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Abstract

This paper presents a new semi-supervised framework with convolutional neural networks (CNNs) 

for text categorization. Unlike the previous approaches that rely on word embeddings, our method 

learns embeddings of small text regions from unlabeled data for integration into a supervised 

CNN. The proposed scheme for embedding learning is based on the idea of two-view semi-

supervised learning, which is intended to be useful for the task of interest even though the training 

is done on unlabeled data. Our models achieve better results than previous approaches on 

sentiment classification and topic classification tasks.

1 Introduction

Convolutional neural networks (CNNs) [15] are neural networks that can make use of the 

internal structure of data such as the 2D structure of image data through convolution layers, 

where each computation unit responds to a small region of input data (e.g., a small square of 

a large image). On text, CNN has been gaining attention, used in systems for tagging, entity 

search, sentence modeling, and so on [4, 5, 26, 7, 21, 12, 25, 22, 24, 13], to make use of the 

1D structure (word order) of text data. Since CNN was originally developed for image data, 

which is fixed-sized, low-dimensional and dense, without modification it cannot be applied 

to text documents, which are variable-sized, high-dimensional and sparse if represented by 

sequences of one-hot vectors. In many of the CNN studies on text, therefore, words in 

sentences are first converted to low-dimensional word vectors. The word vectors are often 

obtained by some other method from an additional large corpus, which is typically done in a 

fashion similar to language modeling though there are many variations [3, 4, 20, 23, 6, 19].

Use of word vectors obtained this way is a form of semi-supervised learning and leaves us 

with the following questions. Q1. How effective is CNN on text in a purely supervised 

setting without the aid of unlabeled data? Q2. Can we use unlabeled data with CNN more 

effectively than using general word vector learning methods? Our recent study [11] 

addressed Q1 on text categorization and showed that CNN without a word vector layer is not 
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only feasible but also beneficial when not aided by unlabeled data. Here we address Q2 also 

on text categorization: building on [11], we propose a new semi-supervised framework that 

learns embeddings of small text regions (instead of words) from unlabeled data, for use in a 

supervised CNN.

The essence of CNN, as described later, is to convert small regions of data (e.g., “love it” in 

a document) to feature vectors for use in the upper layers; in other words, through training, a 

convolution layer learns an embedding of small regions of data. Here we use the term 

‘embedding’ loosely to mean a structure-preserving function, in particular, a function that 

generates low-dimensional features that preserve the predictive structure. [11] applies CNN 

directly to high-dimensional one-hot vectors, which leads to directly learning an embedding 
of small text regions (e.g., regions of size 3 like phrases, or regions of size 20 like 

sentences), eliminating the extra layer for word vector conversion. This direct learning of 

region embedding was noted to have the merit of higher accuracy with a simpler system (no 

need to tune hyper-parameters for word vectors) than supervised word vector-based CNN in 

which word vectors are randomly initialized and trained as part of CNN training. Moreover, 

the performance of [11]'s best CNN rivaled or exceeded the previous best results on the 

benchmark datasets.

Motivated by this finding, we seek effective use of unlabeled data for text categorization 

through direct learning of embeddings of text regions. Our new semi-supervised framework 

learns a region embedding from unlabeled data and uses it to produce additional input 

(additional to one-hot vectors) to supervised CNN, where a region embedding is trained with 

labeled data. Specifically, from unlabeled data, we learn tv-embeddings (‘tv’ stands for 

‘two-view’; defined later) of a text region through the task of predicting its surrounding 

context. According to our theoretical finding, a tv-embedding has desirable properties under 

ideal conditions on the relations between two views and the labels. While in reality the ideal 

conditions may not be perfectly met, we consider them as guidance in designing the tasks 

for tv-embedding learning.

We consider several types of tv-embedding learning task trained on unlabeled data; e.g., one 

task is to predict the presence of the concepts relevant to the intended task (e.g., ‘desire to 

recommend the product’) in the context, and we indirectly use labeled data to set up this 

task. Thus, we seek to learn tv-embeddings useful specifically for the task of interest. This is 

in contrast to the previous word vector/embedding learning methods, which typically 

produce a word embedding for general purposes so that all aspects (e.g., either syntactic or 

semantic) of words are captured. In a sense, the goal of our region embedding learning is to 

map text regions to high-level concepts relevant to the task. This cannot be done by word 

embedding learning since individual words in isolation are too primitive to correspond to 

high-level concepts. For example, “easy to use” conveys positive sentiment, but “use” in 

isolation does not. We show that our models with tv-embeddings outperform the previous 

best results on sentiment classification and topic classification. Moreover, a more direct 

comparison confirms that our region tv-embeddings provide more compact and effective 
representations of regions for the task of interest than what can be obtained by manipulation 

of a word embedding.
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1.1 Preliminary: one-hot CNN for text categorization [11]

