
Semi-supervised Convolutional Neural Networks for Text
Categorization via Region Embedding

Rie Johnson and
RJ Research Consulting, Tarrytown, NY, USA

Tong Zhang*

Baidu Inc., Beijing, China, Rutgers University, Piscataway, NJ, USA

Rie Johnson: riejohnson@gmail.com; Tong Zhang: tzhang@stat.rutgers.edu

Abstract

This paper presents a new semi-supervised framework with convolutional neural networks (CNNs)

for text categorization. Unlike the previous approaches that rely on word embeddings, our method

learns embeddings of small text regions from unlabeled data for integration into a supervised

CNN. The proposed scheme for embedding learning is based on the idea of two-view semi-

supervised learning, which is intended to be useful for the task of interest even though the training

is done on unlabeled data. Our models achieve better results than previous approaches on

sentiment classification and topic classification tasks.

1 Introduction

Convolutional neural networks (CNNs) [15] are neural networks that can make use of the

internal structure of data such as the 2D structure of image data through convolution layers,

where each computation unit responds to a small region of input data (e.g., a small square of

a large image). On text, CNN has been gaining attention, used in systems for tagging, entity

search, sentence modeling, and so on [4, 5, 26, 7, 21, 12, 25, 22, 24, 13], to make use of the

1D structure (word order) of text data. Since CNN was originally developed for image data,

which is fixed-sized, low-dimensional and dense, without modification it cannot be applied

to text documents, which are variable-sized, high-dimensional and sparse if represented by

sequences of one-hot vectors. In many of the CNN studies on text, therefore, words in

sentences are first converted to low-dimensional word vectors. The word vectors are often

obtained by some other method from an additional large corpus, which is typically done in a

fashion similar to language modeling though there are many variations [3, 4, 20, 23, 6, 19].

Use of word vectors obtained this way is a form of semi-supervised learning and leaves us

with the following questions. Q1. How effective is CNN on text in a purely supervised

setting without the aid of unlabeled data? Q2. Can we use unlabeled data with CNN more

effectively than using general word vector learning methods? Our recent study [11]

addressed Q1 on text categorization and showed that CNN without a word vector layer is not

*Tong Zhang would like to acknowledge NSF IIS-1250985, NSF IIS-1407939, and NIH R01AI116744 for supporting his research.

HHS Public Access
Author manuscript
Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

Published in final edited form as:
Adv Neural Inf Process Syst. 2015 December ; 28: 919–927.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

only feasible but also beneficial when not aided by unlabeled data. Here we address Q2 also

on text categorization: building on [11], we propose a new semi-supervised framework that

learns embeddings of small text regions (instead of words) from unlabeled data, for use in a

supervised CNN.

The essence of CNN, as described later, is to convert small regions of data (e.g., “love it” in

a document) to feature vectors for use in the upper layers; in other words, through training, a

convolution layer learns an embedding of small regions of data. Here we use the term

‘embedding’ loosely to mean a structure-preserving function, in particular, a function that

generates low-dimensional features that preserve the predictive structure. [11] applies CNN

directly to high-dimensional one-hot vectors, which leads to directly learning an embedding
of small text regions (e.g., regions of size 3 like phrases, or regions of size 20 like

sentences), eliminating the extra layer for word vector conversion. This direct learning of

region embedding was noted to have the merit of higher accuracy with a simpler system (no

need to tune hyper-parameters for word vectors) than supervised word vector-based CNN in

which word vectors are randomly initialized and trained as part of CNN training. Moreover,

the performance of [11]'s best CNN rivaled or exceeded the previous best results on the

benchmark datasets.

Motivated by this finding, we seek effective use of unlabeled data for text categorization

through direct learning of embeddings of text regions. Our new semi-supervised framework

learns a region embedding from unlabeled data and uses it to produce additional input

(additional to one-hot vectors) to supervised CNN, where a region embedding is trained with

labeled data. Specifically, from unlabeled data, we learn tv-embeddings (‘tv’ stands for

‘two-view’; defined later) of a text region through the task of predicting its surrounding

context. According to our theoretical finding, a tv-embedding has desirable properties under

ideal conditions on the relations between two views and the labels. While in reality the ideal

conditions may not be perfectly met, we consider them as guidance in designing the tasks

for tv-embedding learning.

We consider several types of tv-embedding learning task trained on unlabeled data; e.g., one

task is to predict the presence of the concepts relevant to the intended task (e.g., ‘desire to

recommend the product’) in the context, and we indirectly use labeled data to set up this

task. Thus, we seek to learn tv-embeddings useful specifically for the task of interest. This is

in contrast to the previous word vector/embedding learning methods, which typically

produce a word embedding for general purposes so that all aspects (e.g., either syntactic or

semantic) of words are captured. In a sense, the goal of our region embedding learning is to

map text regions to high-level concepts relevant to the task. This cannot be done by word

embedding learning since individual words in isolation are too primitive to correspond to

high-level concepts. For example, “easy to use” conveys positive sentiment, but “use” in

isolation does not. We show that our models with tv-embeddings outperform the previous

best results on sentiment classification and topic classification. Moreover, a more direct

comparison confirms that our region tv-embeddings provide more compact and effective
representations of regions for the task of interest than what can be obtained by manipulation

of a word embedding.

Johnson and Zhang Page 2

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1.1 Preliminary: one-hot CNN for text categorization [11]

A CNN is a feed-forward network equipped with convolution layers interleaved with

pooling layers. A convolution layer consists of computation units, each of which responds to

a small region of input (e.g., a small square of an image), and the small regions collectively

cover the entire data. A computation unit associated with the ℓ-th region of input x
computes:

(1)

where rℓ(x) ∈ ℝq is the input region vector that represents the ℓ-th region. Weight matrix W
∈ ℝm×q and bias vector b ∈ ℝm are shared by all the units in the same layer, and they are

learned through training. In [11], input x is a document represented by one-hot vectors

(Figure 1); therefore, we call [11]'s CNN one-hot CNN; rℓ(x) can be either a concatenation

of one-hot vectors, a bag-of-word vector (bow), or a bag-of-n-gram vector: e.g., for a region

“love it”

(2)

(3)

