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Abstract
Many modalities of magnetic resonance imaging (MRI) have been confirmed to be of great

diagnostic value in glioma grading. Contrast enhanced T1-weighted imaging allows the rec-

ognition of blood-brain barrier breakdown. Perfusion weighted imaging and MR spectro-

scopic imaging enable the quantitative measurement of perfusion parameters and

metabolic alterations respectively. These modalities can potentially improve the grading

process in glioma if combined properly. In this study, Bayesian Network, which is a powerful

and flexible method for probabilistic analysis under uncertainty, is used to combine features

extracted from contrast enhanced T1-weighted imaging, perfusion weighted imaging and

MR spectroscopic imaging. The networks were constructed using K2 algorithm along with

manual determination and distribution parameters learned using maximum likelihood esti-

mation. The grading performance was evaluated in a leave-one-out analysis, achieving an

overall grading accuracy of 92.86% and an area under the curve of 0.9577 in the receiver

operating characteristic analysis given all available features observed in the total 56

patients. Results and discussions show that Bayesian Network is promising in combining

features from multiple modalities of MRI for improved grading performance.
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Introduction
Glioma is a common type of brain tumors threatening human lives and the therapies and prog-
noses are highly dependent on tumor grade[1]. As the current ‘gold standard’ for grading brain
tumors, histopathologic grading has two major limitations[2]. One is that the biopsy in some
cases (e.g., brain stem) is physically impossible due to its invasiveness. The other is that the
biopsy can only sample very limited region in a heterogeneous tumor, which may not reflect
the true malignancy of the whole tumor.

Alternatively, with the development of magnetic resonance imaging (MRI), many MRI
modalities are of great diagnostic value in evaluating the grade of a glioma noninvasively and
as a whole. For instance, blood-brain barrier breakdown is often an indicator of higher grade
[2], which can be seen in conventional T1-weighted imaging with gadolinium-based contrast
agents (T1W+C). In more advanced imaging modalities, functional information can be
obtained for tumor diagnosis. Among them, perfusion weighted imaging (PWI) provides a
method to quantitatively measure cerebral microvascularization, whose increase is more char-
acteristic in gliomas of higher grade[3]. This technique exploits the magnetic susceptibility
effect caused by the quickly injected contrast agent and the drop in the signal curves during the
first pass allows perfusion parameter maps to be extracted after post-processing[4, 5]. The in
vivo brain multi-voxel MR spectroscopy (also named as MR spectroscopic imaging, MRSI) is
another promising approach that enables noninvasive observations of metabolite alterations
across tumoral and peritumoral areas[6–9]. For cerebral gliomas, increased choline-containing
compounds (Cho) indicate the presence and aggressiveness of a tumor, while decreased N-ace-
tyl aspartate (NAA) is often a sign of neuronal damage and loss by tumors’ invasion. Besides,
quantities of lipid metabolites generally reflect the extent of tumoral necrosis which is associ-
ated with grade, and lactate (Lac) is also related to tumoral activities.

The more available information can help us have a better understanding of gliomas, but it
can also complicate the grading process, especially for inexperienced radiologists. Hence, it
would be advantageous to provide a method that can automatically combine different types of
information in grading. For this goal, Bayesian Network (BN) [10, 11] is potentially a candidate
for its power and flexibility that have been confirmed in many applications of medical diagno-
sis [12–16]. In a BN, every node is regarded as a random variable that can be discrete or contin-
uous, or even have higher dimensions. The BN structure is the delineation of casual
relationships between individual variables and can be either learned from data or manually
determined[17]. After parameter learning with enough data, which is the process of estimation
of the distribution parameters for each node, we are able to make probabilistic inferences on
certain nodes given some other nodes observed. In the case of glioma grading, we can predict
the grade of a tumor according to the inference results.

In this work, we proposed a grading system for preoperative cerebral gliomas using BN inte-
grating features extracted from T1W+C, PWI and MRSI. The BN structures were learned
using K2 algorithm in conjunction with manual determination and the distribution parameters
were learned using maximum likelihood estimation (MLE) [10]. The grading performance of
each BN was evaluated in a leave-one-out analysis. The contributions of each feature were stud-
ied and the effectiveness of feature combination in BN was validated.

