine-
sia, and then animals were scored daily until scores were stable (which occurred by day 30 at
the latest). Dyskinesia was scored was using the AIMS [11,20,21]. AIMS scoring followed levo-
dopa administration as follows. Animals were placed individually in transparent plastic cages
with bedding material and forelimb, orolingual, axial; and locomotive behaviour was scored
over one minute as: 0, absent; 1, present less than 50% of the time; 2, present more than 50% of
the time; 3, continuous but suppressible by a strong startling stimulus; and 4, continuous and
uninterruptible by strong startling stimuli. Scoring was performed every 20 min, for 180 mins
(i.e. 9 occasions for each administration of levodopa). Thus the maximum score at each mea-
surement was 16 and for each administration was 144 (16 x 9). Once scores were stable, AIMS
from 4 separate days were averaged to produce the pre-grafting level of dyskinesia.

Fig 1. A time-line of the experiments. A time line showing the interval between each experimental step.

doi:10.1371/journal.pone.0153424.g001
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Rats were then anesthetized with isoflurane (as above), holes drilled in the skull over injec-
tion sites, and a glass micropipette attached to a 10 μl Hamilton syringe was placed at the fol-
lowing coordinates: 1.0 mm rostral and 2.5 mm lateral to Bregma, and 4.5 mm and 4.0 mm
below dura; and 0.2 mm anterior and 3.0 mm lateral to Bregma, and 4.5 mm and 4.0 mm
below dura. Each of these four locations were injected with 1x105 cells suspended in 1 ul of
buffer (~84,000 cells), at a rate of 1 μl/min. The micropipette was left in place for 2 minutes fol-
lowing each injection before removing it from the brain. The cells were kept on ice until trans-
planted. Daily levodopa administration recommenced the day following surgery and continued
until the end of the study (day 20), with AIMS scores score assessed according to the schedule
in the Results section. All grafted animals received a daily injection of cyclosporin A (20mg/kg,
LC laboratories, Woburn, MA, USA) commencing the day before transplantation and continu-
ing until animals were killed at end of experiment.

Tissue preparation
Animals were deeply anaesthetized using pentobarbitone sodium (Lethabarb, Virbac, Milperra,
NSW, Australia; 100mg/kg i.p.) and transcardially perfused with Phosphate Buffered Saline (PBS)
at 37°C, followed by 4% paraformaldehyde (Sigma) and 0.2% picric. The brains were dissected out
and placed in the same fixative for 90 min at 4°C, and finally immersed for 48h at 4°C in 30%
sucrose dissolved in 0.1 M phosphate buffer Saline (PBS). The brains were snap frozen and then cut
in coronal sections using a cryostat (Leica CM1850 (Leica CM1850, Wetzlar, Germany) at a thick-
ness of 14 μm, thaw-mounted on slides coated with 0.5% gelatin (Sigma) and 0.05% chromium(III)
potassium sulphate dodecahydrate (Merck, KGaA, Darmstadt, Germany), and stored at -20°C.

Immunohistochemistry
Antigen retrieval was performed where sections were rinsed in 0.1 M phosphate buffered saline
(PBS), followed by 0.21% Citrate Buffer (pH 6.0) for 120 min at 90°C. Sections were then cooled
to room temperature and rinsed (3 × 10 min) in 0.01M PBS, followed by incubation in rat anti-
DAT antibody (1:1000; Merck Millipore, Billerica, MA, USA; #MAB369) diluted in 0.01 M PBS,
0.3% Triton X-100 and 1.0% NRS for 24h at room temperature. Sections were then incubated in
blocking diluent [0.01 M PBS containing 5% normal rabbit serum (NRS) and 0.3% Triton X-100
(Sigma)] for 30 min, biotinylated rabbit anti-rat (1:500; Vector, Burlingame, CA, USA) diluted in
0.01 M PBS and 1.0% NRS for 2h at room temperature, and then in avidin peroxidise (1:1000 in
0.01 M PBS; Sigma) for 1 h, followed by diaminobenzidine (1:100; DAB, Sigma) for 20 min.
Hydrogen peroxidase (Merck) was added (0.01%) to the DAB solution for substrate precipitation
and the reaction terminated 1–2 min later by rinsing sections in 0.01M PBS.

