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Abstract

Osteoclasts seem to be metabolic active during their differentiation and bone-resorptive
activation. However, the functional role of lactate dehydrogenase (LDH), a tetrameric
enzyme consisting of an A and/or B subunit that catalyzes interconversion of pyruvate to
lactate, in RANKL-induced osteoclast differentiation is not known. In this study, RANKL
treatment induced gradual gene expression and activation of the LDH A,B, isotype during
osteoclast differentiation as well as the LDH A;B3 and B, isotypes during osteoclast matura-
tion after pre-osteoclast formation. Glucose consumption and lactate production in growth
media were accelerated during osteoclast differentiation, together with enhanced expres-
sion of H*-lactate co-transporter and increased extracellular acidification, demonstrating
that glycolytic metabolism was stimulated during differentiation. Further, oxygen consump-
tion via mitochondria was stimulated during osteoclast differentiation. On the contrary,
depletion of LDH-A or LDH-B subunit suppressed both glycolytic and mitochondrial metabo-
lism, resulting in reduced mature osteoclast formation via decreased osteoclast precursor
fusion and down-regulation of the osteoclastogenic critical transcription factor NFATc1 and
its target genes. Collectively, our findings suggest that RANKL-induced LDH activation stim-
ulates glycolytic and mitochondrial respiratory metabolism, facilitating mature osteoclast for-
mation via osteoclast precursor fusion and NFATc1 signaling.

Introduction

Bone consists of a mineral component such as calcium phosphate and other salts as well as an
organic component such as collagenous matrix. Bone is a dynamic organ remodeled by a deli-
cate balance between bone-forming osteoblasts and bone-degrading osteoclasts [1]. Osteo-
clasts, which are multinucleated giant cells formed by cell-cell fusion, contain multiple nuclei

PLOS ONE | DOI:10.1371/journal.pone.0153886  April 14,2016

1/13


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0153886&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

@’PLOS ‘ ONE

Lactate Dehydrogenase Activity and Osteoclastogenesis

(up to 20) and resorb calcified matrix by secreting acids and proteases into the resorption
lacuna between the highly convoluted (ruffle border) plasma membrane of the osteoclast and
bone surface [2, 3]. Local acidosis in the resorption lacuna dissolves inorganic minerals such as
calcium, resulting in the exposure of organic matrix components such as collagen from connec-
tive bone tissue [4, 5]. Degradation of the decalcified organic matrix is subsequently carried
out by proteolytic enzymes such as collagenases, particularly cathepsin K, and matrix metallo-
proteinases (MMPs) such as MMP9. Proton transport via ATP input by vacuolar-type H*-
ATPases (V-ATPase) across the osteoclast ruffle border membrane plays an active role in local
acidosis in bone-resorbing areas [6, 7]. Further, osteoclast migration from one resorption site
to another is achieved by dynamic rearrangement of the actin and microtubule cytoskeleton,
which requires excess ATP hydrolysis [8]. Such high energy demand in osteoclastic resorption
indicates that osteoclasts are metabolically active.

Research performed by ourselves and others has found evidence for an active metabolic pro-
cess in osteoclast differentiation and function as follows: (i) Total cellular RNA and protein
contents increase in the receptor activator during nuclear factor-«B ligand (RANKL)-induced
osteoclast differentiation, suggesting that differentiation requires a substantial increase in bio-
mass and biosynthetic intermediates to supply cellular constituents [9-11]. (ii) Osteoclasto-
genic stimulation by RANKL induces a metabolic shift towards accelerated glycolytic
metabolism, suggesting that osteoclast precursors undergo elevated glucose influx and lactate
efflux, eventually leading to lactic acidosis [9]. (iii) Osteoclasts contain an abundance of mito-
chondria [12], exhibiting an accelerated tricarboxylic acid (TCA) cycle and mitochondrial res-
piration to generate more ATP [9]. This is further supported by data showing that metabolic
enzymes involved in energy production via the TCA cycle and mitochondrial oxidative phos-
phorylation are strongly up-regulated during osteoclastogenesis [13, 14]. (iv) Exogenous ATP
directly stimulates osteoclast differentiation and resorption pit formation [15], whereas treat-
ment with specific inhibitors (complex I, rotenone; complex III, antimycin A) of mitochondrial
complexes that mediate sequential electron transfer or a blocker (oligomycin) for mitochon-
drial Fy/F, ATPase suppresses osteoclast formation [9, 16]. These cumulative results suggest
that RANKL-induced elevated glycolysis, mitochondrial respiration, and subsequent ATP pro-
duction are involved in osteoclastogenesis.