Methods

Patients
56 patients were enrolled in this study from January 2010 to March 2015, at the Drum Tower
Hospital in Nanjing, China. There were 30 histopathologically confirmed high grade gliomas
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(WHO III~IV) and 26 low grade ones (WHO I~II). Out of them, all underwent T1W+C, 51
had PWI and 26 had MRSI, and only 21 patients had both PWI and MRSI data. The patients’
ages ranged from 20 to 83 years with a mean of 49 years. This study was approved by the Ethics
Committee of the Drum Tower Hospital, and written informed consents were obtained from
all patients.

MR examination
All the scans were performed preoperatively using a Philips whole body 3.0-Tesla scanner
(Best, the Netherlands) with an 8-channel head coil. Conventional sequences (T1-weighted
and T2-weighted) were conducted first, followed in turn by PWI, T1W+C and MRSI.

In PWI, the field-echo echo-planar imaging (FFE-EPI) sequence was applied with TR/TE
9.9/5.9 ms and 3 repetitions, along with the injection of gadolinium-based contrast agent (Gd-
DTPA). After that, T1W+C was scanned in axial, coronal and sagittal orientations separately.

Two-dimensional-MRSI (2D-MRSI) data were acquired using Point-RESolved Spectros-
copy (PRESS) sequence with automatic shimming and water suppression. Measurement
parameters included 2000/144 ms (TR/TE), 25 to 30 phase encoding steps, 8 mm section thick-
ness. The field-of-view (FOV) was adjusted to each patient’s brain anatomy, and the volume-
of-interest (VOI) was set to cover all tumoral, peritumoral and contralateral normal regions on
typical slices of either T2-weighted or T1W+C images by experienced neuroradiologists.

Feature extraction
The T1W+C feature was extracted according to the enhancement extent of the tumors on the
images. This feature was defined to have three states: negative enhancement, slight enhance-
ment and apparent enhancement (Fig 1). Intuitively, negative enhancement means no enhanc-
ing areas can be recognized while tumors with apparent enhancement present obvious
enhancing regions or highly enhanced signal intensities. As for slight enhancement, there exist
some cases where the enhancing areas are small (less than or equal to 5 mm in diameter) and
the signal intensities are lower, which can only be observed through careful searching on all
axial, sagittal and coronal T1W+C images. Hence, we defined this situation as slight
enhancement.

For perfusion features, the PWI data were processed by the Philips workstation and the fol-
lowing parameters were obtained by fitting the signal curves in individual voxels: regional cere-
bral blood volume (rCBV), mean transit time (MTT), regional cerebral blood flow (rCBF),
time of arrival of the contrast agent in the slice after injection (T0) and time corresponding to
the maximum contrast variation (time to peak, TTP). Generally, these derived parameters vary
a lot among different patients. In order to eliminate this individual difference, two regions-of-
interest (ROI) were placed on tumoral and contralateral normal regions respectively, and the
parameters from tumoral ROIs were normalized by those from contralateral ROIs. Therefore,
the normalized parameters were used as the perfusion features for each case (nrCBV, nMTT,
nrCBF, nT0 and nTTP).

Metabolites in MRSI were first quantitated using LCModel[18, 19] with the processing
chemical shift ranging from 4.0 ppm to 1.0 ppm. In LCModel, a spectrum is treated as a linear
combination of all the basis metabolites detectable at a certain echo time and the quantitation
results are an optimal set of estimated coefficients to fit the spectrum and minimize the residual
error. In each voxel within the VOI, all metabolite concentrations were obtained along with
their corresponding standard deviations (SD) in percentage, which are measures of confidence
in the quantitated concentrations and are associated with the metabolites’ true concentrations
and signal-to-noise ratios (SNR) in each voxel. Since the ratios relative to creatine (Cr) are of
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more clinical importance, the maximums of Cho/Cr, Lac/Cr, Lip13/Cr (lipid at 1.3 ppm) and
the minimum of NAA/Cr across the VOI were selected as the representative MRSI features for
each case. Considering the low SNRs and shifting baselines in some voxels, some restrictions
were imposed on the searching regions. First, a manually defined rectangular region was placed
that was guaranteed to just cover the tumoral area (Fig 2E) and the search was confined within
the intersect of this region and the VOI. Second, the search was only carried out within the
quantitated results with SDs lower than some thresholds. Specifically, the thresholds for Cho/
Cr, NAA/Cr, Lac/Cr and Lip13/Cr were set to 20, 60, 50 and 50 respectively. The third restric-
tion was targeted only for Lip13/Cr. Since lipid signals in voxels near the skull and the bound-
ary of VOI will be abnormally high, we limited the search area to be within the voxels that were
at least two voxels away from the boundary of the VOI for more reliable Lip13/Cr features (Fig
2D).

