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Abstract
Soil salinity is a major constraint to rice production in large inland and coastal areas around

the world. Modern high yielding rice varieties are particularly sensitive to high salt stress.

There are salt tolerant landraces and traditional varieties of rice but with limited information

on genomic regions (QTLs) and genes responsible for their tolerance. Here we describe a

method for rapid identification of QTLs for reproductive stage salt tolerance in rice using

bulked segregant analysis (BSA) of bi-parental recombinant inbred lines (RIL). The number

of RILs required for the creation of two bulks with extreme phenotypes was optimized to be

thirty each. The parents and bulks were genotyped using a 50K SNP chip to identify geno-

mic regions showing homogeneity for contrasting alleles of polymorphic SNPs in the two

bulks. The method was applied to ‘CSR11/MI48’ RILs segregating for reproductive stage

salt tolerance. Genotyping of the parents and RIL bulks, made on the basis of salt sensitivity

index for grain yield, revealed 6,068 polymorphic SNPs and 21 QTL regions showing homo-

geneity of contrasting alleles in the two bulks. The method was validated further with

‘CSR27/MI48’ RILs used earlier for mapping salt tolerance QTLs using low-density SSR

markers. BSA with 50K SNP chip revealed 5,021 polymorphic loci and 34 QTL regions.

This not only confirmed the location of previously mapped QTLs but also identified several

new QTLs, and provided a rapid way to scan the whole genome for mapping QTLs for com-

plex agronomic traits in rice.

Introduction
Rice is the most important cereal crop with maximum contribution to the global food require-
ments. The world cereal production is about 2500 mt with rice alone contributing 675 mt,
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accounting for 27 per cent of total [1]. Importance of rice is increasing day by day due to
human population growth especially in the Asian countries. Therefore, improving rice produc-
tivity is crucial for global food security, economic development and sustainable agriculture.
Higher rate of population growth and conversion of highly productive farmlands for industrial
and residential purposes have pushed rice cultivation to less productive areas such as saline,
sodic, drought and flood prone areas. Globally about 900 mha of farmlands are affected by
salinity, which includes both sodic and saline soils [2]. Most traits of agronomic importance in
crops, particularly those related to abiotic stress tolerance, are quantitatively inherited. QTLs
are genomic regions containing genes controlling these quantitative traits [3]. QTL mapping is
one of the most common approaches for the genetic dissection of quantitative traits, which
provides the basis for map-based cloning of genes and marker-assisted selection (MAS) in crop
breeding. QTL mapping is carried out by genotyping a large number of individuals that are
progeny of a bi-parental cross, the process is labor-intensive, time-consuming and costly [4, 5].
BSA provides a shortcut but effective approach to rapidly identify the markers linked to specific
genes or QTLs for trait of interest by genotyping only a pair of pooled DNA samples from two
sets of individuals with distinct or opposite extreme phenotypes [6, 7]. High-throughput geno-
typing based on SNP arrays and next generation sequencing (NGS) has evolved very fast dur-
ing the last decade. Using these technologies, BSA can identify large numbers of markers
linked to the target genes or QTLs. One of the first studies to use bulked segregant analysis of
RIL population was differential transcriptome analysis to identify candidate genes for salt toler-
ance using genome wide microarray [8]. Subsequently, a number of studies have been reported
on the application of high throughput genotyping for BSA, but they have focused mainly on
qualitative traits, e.g. ‘MutMap’ approach or used GBS for genotyping, e.g.‘QTLSeq’ [9–14].
These studies used 5–20 lines with extreme phenotype for creating the bulks and there has
been no work on experimental optimization of the number of lines for creating the bulks.

Wolyn et al. [15] first proposed an approach named eXtreme Array Mapping (XAM), which
combined microarray-based genotyping with BSA and successfully mapped light response
QTLs in Arabidopsis, offering an efficient cost effective method of discovering new QTLs. Later
studies in yeast (Saccharomyces cerevisiae) also demonstrated the effectiveness of microarray-
based BSA for QTLs mapping [16, 17]. Ehrenreich et al. [18] utilizing NGS as well as microar-
ray-assisted BSA mapped a number of QTLs for 17 chemical resistance traits in yeast (S. cerevi-
siae). Magwene et al. [19] proposed a statistical framework for QTL mapping based on NGS-
assisted BSA. These studies were conducted largely on yeast (S. cerevisiae), but two recent stud-
ies have used NGS-assisted BSA for QTL mapping in rice; Takagi et al. [20] mapped several
QTLs underlying resistance to rice blast, grain amylase content and germination rate under low
temperature, while Yang et al. [21] mapped QTLs controlling cold tolerance in rice. A major
QTL for panicle erectness in rice was identified by BSA using SSR markers, which was later
cloned and characterized in detail [22, 23]. However, this is the first attempt to exploit the BSA
approach to identify QTLs for a complex trait in rice using hybridization based high density
SNP array. The trait we undertook to map is reproductive stage sodicity tolerance. The detri-
mental effect of salt stress is reduction of crop yield by alterations in plant metabolism, including
reduced water potential, ion imbalances and toxicity. It is often not clear which of the presumed
component traits actually contribute to the overall field level salt tolerance of a particular geno-
type. Integration of results from studies employing diverse approaches on the same mapping
population and phenotyping for both, the stress susceptibility index (SSI) and its component
traits, is expected to provide the answer but has been rarely attempted [24]. SSI is a better crite-
rion of stress tolerance because it takes into account agronomic performance of a genotype
under stress in relation to its yield potential under non-stress condition and the overall stress
intensity [25]. Analysis of SSI for economic yield and related traits is important for the crop
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plants, because often the actual component traits responsible for yield stability under stress are
not clearly known. Notable success has been achieved in developing salt-tolerant rice varieties in
India through conventional breeding utilizing salt-tolerant landraces, e.g. Damodar, Pokkali,
Nona Bokra, and Bhura Ratha, but these varieties have poor yield potential [26]. Salt tolerance
is a polygenic trait highly influenced by the environment, which makes it even more difficult to
identify the genes and QTLs for use in marker-assisted breeding of the trait into high-yielding
varieties. Rice is relatively tolerant to salt stress during germination, active tillering stage and
towards maturity, but is highly sensitive to salt during early seedling and reproductive (panicle
initiation, anthesis and fertilization) stages [27, 28].