Despite some reports that metabolism is essential for regulating osteoclast differentiation
and bone-resorbing function, little is known about the role of glycolytic lactate dehydrogenase
(LDH) in osteoclast differentiation. Here, we report that up-regulation of LDH activity during
osteoclastogenesis promotes both glycolysis and mitochondrial respiration, consequently
potentiating mature osteoclast formation via nuclear factor of activated T cell (NFAT) c1
signaling.

Materials and Methods
Cell culture and osteoclast differentiation

Bone marrow—derived mononuclear osteoclast precursors were collected from the tibia and
femur bones of 6-week-old male C57BL/6] mice (Central Lab Animals, Seoul, Korea) as
described previously [17]. Cells were cultured under a humidified atmosphere of 5% CO, at
37°C in bicarbonate-buffered o-MEM (Thermo Scientific, Rockford, IL, USA) supplemented
with 10% fetal bovine serum (FBS) and antibiotics. Osteoclast precursors were differentiated
into osteoclasts in o-MEM in the presence of M-CSF (30 ng/ml) and RANKL (100 ng/ml) for 4
days with a change of medium after 2 days. On day 2 after osteoclast differentiation, a tartrate-
resistant acid phosphatase (TRAP) solution assay to determine extent of pre-osteoclast forma-
tion was performed by addition of 5.5 mM p-nitrophenyl phosphate, a colorimetric substrate,
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in the presence of 10 mM sodium tartrate (pH 5.2), and absorbance was measured at 405 nm
using a microplate reader. To assess osteoclast differentiation, cells were fixed and stained for
TRAP using a leukocyte acid phosphatase staining kit (Sigma-Aldrich, St, Louis, MO, USA) on
day 4 after differentiation, and TRAP-positive multinucleated cells (TRAP* MNCs) with more
than three nuclei were counted with the use of a light microscope. Further, TRAP™ MNCs

with > 10 nuclei and > 100 pm in diameter were analyzed as mature osteoclasts. To induce
extracellular acidosis, bicarbonate-free a-MEM (Invitrogen, Carlsbad, CA, USA) buffered with
10 mM HEPES and supplemented with 10% FBS and antibiotics was prepared by adjusting the
pH to 7.0 or 7.5 with 1 M NaOH. Cells exposed to HEPES-buffered medium were cultured in a
humidified atmosphere without CO, at 37°C and further differentiated into osteoclasts in the
presence of M-CSF and RNAKL [18]. All animal procedures were approved by the Institutional
Review Board of Yeungnam University College of Medicine (YUMC-AEC2014-036) and were
performed in accordance with the Guide for the Care and Use of Laboratory Animals. The ani-
mals were housed in a room with 22°C-24°C temperature, 60% relative humidity, and main-
tained on a 24-h light/dark schedule (12:12). All mice were given free access to food and water,
and were sacrificed using CO,.

Glucose and lactate assay in culture media

Osteoclast precursors were treated with M-CSF (30 ng/ml) alone or both M-CSF (30 ng/ml)
and RANKL (100 ng/ml) for the indicated times. After collecting culture medium, glucose and
lactate contents were determined by a colorimetric method using a Glucose Assay Kit or Lac-
tate Assay Kit (BioVision, Milpitas, CA, USA).