A CNN is a feed-forward network equipped with convolution layers interleaved with 

pooling layers. A convolution layer consists of computation units, each of which responds to 

a small region of input (e.g., a small square of an image), and the small regions collectively 

cover the entire data. A computation unit associated with the ℓ-th region of input x 
computes:

(1)

where rℓ(x) ∈ ℝq is the input region vector that represents the ℓ-th region. Weight matrix W 
∈ ℝm×q and bias vector b ∈ ℝm are shared by all the units in the same layer, and they are 

learned through training. In [11], input x is a document represented by one-hot vectors 

(Figure 1); therefore, we call [11]'s CNN one-hot CNN; rℓ(x) can be either a concatenation 

of one-hot vectors, a bag-of-word vector (bow), or a bag-of-n-gram vector: e.g., for a region 

“love it”

(2)

(3)

The bow representation (3) loses word order within the region but is more robust to data 

sparsity, enables a large region size such as 20, and speeds up training by having fewer 

parameters. This is what we mainly use for embedding learning from unlabeled data. CNN 

with (2) is called seq-CNN and CNN with (3) bow-CNN. The region size and stride 

(distance between the region centers) are meta-parameters. Note that we used a tiny three-

word vocabulary for the vector examples above to save space, but a vocabulary of typical 

applications could be much larger. σ in (1) is a componentwise non-linear function (e.g., 

applying σ(x) = max(x, 0) to each vector component). Thus, each computation unit generates 

an m-dimensional vector where m is the number of weight vectors (W's rows) or neurons. In 

other words, a convolution layer embodies an embedding of text regions, which produces an 

m-dim vector for each text region. In essence, a region embedding uses co-presence and 

absence of words in a region as input to produce predictive features, e.g., if presence of 

“easy to use” with absence of “not” is a predictive indicator, it can be turned into a large 

feature value by having a negative weight on “not” (to penalize its presence) and positive 

weights on the other three words in one row of W. A more formal argument can be found in 

the Appendix. The m-dim vectors from all the text regions of each document are aggregated 

by the pooling layer, by either component-wise maximum (max-pooling) or average 

(average-pooling), and used by the top layer (a linear classifier) as features for classification. 

Here we focused on the convolution layer; for other details, [11] should be consulted.
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2 Semi-supervised CNN with tv-embeddings for text categorization

It was shown in [11] that one-hot CNN is effective on text categorization, where the essence 

is direct learning of an embedding of text regions aided by new options of input region 

vector representation. We go further along this line and propose a semi-supervised learning 

framework that learns an embedding of text regions from unlabeled data and then integrates 

the learned embedding in supervised training. The first step is to learn an embedding with 

the following property.

Definition 1 (tv-embedding). A function f1 is a tv-embedding of 1 w.r.t. 2 if there exists 

a function g1 such that P(X2|X1) = g1(f1(X1), X2) for any (X1, X2) ∈ 1 × 2.

A tv-embedding (‘tv’ stands for two-view) of a view (X1), by definition, preserves 

everything required to predict another view (X2), and it can be trained on unlabeled data. 

The motivation of tv-embedding is our theoretical finding (formalized in the Appendix) that, 

essentially, a tv-embedded feature vector f1(X1) is as useful as X1 for the purpose of 

classification under ideal conditions. The conditions essentially state that there exists a set H 
of hidden concepts such that two views and labels of the classification task are related to 

each other only through the concepts in H. The concepts in H might be, for example, 

“pricey”, “handy”, “hard to use”, and so on for sentiment classification of product reviews. 

While in reality the ideal conditions may not be completely met, we consider them as 

guidance and design tv-embedding learning accordingly.