A major QTL for salt tolerance at the seedling stage, namely Saltol, was mapped on the
short arm of chromosome 1 between RM23 and RM140 (10.7–12.2 Mb), using recombinant
inbred lines (RILs) developed from salt tolerant landrace Pokkali and salt sensitive variety IR29
[29]. Thomson et al.[30] reported presence of different ‘Pokkali’ alleles in the Saltol region
between 11.0 Mb and 12.2 Mb and suggested that Saltolmay involve the SKC1gene located at
position 11.46 Mb, first identified in Indica landrace Nona Bokra [31]. A study employing F2:3
mapping population derived from Nona Bokra and susceptible Japonica variety Koshihikari
identified several QTLs for salt tolerance on chromosomes 1, 4, 6, 7 and 9, including major
QTLs for shoot K+ concentration on chromosome 1 (qSKC1) and shoot Na+ concentration on
chromosome 7 (qSNC7) [32]. There are also reports of QTLs for physiological parameters of
salt tolerance on chromosomes 3, 4, 6 and 9 [33–35].

QTLs for seedling stage salinity tolerance have been mapped on chromosomes 1, 5, 6 and 7
in earlier studies [36–39], but there is limited information on salt tolerance at reproductive
stage (STRS), which is crucial for improving rice productivity under salt stress. Therefore,
STRS is an important trait for stable rice production in salt affected areas. Only a limited num-
ber of QTLs for STRS have been mapped using low-density SSR markers [40, 41]. Hence, the
aim of present study was to rapidly identify additional STRS QTLs and candidate genes for salt
sensitivity index (SSI) for grain yield in sodicity tolerant Indica rice variety CSR11 by bulked
segregant analysis using high density SNP array.

Results

Stress Intensity and Phenotypic Segregation for Salt Tolerance in
CSR11/MI48 RILs
The stress intensity (SI) for grain yield under moderate sodic (pH ~9.5) and high sodic (pH ~
9.9) environments as compared to control micro plots (pH ~7.5) was 0.51 and 0.85, respectively.
Homogeneity of error variance across three years of data in 2009, 2010 and 2011 was evaluated
by the F test. Combined analyses of variances for genotypes in three seasons were determined
by comparing the genotype × season interaction for each trait. Significance levels were also
determined for the combined analysis (S1 Table). The CSR11/MI48 RIL population showed sig-
nificant variability for the nine salt tolerance parameters examined in this study (Table 1).

All the parameters showed transgressive segregation and near normal distribution, suggest-
ing involvement of multiple genes with quantitative inheritance (S1 Fig). Analysis of variance
showed that variance for yield and yield contributing traits in the RILs was significant
(P< 0.01). The RIL population showed mean grain yield per plant of 15.04, 7.39 and 2.21
under normal, moderate and high sodicity, respectively (Table 1). The tolerant parent CSR11
expressed mean yield of 12.12, 9.42 and 4.37; whereas the sensitive parent MI48 expressed
mean yield of 16.73, 6.20 and 2.12 under normal, moderate and high sodicity, respectively. The
tolerant parent CSR11 showed significantly less grain yield reduction of 22% than the suscepti-
ble parent MI 48 showing 63% yield reduction under moderate sodicity. The tolerant parent
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CSR11 showed lower SSI for yield under moderate (0.44) and high sodicity (0.75) as compared
to the sensitive parent MI48 showing SSI of 1.24 under moderate and 1.02 under high sodicity
across three seasons (Table 2, Fig 1, S1 Fig).

The top and bottom 30 RILs with extreme phenotypes were selected based on consistent SSI
for grain yield across the two levels of stress, moderate and high sodicity in three seasons
(2009, 2010 and 2011, S2 Table). The SSI for grain yield ranged from 0.54 (RIL106) to 0.9
(RIL9) for top 30 RILs whereas, for bottom 30 RILs it ranged from 1.03 (RIL 20) to 1.38 (RIL
131) (S2 Fig). Analysis of correlation coefficients revealed the nature and magnitude of associa-
tion of yield and yield component traits among themselves and with SSI under different sodi-
city regimes (Table 3). Grain yield per plant showed significant positive association with plant
height, panicle length, total tillers per plant, productive tillers per plant, 1000 grain weight,

Table 1. Variation for yield and yield contributing traits among 216 RILs derived from CSR11/MI48 over 3 seasons under control (N), moderate
sodic (MS) and high sodic (HS) conditions.

CSR11 MI48 Range in the RILs

Traits N MS HS N MS HS N MS HS SD (+/-) SE (+/-)

DFF 96 102 102 101.9 108.67 112 78.67–113.67 84.00–116.00 88.00–120.50 11.77 1.65

PH 93.33 78 51.8 111.1 78.15 54.91 81.30–174.37 55.12–127.10 31.47–85.23 35.63 7.14

PL 22.6 20 14.5 24.15 19.61 15.86 20.47–32.40 16.37–25.73 10.57–18.75 5.36 1.22

TT 13.83 11.9 9.12 11.15 9.11 6.21 8.80–21.33 6.58–15.63 3.33–11.23 4.39 0.87

PT 12.59 10.7 7.38 10.21 7.85 4.86 7.63–19.70 5.40–14.73 2.38–10.17 4.35 0.9

SW 23.87 21.8 20.3 24.9 20.96 16.55 20.03–30.73 16.65–24.71 11.51–22.38 4.55 0.99

GPP 89.14 81.1 51.9 116.54 66.44 29.32 66.38–167.19 20.68–89.48 6.10–57.02 41.17 10.02

SF 77.41 71.7 59.9 78.46 58.1 40.45 57.79–88.31 33.31–74.05 6.68–63.20 21.32 4.99

GY 12.12 9.42 4.37 16.73 6.2 2.12 6.39–45.76 3.48–15.55 0.29–6.59 11.09 1.78

DFF, Days to 50% flowering; PH, Plant height; PL, Panicle length; TT, Total tillers per plant; PT, Productive tillers per plant; SW, 1000 grain weight; GPP,

Grains per panicle; SF, Spikelet fertility; GY, Grain yield per plant; N, Normal; MS, Moderate sodic stress; HS, High sodic stress; RILs, Recombinant

inbred lines.

doi:10.1371/journal.pone.0153610.t001

Table 2. Variation for salt stress susceptibility index for different traits among 216 RILs derived from CSR11/MI48 over 3 seasons.