Oxygen consumption (OCR) and extracellular acidification rate (ECAR)

Osteoclast precursors were seeded at a density of 1 x 10° cells/well with a-MEM supplemented
with M-CSF (30 ng/ml) in XF cell culture microplates (Seahorse Bioscience, Billerica, MA,
USA) and allowed to attach overnight. The next day, cells were incubated in sodium bicarbon-
ate-free o-MEM media (Hyclone, Logan, UT, USA) buffered with 10 mM HEPES (adjusted to
pH 7.4 with 1 M NaOH) [18] and supplemented with 10% FBS and antibiotics in the presence
of M-CSF (30 ng/ml) alone or both M-CSF (30 ng/ml) and RANKL (100 ng/ml) for 1 h. OCR
and ECAR were measured continuously at 37°C using an XF96 analyzer (Seahorse Bioscience),
and the readings were collected every 8 min after mixing, waiting, and recording periods in
each well. Values obtained were the average of readings for 3 h.

Quantitative and semi-quantitative RT-PCR

Total RNA was prepared from cells using Trizol reagent (Invitrogen, Carlsbad, CA, USA); 2 ug
of total RNA from each sample was reverse-transcribed into cDNA with oligo dT at 42°C for 1
h using a M-MLYV reverse transcription kit (Invitrogen) according to the manufacturer’s proto-
col. Quantitative real-time PCR was performed in triplicate using SYBR Premix Ex Taq
(Takara Bio, Shiga, Japan) on an Applied Biosystems 7500 Sequence Detection System and
software (Applied Biosystems, San Francisco, CA, USA). Relative mRNA expression levels
were determined by the comparative delta threshold cycle method. Expression values of all
mRNAs were normalized to the mRNA level of Gapdh. Further, semi-quantitative RT-PCR
was performed on a Thermo Hybaid PCR Express system (Thermo Hybaid, Ulm, Germany).
Primers used are listed in S1 Table.
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Immunoblot analysis and determination of LDH isotypes

Cells were lysed in lysis buffer containing 20 mM Tris-HCI (pH 7.5), 150 mM NaCl, 1% Noni-
det P-40, 0.5% sodium deoxycholate, 1 mM EDTA, 0.1% SDS, 1 mM NaF, 2 mM Na3VO,, 1
mM B-glycerophosphate, and protease inhibitor cocktail (Roche Molecular Biochemicals,
Mannheim, Germany). Cell lysates were centrifuged at 10,000 x g for 10 min at 4°C, after
which protein concentrations of the resulting supernatants were measured by DC protein assay
(Bio-Rad, Hercules, CA, USA). Proteins were separated by 10% SDS-polyacrylamide gel elec-
trophoresis, transferred to a nitrocellulose membrane, and probed with specific antibodies.
Immune complexes were detected with appropriate horseradish peroxidase—conjugated sec-
ondary antibodies and ECL reagents (Abfrontier, Seoul, Korea). Commercially available
antibodies were used to detect LDH-A (Abcam, Cambridge, MA, USA), LDH-B (Sigma),
Cathepsin K (Abcam), and c-Fos (Cell Signaling, Danvers, MA, USA). Antibodies against p65,
NFATcl, DC-STAMP, V-ATPase subunit d2 (Atp6v0d2), and B-actin were purchased from
Santa Cruz Biotechnology. To determine LDH isotypes, osteoclast precursors were cultured
with M-CSF (30 ng/ml) and RANKL (100 ng/ml) for 4 days. Cytosolic proteins after cell lysis
were prepared according to the manual using a Paragon LD gel system (Beckman Coulter,
Indianapolis, IN, USA), and 7 ug of proteins was separated by electrophoresis at 50 V for 50
min. The area of LDH isotype activity was visualized using a colorimetric procedure with for-
mazan color reaction.