Tv-embedding learning is related to two-view feature learning [2] and ASO [1], which learn 

a linear embedding from unlabeled data through tasks such as predicting a word (or 

predicted labels) from the features associated with its surrounding words. These studies 

were, however, limited to a linear embedding. A related method in [6] learns a word 

embedding so that left context and right context maximally correlate in terms of canonical 

correlation analysis. While we share with these studies the general idea of using the relations 

of two views, we focus on nonlinear learning of region embeddings useful for the task of 

interest, and the resulting methods are very different. An important difference of tv-

embedding learning from co-training is that it does not involve label guessing, thus avoiding 

risk of label contamination. [8] used a Stacked Denoising Auto-encoder to extract features 

invariant across domains for sentiment classification from unlabeled data. It is for fully-

connected neural networks, which underperformed CNNs in [11].

Now let ℬ be the base CNN model for the task of interest, and assume that ℬ has one 

convolution layer with region size p. Note, however, that the restriction of having only one 

convolution layer is merely for simplifying the description. We propose a semi-supervised 

framework with the following two steps.

1. Tv-embedding learning: Train a neural network  to predict the context from each 

region of size p so that ' s convolution layer generates feature vectors for each text 

region of size p for use in the classifier in the top layer. It is this convolution layer, 

which embodies the tv-embedding, that we transfer to the supervised learning 

model in the next step. (Note that  differs from CNN in that each small region is 

associated with its own target/output.)
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2. Final supervised learning: Integrate the learned tv-embedding (the convolution 

layer of ) into ℬ, so that the tv-embedded regions (the output of 's convolution 

layer) are used as an additional input to ℬ's convolution layer. Train this final 

model with labeled data.

These two steps are described in more detail in the next two sections.

2.1 Learning tv-embeddings from unlabeled data

We create a task on unlabeled data to predict the context (adjacent text regions) from each 

region of size p defined in ℬ's convolution layer. To see the correspondence to the definition 

of tv-embeddings, it helps to consider a sub-task that assigns a label (e.g., positive/negative) 

to each text region (e.g., “, fun plot”) instead of the ultimate task of categorizing the entire 

document. This is sensible because CNN makes predictions by building up from these small 

regions. In a document “good acting, fun plot:)” as in Figure 2, the clues for predicting a 

label of “, fun plot” are “, fun plot” itself (view-1: X1) and its context “good acting” and “:)” 

(view-2: X2).  is trained to predict X2 from X1, i.e., to approximate P(X2|X1) by g1(f1(X1), 

X2)) as in Definition 1, and functions f1 and g1 are embodied by the convolution layer and 

the top layer, respectively.

Given a document x, for each text region indexed by ℓ, 's convolution layer computes:

(4)

which is the same as (1) except for the superscript “( )” to indicate that these entities belong 

to . The top layer (a linear model for classification) uses uℓ(x) as features for prediction. 

W( ) and b( ) (and the top-layer parameters) are learned through training. The input region 

vector representation  can be either sequential, bow, or bag-of-n-gram, independent 

of rℓ(x) in ℬ.

The goal here is to learn an embedding of text regions (X1), shared with all the text regions 

at every location. Context (X2) is used only in tv-embedding learning as prediction target 

(i.e., not transferred to the final model); thus, the representation of context should be 

determined to optimize the final outcome without worrying about the cost at prediction time. 

Our guidance is the conditions on the relationships between the two views mentioned above; 

ideally, the two views should be related to each other only through the relevant concepts. We 

consider the following two types of target/context representation.

Unsupervised target—A straightforward vector encoding of context/target X2 is bow 

vectors of the text regions on the left and right to X1. If we distinguish the left and right, the 

target vector is 2|V|-dimensional with vocabulary V, and if not, |V|-dimensional. One 

potential problem of this encoding is that adjacent regions often have syntactic relations 

(e.g., “the” is often followed by an adjective or a noun), which are typically irrelevant to the 

task (e.g., to identify positive/negative sentiment) and therefore undesirable. A simple 

remedy we found effective is vocabulary control of context to remove function words (or 

stop-words if available) from (and only from) the target vocabulary.
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Partially-supervised target—Another context representation that we consider is 

partially supervised in the sense that it uses labeled data. First, we train a CNN with the 

labeled data for the intended task and apply it to the unlabeled data. Then we discard the 

predictions and only retain the internal output of the convolution layer, which is an m-

dimensional vector for each text region where m is the number of neurons. We use these m-

dimensional vectors to represent the context. [11] has shown, by examples, that each 

dimension of these vectors roughly represents concepts relevant to the task, e.g., ‘desire to 

recommend the product’, ‘report of a faulty product’, and so on. Therefore, an advantage of 

this representation is that there is no obvious noise between X1 and X2 since context X2 is 

represented only by the concepts relevant to the task. A disadvantage is that it is only as 

good as the supervised CNN that produced it, which is not perfect and in particular, some 

relevant concepts would be missed if they did not appear in the labeled data.