Traits CSR11 MI48 Range RILs

MS HS Mean ± SE MS HS Mean ± SE MS HS SE

SSI DFF 1.46 0.89 1.17±0.02 1.53 1.52 1.52±0.02 - 0.49 to—2.57 0.07–2.75 0.09

SSIPH 0.70 0.93 0.81±0.12 1.26 1.05 1.16±0.16 0.44–1.81 0.67–1.46 0.06

SSIPL 0.73 0.97 0.85±0.13 1.20 0.93 1.06±0.13 0.30–1.90 0.50–1.53 0.04

SSITT 0.88 0.92 0.9±0.14 1.17 1.19 1.10±0.20 -0.17 to—3.04 0.51–2.28 0.05

SSIPT 0.65 0.77 0.71±0.19 0.97 0.97 0.97±0.27 -0.29 to—1.97 0.38–1.63 0.05

SSISW 0.60 0.51 0.56±0.14 1.08 1.14 1.11±0.12 0.25–1.71 0.44–1.70 0.09

SSIGGP 0.21 0.61 0.41±0.13 1.00 1.09 1.04±0.15 0.29–1.80 0.63–1.37 0.11

SSISF 0.36 0.47 0.41±0.11 1.25 1.01 1.13±0.15 0.02–2.66 0.33–1.90 0.11

SSIGY 0.44 0.75 0.59±0.25 1.24 1.02 1.13±0.24 0.32–1.62 0.71–1.16 0.09

SSI, Stress susceptible index; DFF, Days to 50% flowering; PH, Plant height; PL, Panicle length; TT, Total tillers per plant; PT, Productive tillers per plant;

SW, 1000 grain weight; GPP, Grains per panicle; SF, Spikelet fertility; GY, Grain yield per plant; N, Normal; MS, Moderate sodic stress; HS, High sodic

stress; RILs, Recombinant inbred lines

doi:10.1371/journal.pone.0153610.t002
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Fig 1. Frequency distribution of SSI for grain yield among CSR11/MI48 RILs under. (A) Moderate sodicity and (B) High sodicity.

doi:10.1371/journal.pone.0153610.g001
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grains per panicle and spikelet fertility (Table 3). As expected the number of productive tillers/
plant was positively correlated with total number of tillers/plant in all salt environments.

The spikelet fertility showed significant positive correlation with all other traits except days
to 50% flowering in all salt stress environments. Similarly, panicle length showed significant
positive correlation with plant height, total tillers in all salt stress environments and controls.
Correlation coefficients of morphological traits with SSI for grain yield under moderate and
high sodicity revealed that SSI for grain yield had significant negative correlation with plant
height (-0.18 and -0.28), panicle length (-0.21and -0.25) and grain per panicle (-0.21 and
-0.28), respectively.

Optimization of Pool Size for Bulked Segregant Analysis
Array based SNP genotyping of pools of 10, 20, 30, 40 and 50 RILs was done to identify the
optimum pool sizes for maximum heterogeneity (heterozygote calls) of alleles in the pool, so
that the bulked tolerant and bulked sensitive pools did not differ for alleles other than those in

Table 3. Correlation coefficients of yield and yield component traits with SSI for grain yield under normal, moderate and high sodicity regimes in
CSR11/MI48 RILs.

Traits Stresses DFF PH PL TT PT SW GPP SF GY

PH N 0.10*

MS 0.12*

HS 0.12*

PL N -0.01 0.71**

MS 0.04 0.81**

HS 0.15* 0.85**

TT N 0.08 0.21** 0.19**

MS 0.19** 0.19** 0.21**

HS 0.12* 0.29** 0.31**

PT N 0.04 0.24** 0.20** 0.95**

MS 0.16** 0.25** 0.26** 0.90**

HS 0.08 0.34** 0.36** 0.85**

SW N 0.05 0.11* 0.12* 0.09 0.17*

MS 0.08 0.45** 0.48** 0.25** 0.40**

HS -0.01 0.43** 0.47** 0.27** 0.43**

GPP N 0.27** 0.37** 0.38** 0.21** 0.25** 0.15*

MS 0.09 0.46** 0.48** 0.18** 0.29** 0.39**

HS 0.01 0.53** 0.52** 0.17* 0.23** 0.39**

SF N 0.09 0.24** 0.21** 0.38** 0.49** 0.21** 0.49**

MS 0.05 0.22** 0.22** 0.31** 0.46** 0.45** 0.69**

HS -0.12* 0.43** 0.40** 0.14* 0.22** 0.45** 0.80**

GY N 0.20** 0.45** 0.46** 0.61** 0.64** 0.35** 0.58** 0.54**

MS 0.12* 0.43** 0.45** 0.51** 0.62** 0.55** 0.58** 0.60**

HS 0.01 0.59** 0.57** 0.54** 0.65** 0.62** 0.49** 0.44**

SSI GY MS 0.21** -0.18** -0.21** 0.12* 0.07 -0.15* -0.21** -0.10* -0.26**

HS 0.12* -0.28** -0.25** -0.30** -0.34** -0.21** -0.28** -0.15* -0.58**

PH, Plant height; PL, Panicle length; TT, Total tillers per plant; PT, Productive tillers per plant; SW, 1000 grain weight; GPP, Grains per panicle; SF,

Spikelet fertility; SSI, Stress susceptible index; GY, Grain yield per plant; N, Normal; MS, Moderate sodic stress; HS, High sodic stress; RILs,

Recombinant inbred lines;

* and **, significant at 0.1 and 0.5 level respectively

doi:10.1371/journal.pone.0153610.t003
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the associated QTL regions. Out of 50,051 SNPs on the chip array, 41,327 were monomorphic
in all the pools and 2,903 had missing calls in one or more pools. Hence, we analyzed the
remaining 5,821 SNPs that showed heterogeneity in any of the five pools. As expected, pool of
10 RILs showed the minimum number of 4,115 (70%) heterogeneous SNPs, with successive
increase in heterogeneity in higher pools of 20 (86.1%), 30 (90.13%), 40 (91.4%) and 50 (92%)
RILs (Fig 2, S3 Table). Thus, our empirical study showed that a pool of 10 RILs exhibiting only
70% heterogeneity was not suitable for BSA, as it would give about 30% false positive associa-
tions. The optimum pool size was of 30 RILs resulting in>90% of the loci with heterogeneous
SNPs in the pool to minimize the number of false associations. Pools with more than 30 RILs
did not offer further significant increase in heterogeneity. The SNP heterogeneity increased
with the increasing pool size, but maximum gain was between pool size of 10 to 30 RILs,
wherein it increased from 70% to 90.2%, after which there was negligible increment in hetero-
geneity; less than two percent after adding another 20 RILs to the pool. Since sampling for dif-
ferent pool size was done in such a way that the lower pool was a subset of the higher pool, we
carried out bootstrapping analysis to draw inference on the population rather than just the rep-
resentative samples. Bootstrapping results also indicated that only 76% heterogeneity was