Knockdown of LDH by short hairpin RNA (shRNA)

shRNA-mediated knockdown of ARF1 was performed using MISSION Lentiviral Transduc-
tion Particles against mouse LDH-A (Sigma-Aldrich, clone ID: TRCN0000041744) and
LDH-B (clone ID: TRCN0000041759). Lentiviral transduction was performed based on the
manufacturer’s instructions. MISSION pLKO.1-puro control transduction particles (Sigma-
Aldrich) were used as control virus particles. After osteoclast precursors were infected with
shRNA lentiviral particles or pLKO.1-puro empty control particles in the presence of poly-
brene (8 ug/ml; Sigma-Aldrich) for 12 h, viral particle-containing medium was exchanged for
fresh medium. Infected cells were selected with puromycin (2 mg/ml) for 2 days, and efficient
ARF1 knockdown was confirmed using RT-PCR and immunoblot analysis. After successful
transduction, cells were induced to differentiate into osteoclasts in o-MEM supplemented with
M-CSF (30 ng/ml) and RANKL (100 ng/ml) for the indicated times.

Fusion Assay

In the cell fusion assay, osteoclast precursors (2 x 10° cells per well) treated with M-CSF (30
ng/mL) and RANKL (100 ng/mL) for 2 days were seeded in 48-well plates to reach 100% con-
fluence and further cultured with M-CSF and RANKL for 3 days. After cells were fixed with
3.7% formalin and stained with TRAP, the number of TRAP" MNCs containing more than
three nuclei was counted using a light microscope.

Statistical analysis

Quantitative data are the mean + SD from at least three distinct experiments. The data were
analyzed by two-tailed Student’s ¢ test. For statistical analysis of multiple comparisons, means
between groups were performed using one-way ANOVA analysis with the Microsoft 2010
Excel program. A minimal level of P < 0.05 was considered to be statistically significant.
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Results

Glycolysis and mitochondrial respiration are accelerated during
osteoclast differentiation

To analyze changes in metabolic activity during RANKL-induced osteoclast differentiation, we
first assessed glycolytic activity, as characterized by glucose consumption and lactate accumula-
tion in growth media. RANKL treatment to initiate osteoclast differentiation induced a time-
dependent increase in glucose consumption in culture media compared to control (Fig 1A,
upper panel). Further, our own report and others showed that among the glucose transporter
(GLUT) isoforms present in the cytoplasmic membrane (GLUTs 1 to 4), GLUT1 and 3 are pre-
dominantly expressed in the osteoclast precursor stage [9], and GLUT1 is up-regulated in the
mature osteoclast stage [10]. These combined results indicate that enhanced influx of glucose
from an extracellular compartment into the cytosolic space upon RANKL stimulation may be
dependent on the GLUT gene expression level as well as mutual affinity between glucose and
GLUT [19]. To identify further metabolic processes involving glucose in cells, we next assessed
production of lactic acid, a glycolytic end product that dissociates into lactate anion and a pro-
ton (H") at physiological pH and acts as a causative factor in intra- and extra-cellular acidifica-
tion [20]. RANKL-treated osteoclast precursors showed higher accumulation of lactate in
culture media than the control (Fig 1A, lower panel), as evidenced by accelerated extracellular
acidification (S1A Fig). It was previously reported that proton-linked monocarboxylate trans-
porters (MCTs) allow the export of lactate anions and protons into the extracellular space to
minimize acidic damage in cells [21]. When analyzing gene expression of MCT isotypes
(MCT1 to 8), mRNA expression levels of MCT1, 2, 3, 5, and 8 gradually increased during oste-
oclast differentiation, whereas expression levels of MCT4, 6, and 7 remained unchanged (Fig
1B). Additionally, RANKL-stimulated osteoclast precursors showed marked elevation of oxy-
gen consumption, representing completion of aerobic glucose oxidation via the TCA cycle and
electron transport chain reaction in mitochondria, compared to the control (S1B Fig). These
results indicate that treatment with the osteoclast key factor RANKL led to a metabolic shift
towards elevated glycolysis and mitochondrial respiration, together with increased GLUT and
MCT activities mediating glucose influx and lactate efflux, respectively.