The bow representation (3) loses word order within the region but is more robust to data

sparsity, enables a large region size such as 20, and speeds up training by having fewer

parameters. This is what we mainly use for embedding learning from unlabeled data. CNN

with (2) is called seq-CNN and CNN with (3) bow-CNN. The region size and stride

(distance between the region centers) are meta-parameters. Note that we used a tiny three-

word vocabulary for the vector examples above to save space, but a vocabulary of typical

applications could be much larger. σ in (1) is a componentwise non-linear function (e.g.,

applying σ(x) = max(x, 0) to each vector component). Thus, each computation unit generates

an m-dimensional vector where m is the number of weight vectors (W's rows) or neurons. In

other words, a convolution layer embodies an embedding of text regions, which produces an

m-dim vector for each text region. In essence, a region embedding uses co-presence and

absence of words in a region as input to produce predictive features, e.g., if presence of

“easy to use” with absence of “not” is a predictive indicator, it can be turned into a large

feature value by having a negative weight on “not” (to penalize its presence) and positive

weights on the other three words in one row of W. A more formal argument can be found in

the Appendix. The m-dim vectors from all the text regions of each document are aggregated

by the pooling layer, by either component-wise maximum (max-pooling) or average

(average-pooling), and used by the top layer (a linear classifier) as features for classification.

Here we focused on the convolution layer; for other details, [11] should be consulted.

Johnson and Zhang Page 3

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2 Semi-supervised CNN with tv-embeddings for text categorization

It was shown in [11] that one-hot CNN is effective on text categorization, where the essence

is direct learning of an embedding of text regions aided by new options of input region

vector representation. We go further along this line and propose a semi-supervised learning

framework that learns an embedding of text regions from unlabeled data and then integrates

the learned embedding in supervised training. The first step is to learn an embedding with

the following property.

Definition 1 (tv-embedding). A function f1 is a tv-embedding of 1 w.r.t. 2 if there exists

a function g1 such that P(X2|X1) = g1(f1(X1), X2) for any (X1, X2) ∈ 1 × 2.

A tv-embedding (‘tv’ stands for two-view) of a view (X1), by definition, preserves

everything required to predict another view (X2), and it can be trained on unlabeled data.

The motivation of tv-embedding is our theoretical finding (formalized in the Appendix) that,

essentially, a tv-embedded feature vector f1(X1) is as useful as X1 for the purpose of

classification under ideal conditions. The conditions essentially state that there exists a set H
of hidden concepts such that two views and labels of the classification task are related to

each other only through the concepts in H. The concepts in H might be, for example,

“pricey”, “handy”, “hard to use”, and so on for sentiment classification of product reviews.

While in reality the ideal conditions may not be completely met, we consider them as

guidance and design tv-embedding learning accordingly.

Tv-embedding learning is related to two-view feature learning [2] and ASO [1], which learn

a linear embedding from unlabeled data through tasks such as predicting a word (or

predicted labels) from the features associated with its surrounding words. These studies

were, however, limited to a linear embedding. A related method in [6] learns a word

embedding so that left context and right context maximally correlate in terms of canonical

correlation analysis. While we share with these studies the general idea of using the relations

of two views, we focus on nonlinear learning of region embeddings useful for the task of

interest, and the resulting methods are very different. An important difference of tv-

embedding learning from co-training is that it does not involve label guessing, thus avoiding

risk of label contamination. [8] used a Stacked Denoising Auto-encoder to extract features

invariant across domains for sentiment classification from unlabeled data. It is for fully-

connected neural networks, which underperformed CNNs in [11].

Now let ℬ be the base CNN model for the task of interest, and assume that ℬ has one

convolution layer with region size p. Note, however, that the restriction of having only one

convolution layer is merely for simplifying the description. We propose a semi-supervised

framework with the following two steps.

1. Tv-embedding learning: Train a neural network to predict the context from each

region of size p so that ' s convolution layer generates feature vectors for each text

region of size p for use in the classifier in the top layer. It is this convolution layer,

which embodies the tv-embedding, that we transfer to the supervised learning

model in the next step. (Note that differs from CNN in that each small region is

associated with its own target/output.)

Johnson and Zhang Page 4

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. Final supervised learning: Integrate the learned tv-embedding (the convolution

layer of) into ℬ, so that the tv-embedded regions (the output of 's convolution

layer) are used as an additional input to ℬ's convolution layer. Train this final

model with labeled data.

These two steps are described in more detail in the next two sections.

2.1 Learning tv-embeddings from unlabeled data

We create a task on unlabeled data to predict the context (adjacent text regions) from each

region of size p defined in ℬ's convolution layer. To see the correspondence to the definition

of tv-embeddings, it helps to consider a sub-task that assigns a label (e.g., positive/negative)

to each text region (e.g., “, fun plot”) instead of the ultimate task of categorizing the entire

document. This is sensible because CNN makes predictions by building up from these small

regions. In a document “good acting, fun plot:)” as in Figure 2, the clues for predicting a

label of “, fun plot” are “, fun plot” itself (view-1: X1) and its context “good acting” and “:)”

(view-2: X2). is trained to predict X2 from X1, i.e., to approximate P(X2|X1) by g1(f1(X1),

X2)) as in Definition 1, and functions f1 and g1 are embodied by the convolution layer and

the top layer, respectively.

Given a document x, for each text region indexed by ℓ, 's convolution layer computes:

(4)

which is the same as (1) except for the superscript “()” to indicate that these entities belong

to . The top layer (a linear model for classification) uses uℓ(x) as features for prediction.

W() and b() (and the top-layer parameters) are learned through training. The input region

vector representation can be either sequential, bow, or bag-of-n-gram, independent

of rℓ(x) in ℬ.

The goal here is to learn an embedding of text regions (X1), shared with all the text regions

at every location. Context (X2) is used only in tv-embedding learning as prediction target

(i.e., not transferred to the final model); thus, the representation of context should be

determined to optimize the final outcome without worrying about the cost at prediction time.

Our guidance is the conditions on the relationships between the two views mentioned above;

ideally, the two views should be related to each other only through the relevant concepts. We

consider the following two types of target/context representation.