Fig 2. Analysis of heterogeneous loci in different RIL pool sizes andmixture of parental DNA samples using 50K SNP chip.Genomic DNA from 10 to
50 individual RILs of CSR11/MI48 mapping population were pooled in equal amounts, with higher pools including all the RILs of lower pools for the analysis
of allele heterogeneity (Red line). Computational expectations on Bootstrap analysis of the pools of 10 to 50 lines, showing successive increase in
heterogeneity up to 94% (Green line). Observed heterogeneity with mixing of genomic DNA from the two parental lines in the proportions of 1:5, 1:4, 1:3, 1:2
and 1:1 (Blue line).

doi:10.1371/journal.pone.0153610.g002
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predicted with the pool size of 10, whereas 94% heterogeneity was predicted with pool size of
30, after which no further significant increase was predicted, which was close to the experimen-
tal results (Fig 2). We could not get 100% heterogeneity in any of the pools examined either
experimentally or computationally by bootstrapping. We also tested the sensitivity of Affyme-
trix array in detecting minor alleles in the pool of RILs by genotyping physical mixtures of
DNA from the two pure parental lines in different proportions (1:1, 1:2, 1:3, 1:4, 1:5). We
intended to find the level at which a minor allele in the pool ceases to be resolved by the array.
Out of 50, 051 SNPs on chip array, we analyzed 4, 245 loci, which were polymorphic between
the two pure DNA samples of CSR11 and MI48. Only 4.1% of the polymorphic loci showed
heterozygote calls at the lowest minor allele frequency of 20% with 1:5 ratio of the two DNA
samples, with successive increase in heterozygosity with 1:4 (12.1%), 1:3 (14%), 1:2 (32%) and
1:1 (86%) (Fig 2). Surprisingly, even with supposedly equal frequency of the two alleles as in
1:1 mixture; only 86% of the loci were called heterozygote, leaving an error margin of 14%
which was even higher than 10% homozygosity of alleles observed in the pool of 30 extreme
RIL. This would lead to false associations and an over estimation of QTLs. However, in our
BSA approach both bulked-tolerant and bulked-sensitive pools must show homogeneity for
contrasting alleles for a QTL call, which would drastically decrease the probability of false QTL
discovery to 0.102 = 0.01).

QTLs Identified in CSR11/MI48 RIL Population Using BSA Approach
The BSA method using high density SNP genotyping was applied to CSR11/MI48 RILs segre-
gating for sodicity tolerance and several new QTLs were identified for SSI for grain yield. After
optimization of the RIL pool size, SNP genotyping of CSR11, MI48 and the bulked-tolerant
(BT) and bulked-susceptible (BS) pools of 30 RILs each were done using 50K rice SNP chip.
Out of 50,051 SNPs on the chip we have analyzed 6,068 SNPs that were polymorphic between
BT and BS pools (S4 Table). Interestingly, the sensitive parent MI48 analyzed here differed sig-
nificantly from the original MI48 used in the cross to develop the mapping population, as the
parental lines were monomorphic but the RILs were polymorphic at 1,692 loci. In such cases
the allele call of CSR11, the properly maintained parent, was considered as true call and the
alternate allele was assigned to MI48. We could have ignored these loci from the analysis but
that would have resulted in missing out on some important QTLs. Thus, all 6,068 polymorphic
loci were categorized into five groups in S4 Table; group 1 with both BT and BS heterogeneous
(4809 loci, white rows); group 2 with tolerant allele for the QTL was contributed by CSR11 hav-
ing one heterozygous locus (129 loci, green rows); group 3, where both the loci were homoge-
neous and tolerant allele was contributed by tolerant parent CSR11 (11 loci, dark green rows);
group 4 where tolerant allele was contributed by the sensitive parent MI48 and one locus was
heterozygous (1108, red rows) and group 5 where both the loci were homogeneous and tolerant
allele was contributed by MI48 (11 loci, dark brown rows). As shown in our pool optimization
study, about 10 percent of the loci showed homozygote calls even with the pool of 30 RILs,
which would lead to false discoveries of QTLs. Clearly, there was an issue with the sensitivity of
the Affymetrix chip for the detection of minor alleles in the pooled DNA samples. To minimize
the false discovery, we assigned QTL status to a SNP or a string of SNP loci only when both the
pools were homogeneous for contrasting alleles (group 3 and group 5), which will drastically
reduce the false QTL calls. This way, we identified total 21 QTLs for SSI for grain yield on rice
chromosomes 1, 2, 3, 5, 6, 8, 9 and 12 in the CSR11/MI48 RILs (Fig 3, S5 Table).

Three QTLs were identified on chromosome 1 at positions 32.3, 35.0 and 39.5 Mb with tol-
erant alleles contributed by CSR11. A homogeneous SNP was identified in single copy rice
gene Os01g55530 at 32.3 Mb, which is reported to be involved in metabolism, signal
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transduction, and response to stress. Three QTLs were identified on chromosome 2, namely
qSSIGY2.1, qSSIGY2.2 and qSSIGY2.3 at positions 9.9, 23.1 and 34.8 Mb. Source of tolerance
for QTLs qSSIGY2.1 and qSSIGY2.3 was CSR11 and at qSSIGY2.2 tolerant allele was coming
fromMI48. The QTL qSSIGY2.1, was marked by a homogeneous SNP in single copy rice gene
Os02g17190 (MYB family transcription factor) know to be associated with stress tolerance.
Five QTLs were mapped on rice chromosome 3 and tolerant alleles in four of these were from
sensitive parent MI48 and one from the tolerant parent CSR11. QTL qSSIGY3.5 was marked by
SNP in the gene Os03g55490 having kinase activity. Two QTLs were mapped on chromosome
5 at 23.5 and 26.1 Mb positions with tolerant allele contributed by CSR11. At 26.1 Mb, homo-
geneous SNPs were present in two consecutive genes (Os05g45040, Os05g45050), but it was
considered one QTL because of their adjacent location. Five QTLs were identified on rice chro-
mosome 6, out of which three had tolerant allele coming from CSR11 and remaining three
fromMI48. One QTL was mapped on rice chromosome 8, marked with SNP in gene
Os08g06110, which is MYB transcription factor. One QTL was identified on rice chromosome
9 and source of tolerant allele for SSIGY was MI48. In the gene Os09g02790 that codes for a
zinc binding protein. Another QTL was identified on rice chromosome 12 at position 23.1 Mb
with tolerant allele coming from sensitive parent MI48. We found that out of 21 QTLs reported
here, five were in the regions reported earlier in the CSR27/MI48 F2/F3 and RILs with one com-
mon parent [8, 42], the remaining 15 were novel QTLs for salt tolerance in the CSR11/MI48
RILs, with CSR11 having a different mechanism of sodicity tolerance as compared to CSR27.