LDH is up-regulated during osteoclast differentiation

LDH is a tetrameric enzyme formed by combinations of subunit A and/or B, resulting in five
isotypes (LDH-A,, A3B,, A,B,, A;B;, and B,) that catalyze interconversion of pyruvate to lac-
tate [22]. LDH-A, the predominant form in skeletal muscle, converts pyruvate into lactate,
whereas LDH-B is mainly expressed in heart muscle and favors conversion of lactate into pyru-
vate. The present results that both glycolysis and mitochondrial respiration were elevated dur-
ing osteoclastogenesis led us to further investigate whether or not LDH is involved in osteoclast
differentiation. Along with up-regulation of osteoclast critical genes, including TRAP, cathep-
sin K, and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) during RANKL-induced
osteoclast differentiation, mRNA expression of LDH-B subunit sequentially increased during
differentiation, as determined by semi-quantitative RT-PCR and real-time PCR (Fig 2A and
2B). Likewise, mnRNA of LDH-A subunit was equally expressed during differentiation, as fur-
ther supported by immunoblot analysis of the protein levels of LDH-A and LDH-B subunits
(Fig 2C). To analyze changes in the profiles and activities of LDH isotypes, we performed on-
gel colorimetric assay using the cytosolic fraction prepared from differential stages of osteoclast
differentiation. As shown in Fig 2D, LDH-A,B, type was predominantly presented in osteo-
clast precursors and mature osteoclasts, and its band intensity increased after RANKL
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Fig 1. Increased glycolytic metabolism during osteoclast differentiation. Osteoclast precursors were
cultured with M-CSF (30 ng/ml) and RANKL (100 ng/ml) for the indicated times. (A) Glucose and lactate
contents in cell culture media. Concentrations of glucose and lactate in the culture medium were measured.
Data are given as mean + SD for a representative experiment run in triplicate. *P <0.01, **P < 0.05. (B)
Gene expression analysis of monocarboxylate transporters (MCTs) during osteoclast differentiation. Total
RNA isolated from cells was subjected to RT-PCR analysis of the indicated mRNAs. Level of glyceraldehyde
3-phosphate dehydrogenase (GAPDH) served as an internal control for equal loading.

doi:10.1371/journal.pone.0153886.g001

treatment, showing elevated LDH-A,B, activity. We also observed increased patterns of
LDH-A;B; and LDH-B, in the mature osteoclast stage. Together, our observations suggest that
elevated LDH-A,B, activity during osteoclast differentiation can be attributed to increased
combinations of LDH-A and LDH-B, whereas augmented combinations of A;B; and B, of
LDH in mature osteoclasts may be caused by increased gene expression of LDH-B subunit.

Depletion of LDH-A or LDH-B leads to defective osteoclast formation
due to reduced metabolic activity, decreased osteoclast precursor
fusion, and NFATc1 down-regulation