2.2 Final supervised learning: integration of tv-embeddings into supervised CNN

We use the tv-embedding obtained from unlabeled data to produce additional input to ℬ's 

convolution layer, by replacing σ (W · rℓ(x) + b) (1) with:

(5)

where uℓ(x) is defined by (4), i.e., uℓ(x) is the output of the tv-embedding applied to the ℓ-th 

region. We train this model with the labeled data of the task; that is, we update the weights 

W, V, bias b, and the top-layer parameters so that the designated loss function is minimized 

on the labeled training data. W( ) and b( ) can be either fixed or updated for fine-tuning, 

and in this work we fix them for simplicity.

Note that while (5) takes a tv-embedded region as input, (5) itself is also an embedding of 

text regions; let us call it (and also (1)) a supervised embedding, as it is trained with labeled 

data, to distinguish it from tv-embeddings. That is, we use tv-embeddings to improve the 

supervised embedding. Note that (5) can be naturally extended to accommodate multiple tv-

embeddings by

(6)

so that, for example, two types of tv-embedding (i.e., k = 2) obtained with the unsupervised 

target and the partially-supervised target can be used at once, which can lead to performance 

improvement as they complement each other, as shown later.

3 Experiments

Our code and the experimental settings are available at riejohnson.com/cnn_download.html.

Data—We used the three datasets used in [11]: IMDB, Elec, and RCV1, as summarized in 

Table 1. IMDB (movie reviews) [17] comes with an unlabeled set. To facilitate comparison 

with previous studies, we used a union of this set and the training set as unlabeled data. Elec 
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consists of Amazon reviews of electronics products. To use as unlabeled data, we chose 

200K reviews from the same data source so that they are disjoint from the training and test 

sets, and that the reviewed products are disjoint from the test set. On the 55-way 

classification of the second-level topics on RCV1 (news), unlabeled data was chosen to be 

disjoint from the training and test sets. On the multi-label categorization of 103 topics on 

RCV1, since the official LYRL04 split for this task divides the entire corpus into a training 

set and a test set, we used the entire test set as unlabeled data (the transductive learning 

setting).

Implementation—We used the one-layer CNN models found to be effective in [11] as our 

base models ℬ, namely, seq-CNN on IMDB/Elec and bow-CNN on RCV1. Tv-embedding 

training minimized weighted square loss Σi,jαi,j(zi[j] − pi [j])2 where i goes through the 

regions, z represents the target regions, and p is the model output. The weights αi,j were set 

to balance the loss originating from the presence and absence of words (or concepts in case 

of the partially-supervised target) and to speed up training by eliminating some negative 

examples, similar to negative sampling of [19]. To experiment with the unsupervised target, 

we set z to be bow vectors of adjacent regions on the left and right, while only retaining the 

30K most frequent words with vocabulary control; on sentiment classification, function 

words were removed, and on topic classification, numbers and stop-words provided by [16] 

were removed. Note that these words were removed from (and only from) the target 

vocabulary. To produce the partially-supervised target, we first trained the supervised CNN 

models with 1000 neurons and applied the trained convolution layer to unlabeled data to 

generate 1000-dimensional vectors for each region. The rest of implementation follows [11]; 

i.e., supervised models minimized square loss with L2 regularization and optional dropout 

[9]; σ and σ( ) were the rectifier; response normalization was performed; optimization was 

done by SGD.

Model selection—On all the tested methods, tuning of meta-parameters was done by 

testing the models on the held-out portion of the training data, and then the models were re-

trained with the chosen meta-parameters using the entire training data.

3.1 Performance results

Overview—After confirming the effectiveness of our new models in comparison with the 

supervised CNN, we report the performances of [13]'s CNN, which relies on word vectors 

pre-trained with a very large corpus (Table 3). Besides comparing the performance of 

approaches as a whole, it is also of interest to compare the usefulness of what was learned 

from unlabeled data; therefore, we show how it performs if we integrate the word vectors 

into our base model one-hot CNNs (Figure 3). In these experiments we also test word 

vectors trained by word2vec [19] on our unlabeled data (Figure 4). We then compare our 

models with two standard semi-supervised methods, transductive SVM (TSVM) [10] and 

co-training (Table 3), and with the previous best results in the literature (Tables 4–6). In all 

comparisons, our models outperform the others. In particular, our region tv-embeddings are 

shown to be more compact and effective than region embeddings obtained by simple 

manipulation of word embeddings, which supports our approach of using region embedding 

instead of word embedding.