Unsupervised target—A straightforward vector encoding of context/target X2 is bow

vectors of the text regions on the left and right to X1. If we distinguish the left and right, the

target vector is 2|V|-dimensional with vocabulary V, and if not, |V|-dimensional. One

potential problem of this encoding is that adjacent regions often have syntactic relations

(e.g., “the” is often followed by an adjective or a noun), which are typically irrelevant to the

task (e.g., to identify positive/negative sentiment) and therefore undesirable. A simple

remedy we found effective is vocabulary control of context to remove function words (or

stop-words if available) from (and only from) the target vocabulary.

Johnson and Zhang Page 5

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Partially-supervised target—Another context representation that we consider is

partially supervised in the sense that it uses labeled data. First, we train a CNN with the

labeled data for the intended task and apply it to the unlabeled data. Then we discard the

predictions and only retain the internal output of the convolution layer, which is an m-

dimensional vector for each text region where m is the number of neurons. We use these m-

dimensional vectors to represent the context. [11] has shown, by examples, that each

dimension of these vectors roughly represents concepts relevant to the task, e.g., ‘desire to

recommend the product’, ‘report of a faulty product’, and so on. Therefore, an advantage of

this representation is that there is no obvious noise between X1 and X2 since context X2 is

represented only by the concepts relevant to the task. A disadvantage is that it is only as

good as the supervised CNN that produced it, which is not perfect and in particular, some

relevant concepts would be missed if they did not appear in the labeled data.

2.2 Final supervised learning: integration of tv-embeddings into supervised CNN

We use the tv-embedding obtained from unlabeled data to produce additional input to ℬ's

convolution layer, by replacing σ (W · rℓ(x) + b) (1) with:

(5)

where uℓ(x) is defined by (4), i.e., uℓ(x) is the output of the tv-embedding applied to the ℓ-th

region. We train this model with the labeled data of the task; that is, we update the weights

W, V, bias b, and the top-layer parameters so that the designated loss function is minimized

on the labeled training data. W() and b() can be either fixed or updated for fine-tuning,

and in this work we fix them for simplicity.

Note that while (5) takes a tv-embedded region as input, (5) itself is also an embedding of

text regions; let us call it (and also (1)) a supervised embedding, as it is trained with labeled

data, to distinguish it from tv-embeddings. That is, we use tv-embeddings to improve the

supervised embedding. Note that (5) can be naturally extended to accommodate multiple tv-

embeddings by

(6)

so that, for example, two types of tv-embedding (i.e., k = 2) obtained with the unsupervised

target and the partially-supervised target can be used at once, which can lead to performance

improvement as they complement each other, as shown later.

3 Experiments

Our code and the experimental settings are available at riejohnson.com/cnn_download.html.

Data—We used the three datasets used in [11]: IMDB, Elec, and RCV1, as summarized in

Table 1. IMDB (movie reviews) [17] comes with an unlabeled set. To facilitate comparison

with previous studies, we used a union of this set and the training set as unlabeled data. Elec

Johnson and Zhang Page 6

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://riejohnson.com/cnn_download.html

consists of Amazon reviews of electronics products. To use as unlabeled data, we chose

200K reviews from the same data source so that they are disjoint from the training and test

sets, and that the reviewed products are disjoint from the test set. On the 55-way

classification of the second-level topics on RCV1 (news), unlabeled data was chosen to be

disjoint from the training and test sets. On the multi-label categorization of 103 topics on

RCV1, since the official LYRL04 split for this task divides the entire corpus into a training

set and a test set, we used the entire test set as unlabeled data (the transductive learning

setting).

Implementation—We used the one-layer CNN models found to be effective in [11] as our

base models ℬ, namely, seq-CNN on IMDB/Elec and bow-CNN on RCV1. Tv-embedding

training minimized weighted square loss Σi,jαi,j(zi[j] − pi [j])2 where i goes through the

regions, z represents the target regions, and p is the model output. The weights αi,j were set

to balance the loss originating from the presence and absence of words (or concepts in case

of the partially-supervised target) and to speed up training by eliminating some negative

examples, similar to negative sampling of [19]. To experiment with the unsupervised target,

we set z to be bow vectors of adjacent regions on the left and right, while only retaining the

30K most frequent words with vocabulary control; on sentiment classification, function

words were removed, and on topic classification, numbers and stop-words provided by [16]

were removed. Note that these words were removed from (and only from) the target

vocabulary. To produce the partially-supervised target, we first trained the supervised CNN

models with 1000 neurons and applied the trained convolution layer to unlabeled data to

generate 1000-dimensional vectors for each region. The rest of implementation follows [11];

i.e., supervised models minimized square loss with L2 regularization and optional dropout

[9]; σ and σ() were the rectifier; response normalization was performed; optimization was

done by SGD.

Model selection—On all the tested methods, tuning of meta-parameters was done by

testing the models on the held-out portion of the training data, and then the models were re-

trained with the chosen meta-parameters using the entire training data.

3.1 Performance results

Overview—After confirming the effectiveness of our new models in comparison with the

supervised CNN, we report the performances of [13]'s CNN, which relies on word vectors

pre-trained with a very large corpus (Table 3). Besides comparing the performance of

approaches as a whole, it is also of interest to compare the usefulness of what was learned

from unlabeled data; therefore, we show how it performs if we integrate the word vectors

into our base model one-hot CNNs (Figure 3). In these experiments we also test word

vectors trained by word2vec [19] on our unlabeled data (Figure 4). We then compare our

models with two standard semi-supervised methods, transductive SVM (TSVM) [10] and

co-training (Table 3), and with the previous best results in the literature (Tables 4–6). In all

comparisons, our models outperform the others. In particular, our region tv-embeddings are

shown to be more compact and effective than region embeddings obtained by simple

manipulation of word embeddings, which supports our approach of using region embedding

instead of word embedding.

Johnson and Zhang Page 7

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Our CNN with tv-embeddings—We tested three types of tv-embedding as summarized

in Table 2. The first thing to note is that all of our CNNs (Table 3, row 6–12) outperform

their supervised counterpart in row 4. This confirms the effectiveness of the framework we

propose. In Table 3, for meaningful comparison, all the CNNs are constrained to have

exactly one convolution layer (except for [13]'s CNN) with 1000 neurons. The best-

performing supervised CNNs within these constraints (row 4) are: seq-CNN (region size 3)

on IMDB and Elec and bow-CNN (region size 20) on RCV11. They also served as our base

models ℬ (with region size parameterized on IMDB/Elec). More complex supervised CNNs

from [11] will be reviewed later. On sentiment classification (IMDB and Elec), the region

size chosen by model selection for our models was 5, larger than 3 for the supervised CNN.