To reveal the functional role of LDH in osteoclast formation, we performed LDH knockdown
using lentiviral-delivered shRNAs. Stable knockdown of LDH-A or LDH-B was determined at
the mRNA and protein levels, as characterized by RT-PCR (Fig 3A and 3B) and immunoblot
analysis (Fig 3C), respectively. LDH-A or LDH-B-deficient cells showed low glucose consump-
tion and lactate accumulation in culture media (Fig 3D), resulting in reduced extracellular acid-
ification (S2A Fig) and decelerated mitochondrial respiration (S2B Fig). Lack of LDH-A or
LDH-B resulted in a reduced number of TRAP* multinucleated cells (TRAP* MNCs) with
more than three nuclei compared to the control (Fig 3E and 3F). We next assessed whether or
not inhibition of osteoclast formation by LDH-A or LDH-B depletion occurs at any stage of
osteoclast differentiation. Total TRAP activity on day 2 after osteoclast differentiation, as an
indicator of the extent of pre-osteoclast process and formation, was not significantly different
regardless of the expression level of LDH-A or LDH-B (Fig 3G, left panel). In comparison, the
number of TRAP™ multinucleated cells (TRAP™ MNCs) with more than 10 nuclei, representing
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Fig 2. Changes in LDH gene expression and isotypes during osteoclast differentiation. Osteoclast
precursors were cultured in the presence of M-CSF (30 ng/ml) and RANKL (100 ng/ml) for 4 days. (A and B)
mRNA levels of LDH-A and LDH-B were determined using RT-PCR (A) and quantitative real-time PCR (B).
Data for (B) are means + SD for a representative experiment run in triplicate. *P < 0.01, **P < 0.05. (C)
Protein levels of LDH-A and LDH-B were analyzed using immunoblot analysis. GAPDH and B-actin were
used as loading controls. (D) Profiling of LDH isotypes. To analyze LDH isotypes, agarose gel
electrophoresis was performed, and the activities were visualized by a formazan color reaction.

doi:10.1371/journal.pone.0153886.g002

formation of multinucleated mature osteoclasts, was noticeably reduced by LDH-A or LDH-B
depletion (Fig 3G, right panel). Osteoclast precursor fusion has been reported to be a crucial
step in forming multinucleated mature osteoclasts during osteoclast differentiation [23]. Cell
fusion assay of osteoclast precursors showed that depletion of LDH-A or LDH-B resulted in a
significant decrease in the formation of TRAP" multinucleated osteoclasts (Fig 3H). These
findings clearly indicate that LDH may be substantially involved in mature osteoclast forma-
tion. To further explore the molecular mechanism underlying defective osteoclast formation by
LDH depletion, we analyzed RANKL-induced osteoclastogenic signaling pathways. As shown
in Fig 4, LDH-A or LDH-B-deficient cells treated with RANKL exhibited marked reduction of
NFATcl, which is a critical osteoclastogenic transcription factor that mediates osteoclast matu-
ration after the pre-osteoclast stage [24]. The mRNA levels of NFATc1-targeted genes such as
TRAP, cathepsin K (Ctsk), OSCAR, V-ATPase subunit d2 (Atp6v0d2), and DC-STAMP were
significantly reduced in LDH-A or LDH-B-deficient cells treated with RANKL (Fig 4A).
Immunoblot analysis showed that osteoclast-fusion factors DC-STAMP and Atp6v0d2 [25,
26], and bone-matrix proteolytic enzyme cathepsin K (Ctsk) [27] were decreased in LDH-A or
LDH-B-deficient cells during osteoclast differentiation (Fig 4B). However, other genes such as
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Fig 3. Decreased osteoclast formation by LDH-A or LDH-B depletion. Osteoclast precursors were infected with shRNA lentiviral particles targeting
mouse LDH-A, LDH-B, or pLKO.1-puro empty control virus particles. After puromycin selection for 2 days, LDH-A or LDH-B knockdown was validated using
RT-PCR (A), quantitative real-time PCR (B), and immunoblot analysis (C). GAPDH and B-actin were used as loading controls. (D) Glucose and lactate
concentrations in culture media of LDH-A or LDH-B-depleted cells. LDH-A or LDH-B knockdown cells were cultured with M-CSF (30 ng/ml) and RANKL (100
ng/ml) for 2 or 4 days as indicated. Concentrations of glucose and lactate in the culture media were determined. (E and F) Measurement of osteoclast
formation. LDH-A or LDH-B-depleted cells were cultured for 4 days in the presence of M-CSF and RANKL to induce osteoclast formation. Cells were stained
with TRAP and photographed using a light microscope (E). Scale bar, 100 um. The number of TRAP* MNCs with more than three nuclei was counted under
a light microscope (F). (G) Determination of TRAP activity and mature osteoclast formation. To assess the extent of pre-osteoclast formation, TRAP activity
was measured on day 2 after osteoclast differentiation (left panel). Mature osteoclast formation was determined by counting the number of TRAP* MNCs with
more than 10 nuclei (right panel). (H) Cell fusion assay. Osteoclast precursors treated with M-CSF and RANKL for 2 days were seeded and further cultured in
the presence of M-CSF and RANKL for 3 days. After TRAP staining, TRAP* MNCs with more than three nuclei were counted using a light microscope. Data
are mean = SD (n=3). *P<0.01, **P <0.05.