For fluorescence imaging, sections were also put through the above mentioned antigen
retrieval process then double labeled with primary antibodies; Rat Anti-DAT antibody (1:500;
Merck Millipore, USA; #MAB369) and Rabbit FOS-B (102) antibody (1:50; Santa Cruz; #SC-
48) for 24 hours. Sections were then rinsed with 0.1M PBS and blocked with diluent [0.01 M
PBS containing 5% normal goat serum and 0.3% Triton X-100] for 30 minutes. Secondary anti-
bodies were applied for a further 2 hours at a dilution of 1:100, (goat anti-rabbit alexa fluor
488, and goat anti-rat alexa fluor 594 (Jackson Immuno Research). The sections were further
rinsed with 0.1M PBS, then cover slipped using Dako fluorescent mounting medium. Identical
exposure and gain settings were used to capture the images.

Cell Quantification
The grafted region was identified by the presence of DAT-immunoreactive cell bodies/fibres,
DAT-negative cell bodies, and/or a needle track associated with the grafting procedure. DAT-
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immunoreactive cell bodies were counted on 14 μm-thick sections, each 140 μm apart. Esti-
mates of the number of grafted DAT-immunoreactive cells were made using a fractionator
sampling design according to optical dissector rules [14,22–25]. The entire grafted area in each
section was delineated, and regular predetermined x, y intervals (x = 150 μm; y = 110 μm) and
counting frame dimensions (x = 150 μm; y = 110 μm) frame dimensions for all estimates were
derived by means of a grid program (Stereoinvestigator v.7.0, MicroBrightField, Williston, VT,
viewed through a microscope, Leica).

Results
Thirty-five animals received unilateral lesions of the nigrostriatal pathway that produced more
than 5 rotations per min following amphetamine but 6 of these had average AIMS scores prior
to grafting that were less than 6, so these rats were also excluded from the study. The average
AIMS score of the remaining 24 was greater than 50 in 16 animals (high dyskinesia group) and
between 6–25 in the remaining 8 (low dyskinesia group)—see Table 1. These rats received
either C17.2 cells that stably expressed DAT (DAT grafts, n = 15) or C17.2 cells transfected
with the empty vector (Null grafts, n = 9) and the graft types were similarly distributed
amongst the high and low dyskinetic animals (Table 1).

Histological Assessment of the grafts
Rats were killed 22 days after grafting was performed, followed by subsequent histological and
stereological examination of the grafts (Table 2 and Fig 2). DAT-immunoreactive fibres and
terminals in the striatum of animals that received Null grafts were either scanty or completely
absent (Fig 2A). No DAT-immunoreactive cells were observed in the striatum of any of the
Null grafted animals. The Null graft itself was often only discernable by the location of the
injection tract. Qualitatively, low dyskinesia animals had more DAT-immunoreactive fibres/
terminals in the denervated striatum than highly dyskinetic animals.

DAT-immunoreactive fibres/terminals in the striatum of animals that received DAT grafts
were also either scanty or completely absent (Fig 2B). In the case of one DAT graft recipient,

Table 2. Numbers of DAT-immunoreactive cells in grafted rats*.

Null Grafts DAT Grafts

High AIMS Low AIMS High AIMS Low AIMS

Median 0 0 312 124

IQR 0 3.5 187 24

N 9 2 7 4

* No DAT-immunoreactive cells were seen in the striatum of Null grafted rats

doi:10.1371/journal.pone.0153424.t002

Table 1. Animals Used in the study.

Graft Type

No. animals Ave AIMS Null DAT

Number lesioned 35 - - -

Failed Lesion 13 1 - -

Low AIMS (6–18) 6 12 2 4

High AIMS (45–78) 16 61 9 7

doi:10.1371/journal.pone.0153424.t001
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DAT-immunoreactive terminal were more obvious than all other lesioned animals. This rat
was in the low dyskinesia group and referred to below as “the partially denervated DAT grafted
animal” (see below). The DAT graft was readily discernable by the presence of DAT-immuno-
reactive cells along the injection track (Fig 2B and 2C). DAT-immunoreactivity was observed
in the nucleus of these cells, but even more intensely in the cytoplasm (Fig 2D and 2E). There

Fig 2. Photomicrographs of DAT-immunoreactivity in the striatum of grafted animals. (A) Null graft located in the striatum of a rat in whom 6-OHDA had
been used to denervate the striatum. The graft tract is faintly discernible but there are no DAT-immunoreactive cell bodies, terminals or fibres. (B, C, D and E)
show a DAT graft located in the striatum of a rat in whom 6-OHDA had been used to denervate the striatum; note the numerous DAT-immunoreactive cell
bodies within the graft (B and D). (D and E) show DAT-immunoreactivity is present in the cytoplasm and along the numerous processes emanating from the
cells. (F, G and H) show Fos- B immuno-reactivity (green) in a DAT grafted striatum (F) and a Null grafted striatum (H). (G) shows both Fos_B and DAT
immuno-reactivity (red) merged in the one image in the region of the DAT graft shown by the white rectangle in (F).