Building Bayesian Network for grading
Prior to network construction, the JMP software was used to perform Kruskal-Wallis test to
see if there was statistically significant difference between high grade and low grade groups in
the features extracted using the above methods, and the features with P>0.05 were excluded
from the construction.

Fig 1. Examples of different enhancement extent. The left column is a case of glioblastoma with apparent enhancement, the middle a case of high-grade
glioma with slight enhancement (white arrow) and the right a low-grade glioma with negative enhancement. Upper row axial T2-weighted images. Lower row
axial T1W+C images.

doi:10.1371/journal.pone.0153369.g001
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In the method of BN, with constructed networks and learned parameters, the posterior
probability of tumor grade was computed given the imaging evidence of a patient and the pre-
dictive grade was assigned to the one with the highest probability. In all the constructed net-
works, tumor grade and T1W+C were defined as discrete random variables, which can take 2
and 3 values respectively, while the rest of the nodes were treated as Gaussian random
variables.

With complete data, a typical structure learning algorithm named K2[10, 20] can be used.
The K2 algorithm is a greedy search algorithm that works as follows. Initially each node has no
parents. It then adds a parent whose addition most increases the score of the resulting struc-
ture. When the addition of no single parent can increase the score, it stops adding parents to
the node. Considering K2 requires complete and abundant data[10] and yet only 21 patients
had both PWI and MRSI data, the network learned using K2 with this very limited dataset
might not work well for glioma grading. For this reason, we divided the network into two parts,
one for T1W+C and perfusion features and the other for MRSI features, both of which were
learned with more available data using K2 (51 for T1W+C and PWI, and 26 for MRSI). For
computation efficiency, MLE was used for parameter learning.

The reason of considering T1W+C and perfusion features together is that contrast agent is
used in both modalities. We first constructed BNs with different numbers of perfusion features
to explore the optimal network for grading, and then T1W+C feature was added to test if it
could improve the grading performance. The optimal network for MRSI features was deter-
mined with the same method as for perfusion features. In the end, we put together the selected
network of T1W+C and perfusion features and the one of MRSI features to validate the useful-
ness of feature integration by evaluating the grading performance given different combinations
of observed features.

Considering the relatively small dataset, the grading performance was evaluated in a leave-
one-out strategy. For each test case, the rest of data except the test case were used for parameter

Fig 2. The pseudo-color maps of metabolite ratios in MRSI. (A) Cho/Cr map. (B) NAA/Cr. (C) Lac/Cr map/
(D) Lip13/Cr map. (E) The VOI boundary (green) and the manually selected region (red).

doi:10.1371/journal.pone.0153369.g002

Cerebral Glioma Grading Using Bayesian Network

PLOS ONE | DOI:10.1371/journal.pone.0153369 April 14, 2016 5 / 12



learning. The posterior probability of tumor grade was computed given the observed features
of this test case, and the predictive grade was checked against the true grade in this case. In
doing so for all test cases, the grading accuracy can be obtained by calculating the percentage of
the correct predictions.

Results

Statistical analysis
Table 1 lists the means, SDs and P values of all the features except T1W+C that can only take
discrete values. The P values indicate that all the features except nT0 have statistically signifi-
cant difference (P<0.05) between low-grade and high-grade gliomas. Hence, nT0 should be
excluded from network construction.

Networks of perfusion features
Table 2 presents the grading accuracies achieved by the networks using different combinations
of perfusion features. Although the BN with all the perfusion features achieves the highest
grading accuracy, the node of nTTP is not directly linked to tumor grade (Fig 3A) and its dele-
tion does not affect the overall accuracy (Fig 3B). This implies that nrCBV, nMTT and nrCBF
are the most dominant perfusion features for glioma grading using BN. Form the results of
using single features, it can also be observed that nrCBV ranks the first in grading contribu-
tions, followed by nMTT and nrCBF.

Networks of T1W+C and perfusion features
The highest grading accuracy in Table 3 increases to 0.9020 when adding T1W+C to perfusion
features (Fig 3C), while both the BNs with either perfusion features or T1W+C feature alone
just reach 0.8431. This shows the value of combining T1W+C and perfusion features for glioma
grading.

Table 1. Statistical analysis results of the features.