doi:10.1371/journal.pone.0153886.g003
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Fig 4. Altered osteoclastogenic signaling during osteoclast differentiation of LDH-A or LDH-B-deficient cells. Osteoclast precursors were infected
with LDH-A, LDH-B, or pLKO.1-puro empty control virus particles. LDH-A or LDH-B knockdown cells were cultured with M-CSF (30 ng/ml) and RANKL (100
ng/ml) for 3 days (A) or the indicated days (B). (A) The mRNA expression levels of osteoclastogenic genes including NFATc1, DC-STAMP, Atp6v0d2,
cathepsin K (Ctsk), OSCAR, and TRAP were analyzed using quantitative real-time PCR. Data are mean + SD (n = 3). *P < 0.01. (B) Total cell lysates were
subjected to immunoblot analysis with specific antibodies to c-Fos, p65, NFATc1, DC-STAMP, Atp6v0d2, cathepsin K (Ctsk), and B-actin (loading control).
Band intensities were represented as a fold difference. Gel images are representative of three independent experiments.

doi:10.1371/journal.pone.0153886.g004

the osteoclastogenic transcription factors c-Fos (a component of AP-1) [28] and p65 (a compo-
nent of NF-xB) [29], showed no significant difference between LDH-depleted cells and the
control. Collectively, our results suggest that RANKL-induced LDH activation mediates
mature osteoclast formation via the stimulation of osteoclast precursor fusion and the induc-
tion of NFATc1 signaling.

It has been reported that lactic acidosis due to increased glycolysis leads to acidic extracellu-
lar pH, which stimulates osteoclastic bone resorption [18, 30]. To resolve a possible link
between LDH and osteoclast differentiation, we finally investigated whether extracellular aci-
dosis resulted from the end product lactic acid of LDH affects osteoclast differentiation. Rela-
tively low pH (pH 7.0) in the culture medium induced an increase in osteoclast differentiation
compared to that in pH 7.5 medium (Fig 5A). The osteoclastogenic critical transcription factor
NFATcl, target genes of NFATc1 such as TRAP, cathepsin K (Ctsk), and OSCAR, and fusion-
related genes including Atp6v0d2, DC-STAMP, OC-STAMP, and CD200 were up-regulated in
cells cultured in relatively acidic culture medium (Fig 5B). These results indicate that acidic
extracellular pH caused by lactic acidosis may stimulate the expression of NFATcI and its tar-
get genes, and accelerate osteoclastogenesis.

Discussion

Osteoclast differentiation consists of multiple processes, including initial mononuclear progen-
itor adhesion and migration along the bone surface followed by fusion to form multinucleated
cells. This process requires metabolic reprograming to maintain biosynthetic substrates and
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Fig 5. Stimulatory effect of acidic extracellular pH on osteoclast differentiation. Osteoclast precursors were cultured under a CO,-free condition in
HEPES-buffered medium (pH 7.0 or 7.5) in the presence of M-CSF (30 ng/ml) and RANKL (100 ng/ml) for 4 days (A) or for the indicated times (B). (A)
Measurement of osteoclast formation. Cells were stained with TRAP and the number of TRAP* MNCs with more than three nuclei was counted under a light
microscope. Scale bar, 100 ym. (B) Analysis of osteoclastogenic gene expression. mRNA levels were analyzed using quantitative real-time PCR.

doi:10.1371/journal.pone.0153886.9005

energy [9-11]. Bone resorption of polycaryotic mature osteoclasts also requires ATP-coupled
proton pumping by V-ATPase into the lacuna area between the osteoclastic ruffle border mem-
brane and bone surface to induce mineral dissolution of old bone tissue [2, 3].