This indicates that unlabeled data enabled effective use of larger regions which are more

predictive but might suffer from data sparsity in supervised settings.

‘unsup3-tv.’ (rows 10–11) uses a bag-of-n-gram vector to initially represent each region,

thus, retains word order partially within the region. When used individually, unsup3-tv. did

not outperform the other tv-embeddings, which use bow instead (rows 6–9). But we found

that it contributed to error reduction when combined with the others (not shown in the table).

This implies that it learned from unlabeled data predictive information that the other two

embeddings missed. The best performances (row 12) were obtained by using all the three

types of tv-embeddings at once according to (6). By doing so, the error rates were improved

by nearly 1.9% (IMDB) and 1.4% (Elec and RCV1) compared with the supervised CNN

(row 4), as a result of the three tv-embeddings with different strengths complementing each

other.

[13]'s CNN—It was shown in [13] that CNN that uses the Google News word vectors as

input is competitive on a number of sentence classification tasks. These vectors (300-

dimensional) were trained by the authors of word2vec [19] on a very large Google News

(GN) corpus (100 billion words; 500–5K times larger than our unlabeled data). [13] argued

that these vectors can be useful for various tasks, serving as ‘universal feature extractors’.

We tested [13]'s CNN, which is equipped with three convolution layers with different region

sizes (3, 4, and 5) and max-pooling, using the GN vectors as input. Although [13] used only

100 neurons for each layer, we changed it to 400, 300, and 300 to match the other models,

which use 1000 neurons. Our models clearly outperform these models (Table 3, row 3) with

relatively large differences.

Comparison of embeddings—Besides comparing the performance of the approaches as

a whole, it is also of interest to compare the usefulness of what was learned from unlabeled

data. For this purpose, we experimented with integration of a word embedding into our base

models using two methods; one takes the concatenation, and the other takes the average, of

word vectors for the words in the region. These provide additional input to the supervised

embedding of regions in place of uℓ(x) in (5). That is, for comparison, we produce a region

embedding from a word embedding to replace a region tv-embedding. We show the results

with two types of word embeddings: the GN word embedding above (Figure 3), and word

1The error rate on RCV1 in row 4 slightly differs from [11] because here we did not use the stopword list.

Johnson and Zhang Page 8

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

embeddings that we trained with the word2vec software on our unlabeled data, i.e., the same

data as used for tv-embedding learning and all others (Figure 4). Note that Figure 4 plots

error rates in relation to the dimensionality of the produced additional input; a smaller

dimensionality has an advantage of faster training/prediction.

On the results, first, the region tv-embedding is more useful for these tasks than the tested

word embeddings since the models with a tv-embedding clearly outperform all the models

with a word embedding. Word vector concatenations of much higher dimensionality than

those shown in the figure still underperformed 100-dim region tv-embedding. Second, since

our region tv-embedding takes the form of σ(W · rℓ(x) + b) with rℓ(x) being a bow vector,

the columns of W correspond to words, and therefore, W · rℓ(x) is the sum of W's columns

whose corresponding words are in the ℓ-th region. Based on that, one might wonder why we

should not simply use the sum or average of word vectors obtained by an existing tool such

as word2vec instead. The suboptimal performances of ‘w: average’ (Figure 4) tells us that

this is a bad idea. We attribute it to the fact that region embeddings learn predictiveness of

co-presence and absence of words in a region; a region embedding can be more expressive

than averaging of word vectors. Thus, an effective and compact region embedding cannot be

trivially obtained from a word embedding. In particular, effectiveness of the combination of

three tv-embeddings (‘r: 3 tv-embed.’ in Figure 4) stands out.

Additionally, our mechanism of using information from unlabeled data is more effective

than [13]'s CNN since our CNNs with GN (Figure 3) outperform [13]'s CNNs with GN

(Table 3, row 3). This is because in our model, one-hot vectors (the original features)

compensate for potential information loss in the embedding learned from unlabeled data.

This, as well as region-vs-word embedding, is a major difference between our model and

[13]'s model.

Standard semi-supervised methods—Many of the standard semi-supervised methods

are not applicable to CNN as they require bow vectors as input. We tested TSVM with bag-

of-{1,2,3}-gram vectors using SVMlight. TSVM underperformed the supervised SVM2 on

two of the three datasets (Table 3, rows 1–2). Since co-training is a meta-learner, it can be

used with CNN. Random split of vocabulary and split into the first and last half of each

document were tested. To reduce the computational burden, we report the best (and

unrealistic) co-training performances obtained by optimizing the meta-parameters including

when to stop on the test data. Even with this unfair advantage to co-training, co-training

(Table 3, row 5) clearly underperformed our models. The results demonstrate the difficulty

of effectively using unlabeled data on these tasks, given that the size of the labeled data is

relatively large.

Comparison with the previous best results—We compare our models with the

previous best results on IMDB (Table 4). Our best model with three tv-embeddings

outperforms the previous best results by nearly 0.9%. All of our models with a single tv-

2Note that for feasibility, we only used the 30K most frequent n-grams in the TSVM experiments, thus, showing the SVM results also
with 30K vocabulary for comparison, though on some datasets SVM performance can be improved by use of all the n-grams (e.g., 5
million n-grams on IMDB) [11]. This is because the computational cost of TSVM (single-core) turned out to be high, taking several
days even with 30K vocabulary.

Johnson and Zhang Page 9

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

embed. (Table 3, row 6–11) also perform better than the previous results. Since Elec is a

relatively new dataset, we are not aware of any previous semi-supervised results. Our

performance is better than [11]'s best supervised CNN, which has a complex network

architecture of three convolution-pooling pairs in parallel (Table 5). To compare with the

benchmark results in [16], we tested our model on the multi-label task with the LYRL04

split [16] on RCV1, in which more than one out of 103 categories can be assigned to each

document. Our model outperforms the best SVM of [16] and the best supervised CNN of

[11] (Table 6).