Features High grade Low grade P value
Mean + SD Mean + SD

T1W+C <0.0001

nrCBV 3.762 + 2.234 1.482 + 0.624 <0.0001

nMTT 1.483 + 0.779 1.007 + 0.115 0.0007

nrCBF 2.653 + 1.514 1.571 + 0.895 0.0003

nT0 1.048 + 0.212 1.030 + 0.120 0.9773

nTTP 1.088 + 0.168 1.007 + 0.051 0.0014

Cho/Cr 1.169 + 0.522 0.565 + 0.179 0.0005

NAA/Cr 0.357 + 0.186 0.680 + 0.340 0.0044

Lac/Cr 109.598 + 206.765 1.462 + 2.919 0.0001

Lip13/Cr 37.762 + 34.745 1.795 + 2.680 <0.0001

SD, standard deviation; T1W+C, contrast enhanced T1-weighted imaging; nrCBV, normalized regional

cerebral blood volume; nMTT, normalized mean transit time; nrCBF, normalized regional cerebral blood

flow; nT0, normalized T0; nTTP, normalized time to peak; Cho, choline; NAA, N-acetyl aspartate; Lac,

lactate; Lip13, lipid at 1.3 ppm; Cr, creatine.

doi:10.1371/journal.pone.0153369.t001
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Networks of MRSI features
In the BNs achieving the highest grading accuracy (Table 4), the node of Lac/Cr is absent in all
the networks, which implies that Lac/Cr is not a favorable feature in the current settings of fea-
tures for glioma grading (Fig 3D). Another point is that using Lip13/Cr alone can achieve the
highest accuracy and the contributions of Cho/Cr and NAA/Cr seem not so strong as Lip13/
Cr. Nevertheless, considering that Cho/Cr and NAA/Cr are the most frequently measured
quantities in clinical diagnosis and the dataset size is limited, we still use the two features.
Therefore, Cho/Cr, NAA/Cr and Lip13/Cr are chosen as final MRSI features (Fig 3E).

The network of multi-modal features
Table 5 demonstrates the effectiveness of feature combination in the final constructed BN (Fig
3F) given observations of different modalities. In the total 56 cases with complete T1W+C
data, the grading accuracy just reaches 0.8571 when only T1W+C observed, while the added
observations of perfusion and/or MRSI features improve the grading accuracies up to 0.9286.
In the 51 test cases that all have PWI data, the grading accuracy when only perfusion features
observed is below 0.9. When both available T1W+C and MRSI features are observed, this num-
ber increases to 0.9216. In the 26 patients with complete MRSI data, the grading accuracy is
0.8846 when only MRSI features observed and it grows to 0.9615 with either additional T1W
+C or perfusion features observed. More surprisingly, the supplementary benefit of both T1W
+C and perfusion observations makes the accuracy to be 1, meaning predicting all correctly in
this dataset. From the receiver operating characteristic (ROC) curves (Fig 4) and the corre-
sponding values of area under the curves (AUC) (Table 5), it can also be noticed that more
available observations help improve the grading performance generally.

Table 2. Grading accuracies of the BNs with perfusion features.

Features used Grading accuracy

nrCBV nMTT nrCBF nTTP 0.8431

nrCBV nMTT nrCBF 0.8431

nrCBV nrCBF nTTP 0.8235

nrCBV nrCBF 0.8235

nrCBV nTTP 0.8039

nrCBV 0.8039

nrCBV nMTT nTTP 0.7843

nrCBV nMTT 0.7843

nMTT nrCBF nTTP 0.7059

nMTT nrCBF 0.7059

nrCBF nTTP 0.6863

nrCBF 0.6863

nMTT nTTP 0.6471

nMTT 0.6471

nTTP 0.6275

nrCBV, normalized regional cerebral blood volume; nMTT, normalized mean transit time; nrCBF,

normalized regional cerebral blood flow; nT0, normalized T0; nTTP, normalized time to peak.

doi:10.1371/journal.pone.0153369.t002
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Discussion
For the aim of more accurate and automatic glioma grading, it is clearly demonstrated that BN
is very effective in integrating different features and balancing the contributions among them.
Concretely, it is shown that the combination of rCBV, MTT and rCBF performs better than
using any one of the three alone, and the added T1W+C feature is further beneficial. Then for
MRSI features, results indicate that the most contributing metabolite ratios are Cho/Cr, NAA/
Cr and Lip13/Cr. Finally, in the combination of the three modalities, it is also illustrated that
the grading performance generally improves as more available features are observed.