Together with active metabolic re-ordering during osteoclast differentiation, enhanced
activity of LDH during osteoclast differentiation was caused by increased gene expression as
well as accelerated aerobic glycolysis and mitochondrial respiration. In the cytosolic compart-
ment, increased enzymatic activity of LDH-A subunit, which mediates reduction of pyruvate
to lactic acid using NADH, produces abundant glycolytic intermediates to supply cellular con-
stituents and allow ATP generation via aerobic glycolysis to support energy demand [22].
[Note: since you added a citation, changed to present tense since this is a literature fact] As gen-
erally reported, mitochondria-rich cells such as epithelial cells show extremely high expression
of vacuolar-type proton-pumping ATPase (V-ATPase) both on their plasma membrane and in
intracellular vesicles, high expression of cytosolic carbonic anhydrase, and elevated activity of
mitochondrial metabolism [12]. Consistently, non-epithelial mitochondria-rich osteoclasts
show high levels of V-ATPase on the ruffle border of the cytoplasmic membrane on the bone-
resorptive pit region [2, 3], resulting in an acidic microenvironment, as well as increased
expression of carbonic anhydrase during osteoclast differentiation [31]. The present study also
suggests that enhanced activity of LDH-B subunit, which mediates conversion of lactic acid to
pyruvate, induces both biosynthetic substrate synthesis and energy production via the TCA
cycle and mitochondrial oxidative phosphorylation. As a result, LDH activation leads to bidi-
rectional induction of glycolysis and mitochondrial respiration in the metabolic adaptation
process during osteoclast differentiation.

Although an active metabolic process is critical for osteoclast differentiation and bone-
resorption processes, including old bone dissolution by an osteoclastic acidic microenviron-
ment in the lacuna and osteoclastic cell migration to another site, regulation of osteoclast dif-
ferentiation by specific metabolic enzymes has yet to be elucidated. Here, we showed that
increased expression and activity of LDH during osteoclast differentiation induce glycolysis
and mitochondrial respiration to facilitate differentiation of osteoclast precursors into mature
osteoclasts. Thus, similar to anti-cancer therapeutic agents that can regulate glycolytic enzymes
and metabolic intermediates of tumor glycolysis [32, 33], our findings propose that regulators
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capable of inhibiting metabolically active enzymes (e.g. LDH) can be promising therapeutic
targets to treat osteoporotic diseases due to induction of osteoclast differentiation and bone-
resorptive function.

Supporting Information

S1 Table. Sequences of PCR primers used in this study.
(DOCX)

S1 Fig. Measurement of extracellular acidosis and mitochondrial oxygen consumption.
After osteoclast precursors were incubated in sodium bicarbonate-free HEPES-buffered o-
MEM media with M-CSF (30 ng/ml) and RANKL (100 ng/ml) for 1 h, extracellular acidifica-
tion rate (ECAR) (A) and oxygen consumption rate (OCR) (B) were measured continuously at
37°C using a XF96 analyzer. ECAR and OCR readings were collected every 8 min, and values
are the average of readings for 3 h. Data are presented as mean + SD (n = 3). *P < 0.01,

**P < 0.05.

(TTF)

S2 Fig. Changes in ECAR and OCR by LDH-A or LDH-B depletion. Osteoclast precursors
were infected with shRNA lentiviral particles targeting mouse LDH-A, LDH-B, or pLKO.1-
puro empty control virus particles and then selected with puromycin for 2 days. Cells were
treated as in S1 Fig and ECAR (A) and OCR (B) were measured. Data are presented as

mean + SD (n =3). *P < 0.01, **P < 0.05.

(TIF)
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