Johnson and Zhang Page 7

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our CNN with tv-embeddings—We tested three types of tv-embedding as summarized 

in Table 2. The first thing to note is that all of our CNNs (Table 3, row 6–12) outperform 

their supervised counterpart in row 4. This confirms the effectiveness of the framework we 

propose. In Table 3, for meaningful comparison, all the CNNs are constrained to have 

exactly one convolution layer (except for [13]'s CNN) with 1000 neurons. The best-

performing supervised CNNs within these constraints (row 4) are: seq-CNN (region size 3) 

on IMDB and Elec and bow-CNN (region size 20) on RCV11. They also served as our base 

models ℬ (with region size parameterized on IMDB/Elec). More complex supervised CNNs 

from [11] will be reviewed later. On sentiment classification (IMDB and Elec), the region 

size chosen by model selection for our models was 5, larger than 3 for the supervised CNN. 

This indicates that unlabeled data enabled effective use of larger regions which are more 

predictive but might suffer from data sparsity in supervised settings.

‘unsup3-tv.’ (rows 10–11) uses a bag-of-n-gram vector to initially represent each region, 

thus, retains word order partially within the region. When used individually, unsup3-tv. did 

not outperform the other tv-embeddings, which use bow instead (rows 6–9). But we found 

that it contributed to error reduction when combined with the others (not shown in the table). 

This implies that it learned from unlabeled data predictive information that the other two 

embeddings missed. The best performances (row 12) were obtained by using all the three 

types of tv-embeddings at once according to (6). By doing so, the error rates were improved 

by nearly 1.9% (IMDB) and 1.4% (Elec and RCV1) compared with the supervised CNN 

(row 4), as a result of the three tv-embeddings with different strengths complementing each 

other.

[13]'s CNN—It was shown in [13] that CNN that uses the Google News word vectors as 

input is competitive on a number of sentence classification tasks. These vectors (300-

dimensional) were trained by the authors of word2vec [19] on a very large Google News 

(GN) corpus (100 billion words; 500–5K times larger than our unlabeled data). [13] argued 

that these vectors can be useful for various tasks, serving as ‘universal feature extractors’. 

We tested [13]'s CNN, which is equipped with three convolution layers with different region 

sizes (3, 4, and 5) and max-pooling, using the GN vectors as input. Although [13] used only 

100 neurons for each layer, we changed it to 400, 300, and 300 to match the other models, 

which use 1000 neurons. Our models clearly outperform these models (Table 3, row 3) with 

relatively large differences.

Comparison of embeddings—Besides comparing the performance of the approaches as 

a whole, it is also of interest to compare the usefulness of what was learned from unlabeled 

data. For this purpose, we experimented with integration of a word embedding into our base 

models using two methods; one takes the concatenation, and the other takes the average, of 

word vectors for the words in the region. These provide additional input to the supervised 

embedding of regions in place of uℓ(x) in (5). That is, for comparison, we produce a region 

embedding from a word embedding to replace a region tv-embedding. We show the results 

with two types of word embeddings: the GN word embedding above (Figure 3), and word 

1The error rate on RCV1 in row 4 slightly differs from [11] because here we did not use the stopword list.
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embeddings that we trained with the word2vec software on our unlabeled data, i.e., the same 

data as used for tv-embedding learning and all others (Figure 4). Note that Figure 4 plots 

error rates in relation to the dimensionality of the produced additional input; a smaller 

dimensionality has an advantage of faster training/prediction.