In the combination of T1W+C and perfusion features, the highest grading accuracy
increases from 0.8431 to 0.9020. The benefit of PWI has been confirmed in many studies. How-
ever, a successful PWI acquisition often requires a high speed of injection of the contrast agent
[5], while conventional T1W+C images can still be acquired in a traditional way of injection.
As a result, some patients may not be well suited for the PWI examination due to their physical
conditions. In this situation, the T1W+C feature may still provide evidence of the tumor grade
even when PWI data are absent or unusable.

Fig 3. Some BNs constructed in this study. (A) The BN of perfusion features with nTTP. (B) The BN of
perfusion features without nTTP. (C) The BN of T1W+C and perfusion features. (D) The BN of MRSI features
with Lac/Cr. (E) The BN of MRSI features without Lac/Cr. (F) The final BN structure.

doi:10.1371/journal.pone.0153369.g003

Table 3. Grading accuracies of the BNs with T1W+C and perfusion features.

Features used Grading accuracy

T1W+C nrCBV nMTT nrCBF 0.9020

T1W+C nrCBV nMTT 0.8431

T1W+C nrCBV nrCBF 0.8431

T1W+C nMTT nrCBF 0.8431

T1W+C nrCBV 0.8431

T1W+C nMTT 0.8431

T1W+C nrCBF 0.8431

T1W+C 0.8431

T1W+C, contrast enhanced T1-weighted imaging; nrCBV, normalized regional cerebral blood volume;

nMTT, normalized mean transit time; nrCBF, normalized regional cerebral blood flow.

doi:10.1371/journal.pone.0153369.t003
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From the evaluation of the final network, it can be seen that more observed features from
different modalities generally bring incremental value in predicting glioma grades. In the net-
work structure, apparent enhancement and negative enhancement are strong indicators of
high-grade and low-grade gliomas respectively. However, the enhancement extent sometimes
fails to reflect the true grade of a glioma [2]. Some low-grade gliomas can still present apparent
enhancement and meanwhile no enhancing areas can be seen in some high-grade ones. More-
over, the third defined state of slight enhancement will cause ambiguous predictions when
knowing this enhancement extent alone. For these reasons, in the total 56 cases which all have
T1W+C features, the grading accuracy just reaches 0.8571 with only T1W+C observed. At a
closer look at the 8 misclassified cases, we find that all of them agree with the situations
described above. With some additional perfusion and/or MRSI features observed, the grading
performance improves accordingly. This shows that perfusion and MRSI features can rectify
the wrong predictions by T1W+C feature to some extent in spite of T1W+C feature’s strong
influence on grading. In the 51 cases with complete PWI data, the added observations of MRSI
features does not help increase the grading accuracy, for all the misclassified cases given only
perfusion features observed do not have MRSI data. When perfusion and T1W+C features are
observed, there is one misclassified case that has MRSI data and is not in the misclassified ones
with only observations of perfusion features. Therefore, further observed MRSI features of this
case are responsible for the increase of grading accuracy. In the 26 cases with complete MRSI
data, the added observations of T1W+C and/or perfusion features also help to promote the
grading performance. Particularly, all predictions are correct with all available features
observed in this dataset. From the ROC analysis results in the three datasets, it is also found
that using all available observations generally have higher AUC values than using individual
features alone, confirming the usefulness of feature combination for glioma grading in BN.

In addition to the benefit of feature combination, BN is a powerful and flexible tool in gen-
eral and has some other advantages. First, although only two types of distributions are used in
this study, the nodes in a BN can be defined to follow different kinds of distributions as needed
for certain tasks. Second, the network structures can be learned with certain structure learning

Table 4. Grading accuracies of the BNs with MRSI features.

Features used Grading accuracy

Cho/Cr NAA/Cr Lip13/Cr 0.8846

Cho/Cr Lip13/Cr 0.8846

NAA/Cr Lip13/Cr 0.8846

Lip13/Cr 0.8846

Cho/Cr NAA/Cr Lac/Cr Lip13/Cr 0.8462

Cho/Cr Lac/Cr Lip13/Cr 0.8462

NAA/Cr Lac/Cr Lip13/Cr 0.8462

Lac/Cr Lip13/Cr 0.8462

Cho/Cr NAA/Cr Lac/Cr 0.8077

Cho/Cr NAA/Cr 0.8077

Cho/Cr Lac/Cr 0.8077

Cho/Cr 0.8077

NAA/Cr Lac/Cr 0.7692

NAA/Cr 0.7692

Lac/Cr 0.7692

Cho, choline; NAA, N-acetyl aspartate; Lac, lactate; Lip13, lipid at 1.3 ppm; Cr, creatine.