doi:10.1371/journal.pone.0153424.g002
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were numerous DAT-immunoreactive processes emanating from these cells. This pattern of
immunoreactivity suggested that some of the DAT was located on cell membranes. Most of the
DAT grafts were located in the dorsal striatum. However, the number of DAT cell in two grafts
were low and in one animal the number of DAT-immunoreactive was quite high but they were
located mostly in the overlying corpus callosum and cortex and with no cells in the striatum.
These three cases have been analyzed separately and will be referred to as cases of “failed grafts”
(Table 2 and Fig 3C). A further two grafts were located in the striatum, but one was more ven-
tral and posterior with part of the graft in the globus pallidus and the other was in the most ros-
tral part of the striatum (referred to below as “eccentric DAT grafted animals”).

As previously reported[26], there was a marked upregulation of Fos B immunoreactivity in
neurons in the dorsolateral striatum of lesioned animals treated with L-DOPA, which was appar-
ent in the Null grafted straita (Fig 2H), but not in the DAT grafted striata (Fig 2F and 2G).

Change in AIMS scores following grafting
Prior to grafting, the average AIMS scores in the high dyskinesia group was 61±9.5
(mean ± SD) and 15±4 in the low dyskinesia group. In the high dyskinesia group that received
DAT grafts, the averaged AIMS scores was 62±9 and in those that received Null grafts was 66
±15. Thus prior to grafting, the AIMS scores were similar, implying similar degree of dopami-
nergic terminal denervation.

Daily levodopa administration recommenced the day following grafting, with AIMS scores
assessed on days 3, 6, 8, 10, 15 and 20 post-graft. For each animal, the scores on each day were
expressed as a percentage change from the average pre-grafting AIMS scores for that animal
(Fig 3). The AIMS scores of animals receiving Null grafts increased transiently in most animals
but was sustained over the whole 20 days in a few animals (Fig 3A). Over the 20 post graft
days, the median AIMS scores had returned to 100% by day 10 and had fallen to 90% of pre-
surgery level by day 20: this trend was not significant.

In animals receiving DAT grafts, there was a transient increase in AIMS scores on day 3 but
the median AIMS scores fell rapidly to be 30% of pre grafting by day 20 (Fig 3B). Examination
of Fig 3B shows that the AIMS scores fell rapidly in some animals and more slowly in others
but overall was statistically different from pre graft AIMS scores at all days post graft except
day 3 (ANOVA and Dunnet’s multiple comparisons test).

The data was further analyzed to establish whether cases with more rapid recover could be
explained by the level of lesioning, using the post-lesioning AIMS scores and the extent of
remaining DAT-immunoreactive fibres/terminals as a surrogate marker of the extent of striatal
innervation. Thus animals that had high level of dyskinesia were examined separately to those
with low levels of dyskinesia Fig 3C and 3D). Post-grafting AIMS scores in animals with high
dyskinesia receiving Null grafts fell only minimally over the 20 days post-grafting (Fig 3C).
AIMS scores of animals with failed DAT grafts were similar to the null grafted animals (yellow
circles, Fig 2A). However, the AIMS scores of Null grafted animals with low dyskinesia fell over
the 20 days post-grafting (Fig 3E), and these animals tended to have higher numbers of DAT-
immunoreactive fibres/terminals in their striata.

In the case of the DAT grafted animals with high dyskinesia, AIMS scores were at pre-graft
levels by day 6 and continued to fall over the 20 days post-grafting (Fig 3E). The trend was sig-
nificant (p<0.0001, one way ANOVA) and was significantly less at all post-grafting days other
than day 3 (Dunnet’s multiple comparisons test, Fig 3E). The two “eccentric DAT grafted ani-
mals” are included in this analysis but are shown as blue circles in Fig 3E. In these two animals
AIMS scores did not fall as much as the other DAT grafted animals over the course of the 20
days. Indeed, a linear regression curve fitted to the means of each post-graft day (r2 = 0.95)