4 Conclusion

This paper proposed a new semi-supervised CNN framework for text categorization that

learns embeddings of text regions with unlabeled data and then labeled data. As discussed in

Section 1.1, a region embedding is trained to learn the predictiveness of co-presence and

absence of words in a region. In contrast, a word embedding is trained to only represent

individual words in isolation. Thus, a region embedding can be more expressive than simple

averaging of word vectors in spite of their seeming similarity. Our comparison of

embeddings confirmed its advantage; our region tv-embeddings, which are trained

specifically for the task of interest, are more effective than the tested word embeddings.

Using our new models, we were able to achieve higher performances than the previous

studies on sentiment classification and topic classification.

Appendix A Theory of tv-embedding

Suppose that we observe two views (X1, X2) ∈ 1 × 2 of the input, and a target label Y ∈

 of interest, where 1 and 2 are finite discrete sets.

Assumption 1. Assume that there exists a set of hidden states ℋ such that X1, X2, and Y are

conditionally independent given h in ℋ, and that the rank of matrix [P(X1, X2)] is |ℋ|.

Theorem 1. Consider a tv-embedding f1 of 1 w.r.t. 2. Under Assumption 1, there exists a

function q1 such that P(Y|X1) = q1(f1(X1), Y). Further consider a tv-embedding f2 of 2

w.r.t. 1. Then, under Assumption 1, there exists a function q such that P(Y|X1, X2) =

q(f1(X1), f2(X2), Y).

Proof. First, assume that 1 contains d1 elements, and 2 contains d2 elements, and |ℋ| = k.

The independence and rank condition in Assumption 1 implies the decomposition

is of rank k if we consider P(X2|X1) as a d2 × d1 matrix (which we denote by A). Now we

may also regard P(X2|h) as a d2 × k matrix (which we denote by B), and P(h|X1) as a k × d1

matrix (which we denote by C). From the matrix equation A = BC, we obtain C =

(B⊤B)−1B⊤A. Consider the k × d2 matrix U = (B⊤B)−1B⊤. Then we know that its elements

Johnson and Zhang Page 10

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

correspond to a function of (h, X2) ∈ ℋ × 2. Therefore the relationship C = UA implies

that there exists a function u(h, X2) such that

Using the definition of embedding in Definition 1, we obtain

Definte t1(a1, h) = ΣX2 g1(a1, X2)u(h, X2), then for any h ∈ ℋ we have

(7)

Similarly, there exists a function t2(a2, h) such that for any h ∈ ℋ

(8)

Observe that

where the third equation has used the assumption that Y is independent of X1 given h and

the last equation has used (7). By defining q1(a1, Y) = Σh∈ℋt1(a1, h)P(Y|h), we obtain P(Y|

X1) = q1(f1(X1), Y), as desired.

Further observe that

(9)

where the last equation has used the assumption that Y is independent of X1 and X2 given h.

Note that

Johnson and Zhang Page 11

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where the third equation has used the assumption that X1 is independent of X2 given h, and

the last equation has used (7) and (8). The last equation means that P(h|X1, X2) is a function

of (f1(X1), f2(X2), h). That is, there exists a function t̃ such that P(h|X1, X2) = t̃(f1(X1),

f2(X2), h). From (9), this implies that

Now the theorem follows by defining q(a1, a2, Y) = Σh∈ℋt̃(a1, a2, h)P(Y|h).

Appendix B Representation Power of Region Embedding

We provide some formal definitions and theoretical arguments to support the effectiveness of

the type of region embedding experimented with in the main text.

A text region embedding is a function that maps a region of text (a sequence of two or more

words) into a numerical vector. The particular form of region embedding we consider takes

either sequential or bow representation of the text region as input. More precisely, consider a

language with vocabulary V. Each word w in the language is taken from V, and can be

represented as a |V| dimensional vector referred to as one-hot-vector representation. Each of

the |V| vector components represents a vocabulary entry. The vector representation of w has

value one for the component corresponding to the word, and value zeros elsewhere. A text

region of size m is a sequence of m words (w1, w2,…, wm), where each word wi ∈ V. It can

be represented as a m|V| dimensional vector, which is a concatenation of vector

representations of the words, as in (2) in Section 1.1 of the main text. Here we call this

representation seq-representation. An alternative is the bow-representation as in (3) of the

main text.

Johnson and Zhang Page 12

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Let ℛm be the set of all possible text regions of size m in the seq-representation (or

alternatively, bow-representation). We consider embeddings of a text region x ∈ ℛm in the

form of

The embedding matrix W and bias vector b are learned by training, and the training

objective depends on the task. In the following, this particular form of region embedding is

referred to as RETEX (Region Embedding of TEXt), and the vectors produced by RETEX

or the results of RETEX are referred to as RETEX vectors.

The goal of region embedding learning is to map high-level concepts (relevant to the task of

interest) to low-dimensional vectors. As said in the main text, this cannot be done by word

embedding learning since a word embedding embeds individual words in isolation (i.e.,

word-i is mapped to vector-i irrespective of its context), which are too primitive to

correspond to high-level concepts. For example, “easy to use” conveys positive sentiment,

but “use” in isolation does not. Through the analysis of the representation power of RETEX,

we show that unlike word embeddings, RETEX can model high-level concepts by using co-

presence and absence of words in the region, which is similar to the traditional use of m-

grams but more efficient/robust.

First we show that for any (possibly nonlinear) real-valued function f(·) defined on ℛm,

there exists a RETEX so that this function can be expressed in terms of a linear function of

RETEX vectors. This property is often referred to as universal approximation in the

literature (e.g., see https://en.wikipedia.org/wiki/Universal_approximation_theorem).

Proposition 1. Consider a real-valued function f(·) defined on ℛm. There exists an

embedding matrix W, bias vector b, and vector v such that f(x) = v⊤(Wx + b)+ for all x ∈

ℛm.

Proof. Denote by Wi,j the entry of W corresponding to the i-th row and j-th column. Assume

each element in ℛm can be represented as a d dimensional vector with no more than m ones

(and the remaining entries are zeros). Given a specific xi ∈ ℛm, let Si be a set of indexes j ∈

{1,…, d} such that the j-th component of xi is one. We create a row Wi,. in W such that Wi,j

= 2I (j ∈ Si) − 1 for 1 ≤ j ≤ d, where I(·) is the set indicator function. Let bi = − |Si| + 1 where

bi denotes the i-th component of b. It follows that Wi,. x + bi = 1 if x = xi, and Wi,. x + bi ≤

0 otherwise. In this manner we create one row of W per every member of ℛm. Let vi = f(xi).