doi:10.1371/journal.pone.0153369.t004
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algorithms and BN can further serve as a method of feature selection to some degree. Specifi-
cally in this study, unlike many earlier publications[3, 21, 22] in which only rCBV or some
other single perfusion parameters were used in glioma grading, the usefulness of all five clini-
cally recorded perfusion parameters were investigated by evaluating the grading performance
of BNs with different numbers of features. The most likely network structures can be learned
using K2 algorithm given the current available complete data. From the relationships of the fea-
tures in the networks, it turns out that rCBV, MTT and rCBF are the most useful features and
TTP can be ignored. Similarly for MRSI features, Lac/Cr is found to have adverse effect to grad-
ing accuracies and hence should be removed from the network. More generally, when domain
knowledge of data is absent or imperfect, structure learning can help us have a better under-
standing of the relationships of the nodes in the network and we can find the most contributing
features for our task. Note that the final constructed BN is different from the more commonly
used method of Naïve Bayes[10, 23] in which all features are conditionally independent of each
other given the parent node. The nonlinear behavior of a carefully tuned BN with the necessary
links between feature nodes may be more suited for complicated tasks[23]. Third, the ability of

Table 5. Grading accuracies of the final BN with different observations of the features.

Number of test cases Observed features Grading accuracy Number of wrong predictions AUC

56 T1W+C 0.8571 8 0.8154

T1W+C perfusion 0.9017 5 0.9038

T1W+C MRSI 0.8929 6 0.9205

T1W+C perfusion MRSI 0.9286 4 0.9577

51 Perfusion 0.8824 6 0.8494

Perfusion T1W+C 0.9020 5 0.9037

Perfusion MRSI 0.8824 6 0.9099

Perfusion T1W+C MRSI 0.9216 4 0.9519

26 MRSI 0.8846 3 0.9625

MRSI T1W+C 0.9615 1 0.9688

MRSI perfusion 0.9615 1 1

MRSI T1W+C perfusion 1 0 1

T1W+C, contrast enhanced T1-weighted imaging; MRSI, MR spectroscopic imaging; AUC, area under the curve.

doi:10.1371/journal.pone.0153369.t005

Fig 4. The ROC curves in the three datasets. (A) The ROC curve in the 56 cases. (B) The ROC curve in the 51 cases. (C) The ROC curve in the 26 cases.

doi:10.1371/journal.pone.0153369.g004
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dealing with incomplete data is particularly beneficial in the applications like in this study. The
usefulness of partial observations has been demonstrated in the previous paragraph. Besides,
since the final BN is composed of two parts, where the parameters can be learned with com-
plete data in either part for higher efficiency. In a more general case, the parameter learning
can be performed using algorithms like Expectation-Maximization[10] that can make full use
of the incomplete data.

Despite the promising use of BN in glioma grading, the major limitation in this work lies in
the MRSI dataset, of which both quantity and quality need improvement. On one hand, if we
have more available MRSI data, the final BN is likely to make more correct predictions. Fur-
ther, the network structure can be directly learned with the whole dataset and probabilistic
casual relationships between individual MRSI and perfusion features might even exist. For the
same reason, only four metabolite ratios are explored in this study. More available data can
also make it possible to study the contributions of other metabolites. Nonetheless, the limited
MRSI data still show their added value in glioma grading. On the other hand, some MRSI data
suffer from low SNRs and distorted baselines, potentially making the quantitation process
unreliable. To deal with this problem, some standards should be set for MRSI acquisitions, and
quantitation and preprocessing methods can be further refined to generate more effective fea-
tures[24]. For more general future work, features from other modalities can be added using BN
and hopefully detailed grading and classification of brain tumors can be performed with abun-
dant data.

Conclusion
To aid clinical diagnosis of cerebral gliomas, a grading system based on BN is proposed in this
study to integrate features extracted from T1W+C, PWI and MRSI for preoperative cerebral
glioma grading. It is demonstrated that feature combination in BN is very effective for
improved grading performance even with incomplete data and the general advantages of BN
were discussed in detail. For future studies, the grading performance can be further validated
with more available data and this method can be extended to other applications.
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