Restoring Striatal DAT Improves Dyskinesia

PLOS ONE | DOI:10.1371/journal.pone.0153424 April 14, 2016 7 / 12



Fig 3. The percent change in AIMS (from pre-graft levels at various days post graft. In all figures, the y axis shows percent change in AIMS from pre-
graft levels at various days post graft (x axis), bars showmedian and interquartile range and the statistical tests are ANOVA and Dunnet’s multiple
comparisons tests where *, ** and *** indicate p<0.05, <0.01 and <0.001 respectively. (A) High and low dyskinetic animals that received Null grafts or
“failed grafts. There was no significant difference between pre-graft AIMS and AIMS on any day post graft. (B) Highly and low dyskinetic animals that
received a DAT graft. There was a significant difference between pre-graft AIMS at all days post-graft except day 3. (C) Animals with high AIMS (high
dyskinesia group) that received a Null graft. The yellow circles represent the three “failed grafts” that were not included in calculations of significance. Note
that one data point (243% on Day 3) is not shown. (D) Animals with high AIMS (high dyskinesia group) that received a DAT graft. The blue circles represent
two animals with “eccentric grafts”. Note a steady and progressive fall of the median levels over the 20 days. (E) Animals with low AIMS (low dyskinesia
group) that received a Null graft. Note the rapid recovery of AIMS plateauing at ~30% of pre-graft levels by day 10. (F) Animals with low AIMS (low dyskinesia
group) that received a DAT graft. Note the rapid recovery of AIMS with median levels at 0% of pre-graft levels by day 8.

doi:10.1371/journal.pone.0153424.g003
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indicates that the AIMS scores fell by 5% for each post graft day. The AIMS scores of DAT
grafted animals with low dyskinesia also fell over the 20 days post-grafting, and were close to
absent by 8 days in most animals (Fig 3F). These animals had more DAT-immunoreactive
fibres/terminals in their striata, in particular “the partially denervated, DAT grafted animal”.
There was no correlation between the extent of improvement in AIMS at 20 days post grafting
and the number of DAT expressing cells found in the striatum.

Discussion
This study examined whether reintroducing DAT expression, by grafting cells that express
DAT into the striatum of dyskinetic rats, would reduce dyskinesia. In a previous study [11], we
showed that there was a marked rise in striatal [DA] following administration of levodopa in
dyskinetic rats. In that study, we provided evidence that because of a loss of DAT in dyskinetic
animals, the clearance of extra synaptic DA is mostly likely by bulk diffusion. Thus, for this
study we proposed that replacement of DAT would be effective in reducing dyskinesia as mea-
sured by AIMS scores in 6-OHDA lesioned rats treated with Levodopa. The main finding of
this study is that AIMS scores fell significantly and progressively over the course of 20 days in
animals receiving DAT grafts but in those animals receiving Null grafts there was no change in
AIMS scores.

This finding was most apparent in animals with high levels of dyskinesia at the time of graft-
ing; a comparison of Fig 3C and 3D, shows very clearly that there is a steady decline in AIMS
scores over 20 days, in DAT grafted animals. Furthermore, the finding that ectopically placed
grafts had no effect on AIMS scores (Fig 3C) argues that DAT expressing cells in the striatum
are required to reduce dyskinesia. The finding that eccentrically placed grafts, which resulted
in fewer DAT-immunoreactive cells at the centre of dorsal striatum were less effective in reduc-
ing AIMS scores, suggests that the number of DAT expressing located in the dorsal striatum
(Fig 3E) will dictate the extent of AIMS scores reduction. S2 Fig lends support to the notion
that the “dose” of DAT provided by the graft will determine the rate and possibly the extent of
recovery. This may be relevant if this model were to be extended to therapeutic concepts
because excess removal of dopamine by a high dose of DAT may result in bradykinesia as well
as ameliorating dyskinesia. This potential risk of overexpression of DAT would be best tested
in non human primates where the bradykinesia can be more readily assessed. There is also a
risk in using cell that do not normal transport dopamine into the cell that the dopamine will
cause toxicity [27]. While the possibility that a proportion of grafted DAT expressing cells
degenerated because of dopamine toxicity cannot be discounted, it was not significant enough
to obscure the observed improvement in dyskinesia. Future studies over longer periods would
need to be mindful of this problem however. Cells such as C17.1 may have a trophic effect on
cells or fibres in the grafted region [28]. However this does not appear to have been a signifi-
cant influenced dyskinesia in this study because there was no improvement in dyskinesia in
animals receiving Null grafts (ie grafts of C17.1 cells without DAT expression).