Then it follows that f(x) = v⊤(Wx + b)+

The proof essentially constructs the indicator functions of all the m-grams (text regions of

size m) in ℛm and maps them to the corresponding function values. Thus, the representation

power of RETEX is at least as good as m-grams, and more powerful than the sum of word

embeddings in spite of the seeming similarity in form. However, it is well known that the

traditional m-gram-based approaches, which assign one vector dimension per m-gram, can

Johnson and Zhang Page 13

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://https://en.wikipedia.org/wiki/Universal_approximation_theorem

suffer from the data sparsity problem because an m-gram is useful only if it is seen in the

training data.

This is where RETEX can have clear advantages. We show below that it can map similar m-

grams (similar w.r.t. the training objective) to similar lower-dimensional vectors, which

helps learning the task of interest. It is also more expressive than the traditional m-gram-

based approaches because it can map not only co-presence but also absence of words (which

m-gram cannot express concisely) into a single dimension. These properties lead to

robustness to data sparsity.

We first introduce a definition of a simple concept.

Definition 2. Consider ℛm of the seq-representation. A high level semantic concept C ⊂

ℛm is called simple if it can be defined as follows. Let V1,…, Vm ⊂ V be m word groups

(each word group may either represent a set of similar words or the absent of certain words),

and s1,…, sm ⊂ {±1} be signs. Define C such that x ∈ C if and only if the i-th word in x
either belongs to Vi (if si = 1) or Vi (if si = −1).

The next proposition illustrates the points above by stating that RETEX has the ability to

represent a simple concept (defined above via the notion of similar words) by a single

dimension. This is in contrast to the construction in the proof of Proposition 1, where one

dimension could represent only one m-gram.

Proposition 2. The indicator function of any simple concept C can be embedded into one

dimension using RETEX.

Proof. Consider a text region vector x ∈ ℛm in seq-representation that contains m of |V|-

dimensional segments, where the i-th segment represents the i-th position in the text region.

Let the i-th segment of w be a vector of zeros except for those components in Vi being si.

Let . Then it is not difficult to check that I(x ∈ C) = (w⊤x + b)+.

The following proposition shows that RETEX can embed concepts that are unions of simple

concepts into low-dimensional vectors.

Proposition 3. If C ⊂ ℛm is the union of q simple concepts C1,…, Cq, then there exists a

function f(x) that is the linear function of q-dimensional RETEX vectors so that x ∈ C if and

only if f(x) > 0.

Proof. Let b ∈ ℝq, and let W have q rows, so that I(x ∈ Ci) = (Wi,. x + bi)+ for each row i,
as constructed in the proof of Proposition 2. Let v = [1,…, 1]⊤ ∈ ℝq. Then f(x) = v⊤(Wx +

b)+ is a function of the desired property.

Note that q can be much smaller than the number of m-grams in concept C. Proposition 3

shows that RETEX has the ability to simultaneously make use of word similarity (via word

groups) and the fact that words occur in the context, to reduce the embedding dimension. A

word embedding can model word similarity but does not model context. m-gram-based

approaches can model context but cannot model word similarity — which means a concept/

Johnson and Zhang Page 14

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

context has to be expressed with a large number of individual m-grams, leading to the data

sparsity problem. Thus, the representation power of RETEX exceeds that of single-word

embedding and traditional m-gram-based approaches.

References

1. Ando, Rie K.; Zhang, Tong. A framework for learning predictive structures from multiple tasks and
unlabeled data. Journal of Machine Learning Research. 2005; 6:1817–1853.

2. Ando, Rie K.; Zhang, Tong. Two-view feature generation model for semi-supervised learning.
Proceedings of ICML. 2007

3. Bengio, Yoshua; Ducharme, Réjean; Vincent, Pascal; Jauvin, Christian. A neural probabilistic
language model. Journal of Marchine Learning Research. 2003; 3:1137–1155.

4. Collobert, Ronan; Weston, Jason. A unified architecture for natural language processing: Deep
neural networks with multitask learning. Proceedings of ICML. 2008

5. Collobert, Ronan; Weston, Jason; Bottou, Léon; Karlen, Michael; Kavukcuoglu, Koray; Kuksa,
Pavel. Natural language processing (almost) from scratch. Journal of Machine Learning Research.
2011; 12:2493–2537.

6. Dhillon, Paramveer S.; Foster, Dean; Ungar, Lyle. Multi-view learning of word embeddings via
CCA. Proceedings of NIPS. 2011

7. Gao, Jianfeng; Pantel, Patric; Gamon, Michael; He, Xiaodong; dent, Li. Modeling interestingness
with deep neural networks. Proceedings of EMNLP. 2014

8. Glorot, Xavier; Bordes, Antoine; Bengio, Yoshua. Domain adaptation for large-scale sentiment
classification: A deep learning approach. Proceedings of ICML. 2011

9. Hinton, Geoffrey E.; Srivastava, Nitish; Krizhevsky, Alex; Sutskever, Ilya; Salakhutdinov, Ruslan R.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580. 2012

10. Joachims, Thorsten. Transductive inference for text classification using support vector machines.
Proceedings of ICML. 1999

11. Johnson, Rie; Zhang, Tong. Effective use of word order for text categorization with convolutional
neural networks. Proceedings of NAACL HLT. 2015

12. Kalchbrenner, Nal; Grefenstette, Edward; Blunsom, Phil. A convolutional neural network for
modeling sentences. Proceedings of ACL. 2014:655–665.

13. Kim, Yoon. Convolutional neural networks for sentence classification. Proceedings of EMNLP.
2014:1746–1751.

14. Le, Quoc; Mikolov, Tomas. Distributed representations of sentences and documents. Proceedings
of ICML. 2014

15. LeCun, Yann; Bottou, León; Bengio, Yoshua; Haffner, Patrick. Gradient-based learning applied to
document recognition. Proceedings of the IEEE.