On the results, first, the region tv-embedding is more useful for these tasks than the tested 

word embeddings since the models with a tv-embedding clearly outperform all the models 

with a word embedding. Word vector concatenations of much higher dimensionality than 

those shown in the figure still underperformed 100-dim region tv-embedding. Second, since 

our region tv-embedding takes the form of σ(W · rℓ(x) + b) with rℓ(x) being a bow vector, 

the columns of W correspond to words, and therefore, W · rℓ(x) is the sum of W's columns 

whose corresponding words are in the ℓ-th region. Based on that, one might wonder why we 

should not simply use the sum or average of word vectors obtained by an existing tool such 

as word2vec instead. The suboptimal performances of ‘w: average’ (Figure 4) tells us that 

this is a bad idea. We attribute it to the fact that region embeddings learn predictiveness of 

co-presence and absence of words in a region; a region embedding can be more expressive 

than averaging of word vectors. Thus, an effective and compact region embedding cannot be 

trivially obtained from a word embedding. In particular, effectiveness of the combination of 

three tv-embeddings (‘r: 3 tv-embed.’ in Figure 4) stands out.

Additionally, our mechanism of using information from unlabeled data is more effective 

than [13]'s CNN since our CNNs with GN (Figure 3) outperform [13]'s CNNs with GN 

(Table 3, row 3). This is because in our model, one-hot vectors (the original features) 

compensate for potential information loss in the embedding learned from unlabeled data. 

This, as well as region-vs-word embedding, is a major difference between our model and 

[13]'s model.

Standard semi-supervised methods—Many of the standard semi-supervised methods 

are not applicable to CNN as they require bow vectors as input. We tested TSVM with bag-

of-{1,2,3}-gram vectors using SVMlight. TSVM underperformed the supervised SVM2 on 

two of the three datasets (Table 3, rows 1–2). Since co-training is a meta-learner, it can be 

used with CNN. Random split of vocabulary and split into the first and last half of each 

document were tested. To reduce the computational burden, we report the best (and 

unrealistic) co-training performances obtained by optimizing the meta-parameters including 

when to stop on the test data. Even with this unfair advantage to co-training, co-training 

(Table 3, row 5) clearly underperformed our models. The results demonstrate the difficulty 

of effectively using unlabeled data on these tasks, given that the size of the labeled data is 

relatively large.

Comparison with the previous best results—We compare our models with the 

previous best results on IMDB (Table 4). Our best model with three tv-embeddings 

outperforms the previous best results by nearly 0.9%. All of our models with a single tv-

2Note that for feasibility, we only used the 30K most frequent n-grams in the TSVM experiments, thus, showing the SVM results also 
with 30K vocabulary for comparison, though on some datasets SVM performance can be improved by use of all the n-grams (e.g., 5 
million n-grams on IMDB) [11]. This is because the computational cost of TSVM (single-core) turned out to be high, taking several 
days even with 30K vocabulary.
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embed. (Table 3, row 6–11) also perform better than the previous results. Since Elec is a 

relatively new dataset, we are not aware of any previous semi-supervised results. Our 

performance is better than [11]'s best supervised CNN, which has a complex network 

architecture of three convolution-pooling pairs in parallel (Table 5). To compare with the 

benchmark results in [16], we tested our model on the multi-label task with the LYRL04 

split [16] on RCV1, in which more than one out of 103 categories can be assigned to each 

document. Our model outperforms the best SVM of [16] and the best supervised CNN of 

[11] (Table 6).

4 Conclusion

This paper proposed a new semi-supervised CNN framework for text categorization that 

learns embeddings of text regions with unlabeled data and then labeled data. As discussed in 

Section 1.1, a region embedding is trained to learn the predictiveness of co-presence and 

absence of words in a region. In contrast, a word embedding is trained to only represent 

individual words in isolation. Thus, a region embedding can be more expressive than simple 

averaging of word vectors in spite of their seeming similarity. Our comparison of 

embeddings confirmed its advantage; our region tv-embeddings, which are trained 

specifically for the task of interest, are more effective than the tested word embeddings. 

Using our new models, we were able to achieve higher performances than the previous 

studies on sentiment classification and topic classification.

Appendix A Theory of tv-embedding

Suppose that we observe two views (X1, X2) ∈ 1 × 2 of the input, and a target label Y ∈ 

 of interest, where 1 and 2 are finite discrete sets.

Assumption 1. Assume that there exists a set of hidden states ℋ such that X1, X2, and Y are 

conditionally independent given h in ℋ, and that the rank of matrix [P(X1, X2)] is |ℋ|.

Theorem 1. Consider a tv-embedding f1 of 1 w.r.t. 2. Under Assumption 1, there exists a 

function q1 such that P(Y|X1) = q1(f1(X1), Y). Further consider a tv-embedding f2 of 2 

w.r.t. 1. Then, under Assumption 1, there exists a function q such that P(Y|X1, X2) = 

q(f1(X1), f2(X2), Y).