Rats from the low dyskinesia group receiving Null grafts appeared to recover spontaneously.
Spontaneous recovery of animals can occur by sprouting and even with large lesions there is
recovery over 16 weeks [15]. It is thus possible that some of the spontaneous improvement in
dyskinesia seen in the “low dyskinesia” animals was due to sprouting of remnant fibres. It is rel-
evant to this proposal occasional DAT positive fibres were more prevalent in these same ani-
mals than in the high dyskinesia group. All grafted animals described in this study had rotated
at greater than 6/min in response to amphetamine. This suggest that the striatum had been
extensively denervated. While there was suggestion that DAT-immunoreactive fibres were
more frequent in the low rotators, this was clear-cut in only one animal (“the partially
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denervated DAT grafted animal”). There was a similar but more rapid recovery in the low dys-
kinesia group receiving DAT grafts. While sprouting is the most likely driver of recovery, the
DAT grafts may have contributed to the more rapid recovery.

The initial worsening of AIMS scores following grafting suggests that levodopa treatment
caused even greater striatal DA concentrations than prior to the grafts. The trauma of grafting
may have resulted in a transient permeability of the vasculature and entry of catecholamines
from the blood stream. It is important to note that the proposition that increased DAT expres-
sion improves dyskinesia, does not reflect on the putative sources of DA in the relative absence
of DA terminals. Whether the DA is from serotonergic (5-HT) axons that express more AADC
and thus have increased capacity to convert levodopa to DA [21] or other sources is immaterial
to the question of how the peak levels associated with levodopa is attenuated.

In this study we use the number of DAT expressing cells as an indication of DAT expres-
sion. It might therefore be expected that the extent of improvement in AIMS might correlate
with the number of DAT expressing cells found in the striatum. Dyskinesia was only modestly
reduced in animals whose grafts were ectopic grafts and this observation is in keeping with
their being a relation between relevant DAT expression and extent of dyskinesia. The reduction
in dyskinesia was fairly similar in other animals and so a correlation would be difficult to discern.
As discussed in the introduction, even a small increase in DAT expression has the potential to
reduce dyskinesia. It is difficult to know the extent of DAT expressed on cell membrane surface
by the C17.1 cells. However expression on the cell membrane may present a larger surface area
expressing DAT than on fibres and terminals and furthermore the higher power figures show
that many cells do have DAT expressing processes extending into the striatum.Whatever the
case, the level of expression of DAT achieved by these cells has been sufficient to markedly reduce
AIMS. As the only difference in treatment between the control group and the experimental arm
was the expression of DAT, it is reasonable to propose that it was the expression of DAT that was
the main agent reducing dyskinesia. A previous study also showed that the presence of DAT on
grafts resulted in less levodopa induced dyskinesia[17]. In that study the presence of DAT did
not have an adverse effect on the extent to which bradykinesia was reduced by levodopa. The
potential risk that overexpression of DAT will cause bradykinesia would be best tested in non
human primates where the bradykinesia can be more readily assessed.

Re-uptake of DA is impaired in dyskinetic animals (rats and non-human primates) [11,15]
and humans [16]. PD is associated with loss of dopaminergic terminals in the striatum and it is
likely that DAT is initially down-regulated in surviving terminals as a compensatory mecha-
nisms. DAT will also be depleted simply by the attrition of terminals. The findings reported
here suggest that only a modest increase in DAT expression in the striatum can reduce dyski-
nesia and is worthy of further investigation as a possible therapy. It is relevant that a similar
approach was successful in reducing alcohol consumption in mice [19]. In summary, these
findings suggest that smoothing levels of striatal DA by restoring DAT expression may be a
useful therapeutic approach for treating dyskinesia.

Supporting Information
S1 Fig. Relationship between the extent of dyskinesia (AIMS) and the number of DAT posi-
tive fibres in the dorsal striatum. Data presented in Fig 2 of Lee et al [11] has been reanalyzed
to show the relationship between the extent of dyskinesia (AIMS) and the number of DAT pos-
itive fibres in the dorsal striatum remaining in the striatum of the rat after administration of 6
OHDA (expressed as a percentage of the number in the unlesioned rat). The reader is referred
to the original paper of Lee et al [11] for the full details of the method for this work.
(TIF)
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S2 Fig. Correlation between time and reduction in dyskinesia in grafted animals. This
shows the same data as in Fig 2E, plotted against a linear scale and with two linear regression
lines. The red line is a plot of regression line for the median of all data at each time point and
shows that the AIMS score changes by 5% from pre grafting levels for every day post graft with
an r2 = 0.95. The green line is a plot of regression line for the median of the eccentric cells at
each time point and shows that the AIMS score changes by 2% from pre-grafting levels for
every day post-graft with an r2 = 0.74.
(TIF)
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