Validation of BSA Approach with CSR27/MI48 RIL Population
We did bulked segregant analysis of BT and BS pools of 30 RILs each along with the parental
lines CSR27 and MI48 using 50K SNP chip to validate the QTLs reported earlier in this popula-
tion [8, 42]. Out of 50,051 SNPs present on the chip, we analyzed 5,021 SNP loci, which were
polymorphic between BT and BS, and categorized them into five groups as described above;
group 1, where both BT and BS were heterozygous (3999 loci, white rows); group 2, with toler-
ant allele for the QTL was contributed by CSR27 having one heterozygous locus (691 loci,
green rows); group 3, where both the loci were homogeneous and tolerant allele was contrib-
uted by tolerant parent CSR27 (11 loci, dark green rows); group 4, where tolerant allele was
contributed by the sensitive parent MI48 and one locus was heterozygous (294, red rows) and
group 5, where both the loci were homogeneous and tolerant allele was contributed by MI48
(23 loci, dark brown rows) (S6 Table). For QTL calling we considered only those loci, which
were homogeneous in both the pools. This way we identified total 34 QTLs on rice

Fig 3. Physical map positions of QTLs identified by BSA of CSR11/MI48 RIL population using 50K SNP chip.QTLs shown in green color have salt
tolerant allele coming from the tolerant parent CSR11 and those in red color have tolerant allele contributed by the sensitive parent MI48.

doi:10.1371/journal.pone.0153610.g003
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chromosomes 1, 2, 3, 5, 6, 8, 9, 11 and 12 (Fig 4). BSA approach not only validated most of the
earlier reported QTLs but also identified several new QTLs because of the high resolution of
SNP markers. In this mapping population, tolerant allele of SSIGY QTLs was from tolerant
parent CSR27 at 11 QTL positions (group 3), whereas tolerant allele was coming from sensitive
parent MI48, at 23 QTL positions (group 5, S7 Table).

Earlier, Ammar et al. [42] using CSR27/MI48 F2/F3 populations have mapped 25 major
QTLs on chromosomes 1, 2, 3 and 8 and Pandit et al. [8] have mapped QTLs on chromosomes
1, 8 and 12 using RIL populations of the same cross. On chromosome 1, Ammar et al. [42] has
reported five QTLs between 9.86–10.07 Mb position and Pandit et al. [8] has reported four
QTL regions between 8.32–10.8Mb and 11.02–15.87 Mb positions, here we found only one
QTL on chromosome 1 at 30.1 Mb position considering the strict criteria of allelic homogene-
ity in both the bulks. However, two of the previously mapped QTLs located in the regions
showing homogeneity of alleles in at least one bulk (S6 Table).

Ammar et al. [42] had reported QTL, qNa/KSV2.1/qNa/KSV2.2, qNa/KSV2.3, qClLR-2.1,
qClSV2.2 at 4.4–8.98 Mb on chromosome 2. This QTL was not validated in the present study
with the strict criteria of homogeneity in both the pools but at two positions (4.2–4.3 Mb, 8.4–
8.5 Mb) homogeneity of alleles in at least one bulk was present (S6 Table). We found three new
QTLs between 22.4 and 26.8 Mb position two of them qSSIGY2.1 and qSSIGY2.3 were contrib-
uted by MI48 and at one QTL position tolerant allele was coming from CSR27. Ammar et al.
[42] reported most important QTL on chromosome 3, which influenced nine of the seventeen
salt tolerance parameters studied between markers RM563-RM186 (11.07 to 28.8 Mb). Here
we have found 5 QTLs for SSIGY at 14.3, 17.5, 17.9, 24 and 28.6 Mb regions, source of tolerant
allele was MI48 in all of them.

Ammar et al. [42] has reported QTL for six parameters between marker intervals
RM3395-RM281 (10.2–27.89 Mb) on chromosome 8. We found one QTL qSSIGY8.3 at 14.3
Mb position, where tolerant allele for QTL region was coming from MI48. Pandit et al. [8]
reported 4 QTLs on chromosome 8, qNaSH-8.1 (1.208–2.8 Mb), qClLV-8.1a (9.2–10.29 Mb),
qClLV-8.1b (10.29–19 Mb), and qSSISFH-8.1 (9.2–10.29 Mb). Here we found three QTL
regions at 3.1, 7.9 and 14.8 Mb positions which are nearby the qNaSH-8.1, qClLV8.1b and
qSSISFH8.1QTLs. They reported most significant QTL for SSI for spikelet fertility at high salt
concentration qSSISFH-8.1on chromosome 8 in the marker interval HvSSR08-25-RM3395
(9.2–10.29 Mb). This QTL was co-located with qClLV-8.1a for Cl- content in the leaves at vege-
tative stage. We found two QTLs, qSSIGY8.2 (7.9 Mb), with tolerant allele coming from CSR27

Fig 4. QTL positions identified in CSR27/MI48 population by BSA using 50k SNP chip. Physical map position of QTLs with green color showing tolerant
allele coming from tolerant parent CSR27 (11 loci), red color showing tolerant allele coming from sensitive parent MI48 (23 loci). Blue and violet bars
represent earlier identified QTLs by Ammar et al. [42] and Pandit et al. [8], respectively.

doi:10.1371/journal.pone.0153610.g004
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and qSSIGY8.3 (14.8 Mb), with tolerant allele coming fromMI48. On chromosome 12, Pandit
et al. [8] reported a QTL qNaSV-12.1 between 12.11–17.53 Mb. In our study we found two
QTL regions at 9.4 and 23.5 Mb position, at 11.2–14.8 Mb position one QTL region was show-
ing one homogeneous and one heterogeneous locus.