16. Lewis, David D.; Yang, Yiming; Rose, Tony G.; Li, Fan. RCV1: A new benchmark collection for
text categorization research. Journal of Marchine Learning Research. 2004; 5:361–397.

17. Maas, Andrew L.; Daly, Raymond E.; Pham, Peter T.; Huang, Dan; Ng, Andrew Y.; Potts,
Christopher. Learning word vectors for sentiment analysis. Proceedings of ACL. 2011

18. Mesnil, Grégoire; Mikolov, Tomas; Ranzato, Marc'Aurelio; Bengio, Yoshua. Ensemble of
generative and discriminative techniques for sentiment analysis of movie reviews. arXiv:
1412.5335v5 (4 Feb 2015 version). 2014

19. Mikolov, Tomas; Sutskever, Ilya; Chen, Kai; Corrado, Greg; Dean, Jeffrey. Distributed
representations of words and phrases and their compositionality. Proceedings of NIPS. 2013

20. Mnih, Andriy; Hinton, Geoffrey E. A scalable hierarchical distributed language model. NIPS. 2008

21. Shen, Yelong; He, Xiaodong; Gao, Jianfeng; Deng, Li; Mensnil, Grégoire. A latent semantic model
with convolutional-pooling structure for information retrieval. Proceedings of CIKM. 2014

22. Tang, Duyu; Wei, Furu; Yang, Nan; Zhou, Ming; Liu, Ting; Qin, Bing. Learning sentiment-specific
word embedding for twitter sentiment classification. Proceedings of ACL. 2014:1555–1565.

Johnson and Zhang Page 15

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

23. Turian, Joseph; Rainov, Lev; Bengio, Yoshua. Word representations: A simple and general method
for semi-supervised learning. Proceedings of ACL, pages. 2010:384–394.

24. Weston, Jason; Chopra, Sumit; Adams, Keith. #tagspace: Semantic embeddings from hashtags.
Proceedings of EMNLP. 2014:1822–1827.

25. Xu, Liheng; Liu, Kang; Lai, Siwei; Zhao, Jun. Product feature mining: Semantic clues versus
syntactic constituents. Proceedings of ACL. 2014:336–346.

26. Xu, Puyang; Sarikaya, Ruhi. Convolutional neural network based triangular CRF for joint intent
detection and slot filling. ASRU. 2013

Johnson and Zhang Page 16

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
One-hot CNN example. Region size 2, stride 1.

Johnson and Zhang Page 17

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Tv-embedding learning by training to predict adjacent regions.

Johnson and Zhang Page 18

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
GN word vectors integrated into our base models. Better than [13]'s CNN (Table 3, row 3).

Johnson and Zhang Page 19

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Region tv-embeddings vs. word2vec word embeddings. Trained on our unlabeled data. x-

axis: dimensionality of the additional input to supervised region embedding. ‘r:’: region,

‘w:’: word.

Johnson and Zhang Page 20

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson and Zhang Page 21

Ta
b

le
 1

D
at

as
et

s.

#t
ra

in
#t

es
t

#u
nl

ab
el

ed
#c

la
ss

ou
tp

ut

IM
D

B
25

,0
00

25
,0

00
75

K
 (

20
M

 w
or

ds
)

2
Po

si
tiv

e/
ne

ga
tiv

e
se

nt
im

en
t

E
le

c
25

,0
00

25
,0

00
20

0K
 (

24
M

 w
or

ds
)

2

R
C

V
1

15
,5

64
49

,8
38

66
9K

 (
18

3M
 w

or
ds

)
55

 (
si

ng
le

)
To

pi
c(

s)
23

,1
49

78
1,

26
5

78
1K

 (
21

4M
 w

or
ds

)
10

3
(m

ul
ti)

†

† T
he

 m
ul

ti-
la

be
l R

C
V

1
is

 u
se

d
on

ly
 in

 T
ab

le
 6

.

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson and Zhang Page 22

Table 2

Tested tv-embeddings.

names in Table 3 X2: target of training

unsup3-tv. bow vector bow vector

parsup-tv bow vector output of supervised embedding

parsup-tv bag-of-{1,2,3}-gram vector bow vector

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson and Zhang Page 23

Ta
b

le
 3

E
rr

or
 r

at
es

 (
%

).
 F

or
 c

om
pa

ri
so

n,
 a

ll
th

e
C

N
N

 m
od

el
s

w
er

e
co

ns
tr

ai
ne

d
to

 h
av

e
10

00
 n

eu
ro

ns
. T

he
 p

ar
en

th
es

es
 a

ro
un

d
th

e
er

ro
r

ra
te

s
in

di
ca

te
 th

at
 c

o-

tr
ai

ni
ng

 m
et

a-
pa

ra
m

et
er

s
w

er
e

tu
ne

d
on

 te
st

 d
at

a.

IM
D

B
E

le
c

R
C

V
1

lin
ea

r
SV

M
 w

ith
 1

-3
gr

am
s

[1
1]

10
.1

4
9.

16
10

.6
8

lin
ea

r
T

SV
M

 w
ith

 1
-3

gr
am

s
9.

99
16

.4
1

10
.7

7

[1
3]

's
 C

N
N

9.
17

8.
03

10
.4

4

O
ne

-h
ot

 C
N

N
 (

si
m

pl
e)

 [
11

]
8.

39
7.

64
9.

17

O
ne

-h
ot

 C
N

N
 (

si
m

pl
e)

 c
o-

tr
ai

ni
ng

 b
es

t
(8

.0
6)

(7
.6

3)
(8

.7
3)

O
ur

 C
N

N

un
su

p-
tv

10
0-

di
m

7.
12

6.
96

8.
10

20
0-

di
m

6.
81

6.
69

7.
97

pa
rs

up
-t

v.
10

0-
di

m
7.

12
6.

58
8.

19

20
0-

di
m

7.
13

6.
57

7.
99

un
su

p3
-t

v.
10

0-
di

m
7.

05
6.

66
8.

13

20
0-

di
m

6.
96

6.
84

8.
02

al
l t

hr
ee

10
0×

3
6.

51
6.

27
7.

71

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson and Zhang Page 24

Table 4

IMDB: previous error rates (%).

NB-LM 1-3grams [18] 8.13 –

[11]'s best CNN 7.67 –

Paragraph vectors [14] 7.46 Unlab.data

Ensemble of 3 models [18] 7.43 Ens.+unlab.