In our study out of 34 QTLs of CSR27/MI48 population five QTLs were reported earlier in
the and found 29 novel QTL regions on rice chromosomes 1, 2, 3, 5, 6, 9, 11 and 12 due to
dense SNP map of polymorphic locus covering all regions of the genome. Earlier highest 41
QTLs have been reported by Ghomi et al. [43] on all the 12 rice chromosomes for salinity toler-
ance at seedling stage in rice. There are several reports on QTL mapping for salt stress by SSR
genotyping on whole population in rice [32–37, 40–44] but no one has done QTL mapping by
BSA approach for salt stress in rice.

Discussion

Stress Intensity and Segregation for Sodicity Tolerance in the RILs
Analysis of variance revealed highly significant variation among the RILs for all the nine traits
under the three stress environments, suggesting the presence of sufficient genetic variation and
ample scope for the improvement of rice for reproductive stage sodicity tolerance. The stress
intensity of phenotyping for grain yield indicates the moderate and high degree of sodic
stresses. The degree of high sodic stress was almost two times more than that of moderate sodi-
city. Hence, the population expressed 70 per cent grain yield reduction under high stress over
moderate sodic stress. Fernandez [45] has shown that association between stress yield (Ys) and
non-stress yield (Yp) was 0.46 for the moderate stress and 0.22 for severe stress conditions,
which was almost similar to the present study for moderate sodicity (0.63) and high sodicity
(0.17) stress.

Grain yield is a complex quantitative trait, greatly affected by environment. Hence, selection
of superior genotypes based on yield per se is not effective. The association of plant characters
and stress indices with yield thus, assumes special importance in formulation of selection crite-
ria for yield. Stress susceptibility index (SSI) has been proposed for identifying genotypes with
superior performance under stress as well as non-stress environments [25]. It is worthwhile to
knowing the association between of stress susceptible index and various agro-morphological
traits through simultaneous evaluation under normal and sodicity conditions to draw parallels
and differences across important traits for selection in the target environments. The extreme
tolerant and sensitive RILs were selected based on their SSI for grain yield, which was a direct
measure of salt tolerance and therefore would provide independent line of evidence to those
based on salt tolerance parameters. These associations could be useful in identifying salt toler-
ant and high yielding genotypes [46]. SSI for economic yield has also been used for evaluation
of hexaploid triticale × bread wheat introgression lines for tolerance to low phosphorus and
water stresses and was found important for selection of efficient genotypes [47]. Porch et al.
[48] also reported that several genotypes of common beans were superior for heat tolerance
based on the stress index and on the consistency of their reactions across environments. Selec-
tion of genotypes under normal, moderate and high sodic conditions should be entirely differ-
ent as indicated by differentials in magnitude of correlation in different salt stress and non-
stress conditions in rice [49, 50]. Ali et al. [51] have indicated that yield traits in rice such as
grains per panicle, spikelet fertility, plant height, productive tillers and flowering duration were
good indicators for selecting salt tolerant genotypes in comparison to non-stress. As grain yield
is a complex trait with large environmental influence, this along with salt tolerance, also a com-
plex trait governed by multiple genes, makes improvement of yield under salt stress even a
tougher challenge.
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QTL Identification by BSA with High-Density SNP Chip
The present method of QTL mapping by BSA using high-density SNP chip provides a rapid and
efficient means for the identification of molecular markers linked to complex agronomic traits.
BSA method was first applied to identify markers linked to specific genes in F2 population using
RFLP and RAPDmarkers [5, 6]. Genotyping with traditional gel based molecular markers is
laborious and time-consuming. In recent years NGS-assisted BSA have been utilized to genotype
mapping populations [8, 16, 52–55]. This is especially useful when there is limited SSR polymor-
phism available in the region of interest. Here we used SNP chip array genotyping to ensure
rapid data generation and analysis in a simple and cost effective manner. The 50K SNP chip
[56], incorporates 48,211 SC gene based non-redundant high quality SNPs probes. It has a high
sample success rate (99.4%), SNP call rate (99.9%) and assay reproducibility (99.9%). In BSA an
important question is howmany individual samples should be pooled for the creation of bulks.
Michelmore et al. [5] say that frequency of false positive will increase in smaller size bulks and if
many loci are screened, probability of getting linked locus will increase. Giovannoni et al. [6]
took DNA pools containing 7 to 14 F2 individuals and concluded that pooling larger numbers of
individuals increases the probability that the two pools will not differ for alleles other than those
linked with the trait. They have concluded that if the marker interval is larger, then the pooling
size should be smaller. As the marker interval increases to 10 cM, fewer than 10 individuals can
be pooled to maintain the same probability of double crossovers. Thus the conclusion is to use
more number of individuals to create the bulks and simultaneously decrease the size of marker
intervals examined. In the present study with high density genotyping we found empirically that
a pool of 10 RILs was not enough (only 70% heterogeneity) and at least 30 RILs should be pooled
to get heterogeneity for more than 90 percent of the loci in order to reduce the number of false
positives. As expected the heterogeneity increased with the increasing pool size, but the maxi-
mum gain was between pool 10 to 30 where it increased from 70% to 90.2%, after this there was
very little increment of heterogeneity; less than 2 percent by adding another 20 RILs to the pool.
Hence, a pool of 30 RILs was considered optimal. Magwene et al. [19] based on simulation stud-
ies suggested using bulk sizes as large as 15–20% of the population to increase power of detecting
causal QTLs, even though this implies weaker selection and less extreme allele frequency differ-
ences. In our study also, the bulk size has worked out to 14% (30/216) of the population size,
though the size was determined empirically. On the other hand, if one wants to do away with
weaker selection, the base population size can be increased. We describe here the first report of
experimentally determining the optimum pool size for BSA using high density SNP chip.

High density array chip however has the limitation of not being able to detect all the hetero-
geneous loci as we have observed in 1:1 ratio of two DNA samples which could detect only 86%
loci as heterozygous, which is far below the expected 100%. Thus the high-density chip array
has some inherent limitations of not being able to detect the allelic heterogeneity in the pool
accurately. This is apparently because the Affymetrix allele-calling algorithm has been opti-
mized for inbred individuals (homozygous) calls and this is presently being improved for the
true heterozygote calls for pooled population samples with minor alleles. In our study of QTL
mapping by BSA, this would lead to identification of false positive associations as QTLs by 1%.
Earlier Takagi et al [54] described a method named ‘QTL seq’, where DNA sequence reads
were aligned to reference sequence of either of the parents, and SNP-index plots of H-bulk and
L-bulk were generated. Genomic regions displaying contrasting patterns of SNP-index between
the two bulks defined the QTL positions. Following this, one major concern in our study was
whether to consider the homogenous SNPs alone as QTLs or look at the haplotypes in the
vicinity of the linked SNP since this is a high density assay. For this we devised a scoring
method where genotype calls of flanking markers of all the QTL-linked SNPs were considered
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except where the SNPs themselves were at ends of the chromosome. There was only one such
exception in one of the mapping populations (a SNP in chromosome 9 in the mapping popula-
tion derived from CSR11/MI48). The flanking markers were assigned a score of one when they
were of parental type; heterozygous recombinants received a score of 0.5 whereas homozygous
recombinants were given a score of zero. The results revealed that not even a single linked SNP
obtained the maximum possible score of four, wherein the flanking markers in both the bulks
and in both the adjacent regions would have been of respective parental types (S8 Table). It is
worthwhile to mention here that the average size of a single QTL region considered for the
above analysis was 575 kb in one population and 604 kb in another. This translates to an aver-
age genetic distance of 2.3 cM (@250 kb per cM). Despite such narrow genetic distances, we
did observe recombination events routinely since we were handling advanced RIL populations.
Based on the above analysis and observations we decided to concentrate only on the homoge-
neous bulks rather than the haplotypes of nearby flanking SNPs.

At reproductive stage there are very few reports on QTL mapping for salt stress. Recently
Hossain et al. [41] has reported several QTLs on chromosome 1, 7, 8 and 12 at reproductive
stage for salt tolerance in rice. They have reported 11 QTLs at 31.06 and 32.67Mb position on
chromosome1. In the mapping population CSR11/MI48 three QTL regions were present
between 32.3 to 39.5 Mb position and in other mapping population CSR27/MI48 one QTL
region was present at 30.1 Mb position. Out of 21 QTLs found in CSR11/MI48 RILs 5 QTLs
were similar to QTLs reported in our study in RIL population CSR27/MI48 by BSA.

For validation of 50K BSA approach it was compared with the SSR based QTL mapping
described earlier by Ammar et al. [42] and Pandit et al. [8] in the same bi-parental population of
CSR27/MI48. We found 5 common QTLs reported earlier by SSR genotyping of whole mapping
population and identified additional 29 QTLs in CSR27/MI48 mapping population due to
dense SNP map of 5,021 polymorphic loci. The QTL mapping has twin problems of underesti-
mation and overestimation of QTL. The present approach with high marker density ensures
that rarely a QTL will be missed. However, a large pool size created from a small RIL population
will also lead to missing QTLs due to heterogeneity of RILs in the pool for lack of sufficient
number of RILs in the base population that have accumulated all the QTLs. A mapping popula-
tion of RIL would segregate into 1:1 ratio for SNPs. If there are five unlinked genes governing a
complex trait, to identify a single plant having all the favorable allele, a population of 95 is
required. To pool 10 such individuals, which is common practice in BSA based studies, one
needs at least 506 lines [57]. Hence, a larger RIL population size is better to select actual extreme
phenotype having all the favorable allele for BSA. To minimize the overestimation of QTL
regions we have considered only those loci which were homogeneous in both tolerant and sensi-
tive pools, as both the pools could not became homogeneous for the same loci just by chance.

A major disadvantage of QTL mapping by BSA is that we do not have an estimation of the
proportion of variation explained by the QTL. For this at least we need to genotype sufficient
number of individual RILs so that effect of different combination of genes can be examined.
This individual RIL genotyping could be restricted to only those potential QTLs (SNPs) identi-
fied by BSA so that the entire procedure remains cost effective. The method of QTL mapping
we have reported here is a fast method to make physical map of any particular trait using a rea-
sonably high density array, which is cost effective and time saving.

Materials and Methods

Plant Material
Amapping population of 216 recombinant inbred lines (RILs) was developed from a cross
between rice varieties CSR11 and MI48 using single seed descent method. CSR11 is a salt-
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tolerant, Indica rice variety bred at Central Soil Salinity Research Institute (CSSRI), Karnal,
India. It is a Na+ excluder and has tolerance to sodic (pH 9.6–9.9) soils [26]. In contrast, MI48
is a salt-sensitive Indica variety. A second mapping population of 216 RILs from CSR27/MI48,
used earlier for mapping salt tolerance QTLs with SSR and SNP markers [8], was employed for
validation of the QTLs by BSA using 50K SNP array based SNP genotyping.

Phenotyping for Salt Stress Susceptibility Index and Preparation of
Bulks
Phenotyping of CSR11/MI48 RILs for salt tolerance parameters was commenced on the stabi-
lized F10 plants of 216 RILs along with two parents. The phenotyping was performed in 2009
(F10 plants), 2010 (F11 plants) and 2011 (F12 plants) under precisely controlled micro plots hav-
ing two stress levels, moderate sodicity (pH ~ 9.5) and high sodicity (pH ~ 9.9), and non-stress
(pH ~ 7.5) control plots at CSSRI, Karnal. Thirty day-old seedlings were transplanted in con-
crete microplots in simple lattice design for evaluation under normal, moderate and high sodi-
city stresses. At each stress level, genotypes were replicated twice with row×plant spacing of
20×15 cm. This micro plot facility has been created using brick mortar concrete materials hav-
ing dimension of 6 m (length), 3 m (width) and 1 m (depth) under rainout shelter. The lysime-
ters were filled with soil which is uniform throughout the depth. The desired levels of moderate
sodicity (pH ~ 9.5) and high sodicity (pH ~ 9.9) simulating the natural field conditions but
without the field soil heterogeneity were created by adding required amount of NaHCO3 in the
soil. The CSR27/MI48 RIL population was phenotyped for salt stress susceptibility index and
other salt tolerance parameters as described earlier [8]. Data on five plants from each RIL plot
were recorded on grain yield and other component traits namely, days to 50% flowering (DFF),
plant height (PH), panicle length (PL), total tiller number (TT), productive tiller number (PT),
1000 seed weight (SW), grains per panicle (GPP), spikelet fertility (SF), and grain yield (GY)
during kharif 2009, 2010 and 2011. Thirty each of most tolerant and most sensitive RILs of
CSR11/MI48 mapping population were identified based on SSI for GY to create the two bulks.
Extreme top and bottom RILs were selected based on the consistence performance of SSI for
grain yield for three years (2009, 2010 and 2011) under moderate and high sodicity. For the
optimization of number of RILs to be pooled for BSA, bulks of 10, 20, 30, 40 and 50 random
RILs were created with each larger bulk including all the lines of the smaller bulks and analyzed
with 50K SNP chip for allelic heterogeneity.