Our best 6.51 Unlab.data

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson and Zhang Page 25

Table 5

Elec: previous error rates (%).

SVM 1-3grams [11] 8.71 –

dense NN 1-3grams [11] 8.48 –

NB-LM 1-3grams [11] 8.11 –

[11]'s best CNN 7.14 –

Our best 6.27 Unlab.data

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson and Zhang Page 26

Table 6

RCV1 micro- and macro-averaged F on the multi-label task (103 topics) with the LYRL04 split.

models micro-F macro-F extra resource

SVM [16] 81.6 60.7 –

bow-CNN [11] 84.0 64.8 –

bow-CNN w/three tv-embed. 85.7 67.1 Unlabeled data

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

	Abstract
	1 Introduction
	1.1 Preliminary: one-hot CNN for text categorization [11]

	2 Semi-supervised CNN with tv-embeddings for text categorization
	2.1 Learning tv-embeddings from unlabeled data
	Unsupervised target
	Partially-supervised target

	2.2 Final supervised learning: integration of tv-embeddings into supervised CNN

	3 Experiments
	Data—We used the three datasets used in [11]: IMDB, Elec, and RCV1, as summarized in Table 1. IMDB (movie reviews) [17] comes with an unlabeled set. To facilitate comparison with previous studies, we used a union of this set and the training set as unlabeled data. Elec consists of Amazon reviews of electronics products. To use as unlabeled data, we chose 200K reviews from the same data source so that they are disjoint from the training and test sets, and that the reviewed products are disjoint from the test set. On the 55-way classification of the second-level topics on RCV1 (news), unlabeled data was chosen to be disjoint from the training and test sets. On the multi-label categorization of 103 topics on RCV1, since the official LYRL04 split for this task divides the entire corpus into a training set and a test set, we used the entire test set as unlabeled data (the transductive learning setting).Implementation—We used the one-layer CNN models found to be effective in [11] as our base models ℬ, namely, seq-CNN on IMDB/Elec and bow-CNN on RCV1. Tv-embedding training minimized weighted square loss Σi,jαi,j(zi[j] − pi [j])2 where i goes through the regions, z represents the target regions, and p is the model output. The weights αi,j were set to balance the loss originating from the presence and absence of words (or concepts in case of the partially-supervised target) and to speed up training by eliminating some negative examples, similar to negative sampling of [19]. To experiment with the unsupervised target, we set z to be bow vectors of adjacent regions on the left and right, while only retaining the 30K most frequent words with vocabulary control; on sentiment classification, function words were removed, and on topic classification, numbers and stop-words provided by [16] were removed. Note that these words were removed from (and only from) the target vocabulary. To produce the partially-supervised target, we first trained the supervised CNN models with 1000 neurons and applied the trained convolution layer to unlabeled data to generate 1000-dimensional vectors for each region. The rest of implementation follows [11]; i.e., supervised models minimized square loss with L2 regularization and optional dropout [9]; σ and σ(
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="9.501px" height="9.509px" viewBox="6.905 -1.312 9.501 9.509" enable-background="new 6.905 -1.312 9.501 9.509"
xml:space="preserve">
<path d="M16.406-0.023l-3.44,6.351c-0.416,0.77-0.623,1.218-0.623,1.346c0,0.202,0.097,0.304,0.29,0.304
c0.335,0,0.768-0.215,1.299-0.644c0.531-0.43,0.785-0.645,0.761-0.645c0.057,0,0.086,0.028,0.086,0.085
c0,0.047-0.038,0.11-0.113,0.19c-0.808,0.822-1.489,1.232-2.047,1.232c-0.453,0-0.68-0.328-0.68-0.984
c0-0.023,0.02-0.193,0.057-0.51c-0.708,0.996-1.303,1.494-1.784,1.494c-0.24,0-0.427-0.104-0.56-0.312
C9.533,7.705,9.474,7.49,9.474,7.24c0-0.604,0.267-1.446,0.8-2.527c0.501-0.906,0.999-1.813,1.494-2.719
c0.538-0.982,0.808-1.659,0.808-2.032c0-0.316-0.103-0.565-0.309-0.747c-0.205-0.182-0.466-0.273-0.782-0.273
c-0.85,0-1.786,0.56-2.811,1.678c-1.006,1.1-1.508,2.084-1.508,2.953c0,0.217,0.06,0.408,0.181,0.573
c0.12,0.165,0.286,0.248,0.499,0.248c0.59,0,1.213-0.494,1.869-1.48c0.608-0.92,0.913-1.697,0.913-2.33
c0-0.288-0.023-0.531-0.071-0.729l0.248-0.042c0.095,0.307,0.142,0.651,0.142,1.034c0,0.67-0.187,1.322-0.56,1.954
C10.024,3.415,9.55,3.906,8.964,4.274C8.549,4.529,8.176,4.656,7.846,4.656c-0.628,0-0.941-0.375-0.941-1.126
c0-0.996,0.534-2.052,1.604-3.168c1.068-1.116,2.097-1.675,3.083-1.675c0.463,0,0.839,0.156,1.129,0.468
c0.291,0.312,0.436,0.701,0.436,1.168c0,0.515-0.231,1.239-0.693,2.174c-0.038,0.08-0.425,0.786-1.161,2.117
c-0.236,0.42-0.488,0.925-0.758,1.515C10.175,6.917,9.99,7.417,9.99,7.63c0,0.203,0.083,0.305,0.248,0.305
c0.373,0,0.968-0.6,1.784-1.799c0.486-0.708,0.956-1.47,1.409-2.287l2.131-3.873H16.406z"/>
</svg>
) were the rectifier; response normalization was performed; optimization was done by SGD.Model selection—On all the tested methods, tuning of meta-parameters was done by testing the models on the held-out portion of the training data, and then the models were re-trained with the chosen meta-parameters using the entire training data.
	Data
	Implementation
	Model selection

	3.1 Performance results
	Overview
	Our CNN with tv-embeddings
	[13]'s CNN
	Comparison of embeddings
	Standard semi-supervised methods
	Comparison with the previous best results

	4 Conclusion
	Appendix A Theory of tv-embedding
	Appendix B Representation Power of Region Embedding
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6