Statistical Analysis
Homogeneity of error variance across the three seasons was tested by the F test [58] and com-
bined analyses of variance for genotypes were performed. Significance levels were determined
for the combined analysis [59]. Stress susceptibility index (SSI) was calculated according to
Fischer and Maurer [23] and correlation coefficients among traits were computed as per the
formulae suggested by Miller et al.[60] using SAS 9.3 statistical package.

Plant DNA Extraction, SNP Genotyping and Optimization of Pool Size
For optimization of RIL pool size for BSA, genomic DNA was isolated from 50 random RILs of
the CSR11/MI48 mapping population using CTAB method with minor modifications [61].
Purified DNA (20ng/ul) was combined in equal amounts to prepare different pool size of RIL
numbers of 1–10, 1–20, 1–30, 1–40 and 1–50. A custom designed 50K SNP chip based on sin-
gle copy genes, covering all the 12 rice chromosomes with an average interval of less than 1 kb
between adjacent SNP markers was used for high throughput genotyping [56]. Affymetrix
Axiom1 2.0 Assay Manual Target Prep Protocol was followed for DNA amplification,
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fragmentation, chip hybridization, single-base extension through DNA ligation and signal
amplification. After Staining and scanning on the GeneTitan1 Multi-Channel Instrument
CEL file was extracted using the Affymetrix Genotyping Console™ v4.1 software package. SNP
annotation library was used as standard reference set and development quality check was cal-
culated. Threshold DQC (>0.85) and higher SNP call rate (>95%) was used for further analy-
sis. To see the technical difficulties and sensitivity of array different proportion of two pure
DNA samples of CSR11 and MI48 were used in ratio of 1:1, 1:2, 1:3, 1:4 and 1:5.

Construction of Physical Map and QTL Analysis
SNP genotyping of parental lines CSR27, CSR11 and MI48 and the bulks of extreme tolerant
and extreme susceptible RILs was done using the 50K chip (OsSNPnks). It was noticed that the
sensitive parent MI48 (P2) used here was not the exact match with the MI48 used in the origi-
nal cross to develop the mapping population, so if there was polymorphism between BT and
BS and with monomorphic parental lines P1 and P2, then we considered the data on P1 (CSR11
and CSR27) as true result and assigned the alternate alleles to P2, as ignoring these loci may
result in loss of important QTL regions. A QTL was called if homogeneous alleles were present
in both tolerant and sensitive, either contributed by tolerant or susceptible parent. Sorting of
polymorphic locus was done on Microsoft Excel sheet on the basis of chromosome number
and then by their physical position in ascending order. Physical map of QTL regions was pre-
pared in MapChart2.2, polymorphic homogeneous SNPs were color coded as red or green
(Red background, tolerance allele was contributed by the sensitive parent; green background,
tolerance allele was contributed by the tolerant parent).

Supporting Information
S1 Fig. Frequency distribution of lines for SSI for grain yield in CSR11/MI48 RILs. Parental
lines and RILs derived from the cross between salt tolerant CSR11 (P1) and salt-sensitive MI48
(P2) were evaluated during 2009, 2010 and 2011 under moderate and high sodicity. The RILs
showed significant variability for the nine salt tolerance parameters evaluated. All the parame-
ters showed transgressive segregation and near normal distribution, suggesting involvement of
multiple genes with quantitative inheritance. Tolerant CSR11 showed the least SSI in moderate
(0.44) and high sodicity (0.75) as compared to the sensitive MI48 with SSI of 1.24 and 1.02,
respectively across the three seasons.
(TIF)

S2 Fig. Performance of the top 30 and bottom 30 lines for SSI for grain yield. The extreme
top and bottom 30 RILs of CSR11/MI48 population were selected on the basis of their consis-
tence SSI for grain yield undermoderate and high soidicity in three seasons (2009, 2010 and
2011). Red Bar, Top 30 RILs; Blue bar, Bottom 30 RILs
(TIF)

S1 Table. Analysis of variance for yield and yield related traits under control (pH ~ 7.5),
moderate sodic (pH ~ 9.5) and high sodic (pH ~ 9.9) soils in CSR11/MI48 RIL population
evaluated for three years.
(DOCX)

S2 Table. Phenotypic data of all the RILs of CSR11/MI48 from three year evaluations for
stress susceptibility index. Green background shows slected extreme tolerant RILs; Red back-
ground shows selected extreme susceptible RILs; RIL, recombinant Inbred Lines; SSIMS, stress
susceptibility index at moderate stress; SSIHS, stress susceptibility index at high stress
(XLSX)
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S3 Table. Depiction of 5,821 polymorphic SNP loci in the pools of 10, 20, 30, 40 and 50
RILs of CSR11/MI48 with increasing number of heterogeneous loci in larger pools.
(XLSX)

S4 Table. Analyzed 6,068 polymorphic SNP loci in CSR11/MI48 RIL population. Green
and red shaded homogeneous SNPs represent QTL regions with contribution of tolerant allele
from the tolerant and sensitive parent, respectively, where as plain text with heterogeneous
SNPs shows lack of association with the trait.
(XLSX)

S5 Table. A summary of QTLs regions identified in the CSR11/MI48 RILs, their contribut-
ing parent for the tolerant allele, physical positions and size of the QTL intervals in base
pairs identified by BSA using 50K SNP array.
(DOCX)

S6 Table. Analysis of 5,021 polymorphic SNP loci in CSR27/MI48RIL population. Green
and red shaded homogeneous SNPs represent QTL regions with contribution of tolerant allele
from the tolerant and sensitive parent, respectively, where as plain text with heterogeneous
SNPs shows lack of association with the trait.
(XLSX)

S7 Table. A summary of QTLs regions identified in the CSR27/MI48 RILs, their contribut-
ing parent for the tolerant allele, physical positions and size of the QTL intervals in base
pairs identified by BSA using 50K SNP array.
(DOCX)

S8 Table. Recombination based scores for the QTLs identified in CSR27/MI48 and CSR11/
MI48 derived mapping populations based on the genetic constitution of the flanking mark-
ers.
(DOCX)
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