Proof. First, assume that 1 contains d1 elements, and 2 contains d2 elements, and |ℋ| = k. 

The independence and rank condition in Assumption 1 implies the decomposition

is of rank k if we consider P(X2|X1) as a d2 × d1 matrix (which we denote by A). Now we 

may also regard P(X2|h) as a d2 × k matrix (which we denote by B), and P(h|X1) as a k × d1 

matrix (which we denote by C). From the matrix equation A = BC, we obtain C = 

(B⊤B)−1B⊤A. Consider the k × d2 matrix U = (B⊤B)−1B⊤. Then we know that its elements 
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correspond to a function of (h, X2) ∈ ℋ × 2. Therefore the relationship C = UA implies 

that there exists a function u(h, X2) such that

Using the definition of embedding in Definition 1, we obtain

Definte t1(a1, h) = ΣX2 g1(a1, X2)u(h, X2), then for any h ∈ ℋ we have

(7)

Similarly, there exists a function t2(a2, h) such that for any h ∈ ℋ

(8)

Observe that

where the third equation has used the assumption that Y is independent of X1 given h and 

the last equation has used (7). By defining q1(a1, Y) = Σh∈ℋt1(a1, h)P(Y|h), we obtain P(Y|

X1) = q1(f1(X1), Y), as desired.

Further observe that

(9)

where the last equation has used the assumption that Y is independent of X1 and X2 given h.

Note that
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where the third equation has used the assumption that X1 is independent of X2 given h, and 

the last equation has used (7) and (8). The last equation means that P(h|X1, X2) is a function 

of (f1(X1), f2(X2), h). That is, there exists a function t̃ such that P(h|X1, X2) = t̃(f1(X1), 

f2(X2), h). From (9), this implies that

Now the theorem follows by defining q(a1, a2, Y) = Σh∈ℋt̃(a1, a2, h)P(Y|h).

Appendix B Representation Power of Region Embedding

We provide some formal definitions and theoretical arguments to support the effectiveness of 

the type of region embedding experimented with in the main text.

A text region embedding is a function that maps a region of text (a sequence of two or more 

words) into a numerical vector. The particular form of region embedding we consider takes 

either sequential or bow representation of the text region as input. More precisely, consider a 

language with vocabulary V. Each word w in the language is taken from V, and can be 

represented as a |V| dimensional vector referred to as one-hot-vector representation. Each of 

the |V| vector components represents a vocabulary entry. The vector representation of w has 

value one for the component corresponding to the word, and value zeros elsewhere. A text 

region of size m is a sequence of m words (w1, w2,…, wm), where each word wi ∈ V. It can 

be represented as a m|V| dimensional vector, which is a concatenation of vector 

representations of the words, as in (2) in Section 1.1 of the main text. Here we call this 

representation seq-representation. An alternative is the bow-representation as in (3) of the 

main text.
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Let ℛm be the set of all possible text regions of size m in the seq-representation (or 

alternatively, bow-representation). We consider embeddings of a text region x ∈ ℛm in the 

form of

The embedding matrix W and bias vector b are learned by training, and the training 

objective depends on the task. In the following, this particular form of region embedding is 

referred to as RETEX (Region Embedding of TEXt), and the vectors produced by RETEX 

or the results of RETEX are referred to as RETEX vectors.

The goal of region embedding learning is to map high-level concepts (relevant to the task of 

interest) to low-dimensional vectors. As said in the main text, this cannot be done by word 

embedding learning since a word embedding embeds individual words in isolation (i.e., 

word-i is mapped to vector-i irrespective of its context), which are too primitive to 

correspond to high-level concepts. For example, “easy to use” conveys positive sentiment, 

but “use” in isolation does not. Through the analysis of the representation power of RETEX, 

we show that unlike word embeddings, RETEX can model high-level concepts by using co-

presence and absence of words in the region, which is similar to the traditional use of m-

grams but more efficient/robust.

First we show that for any (possibly nonlinear) real-valued function f(·) defined on ℛm, 

there exists a RETEX so that this function can be expressed in terms of a linear function of 

RETEX vectors. This property is often referred to as universal approximation in the 

literature (e.g., see https://en.wikipedia.org/wiki/Universal_approximation_theorem).

Proposition 1. Consider a real-valued function f(·) defined on ℛm. There exists an 

embedding matrix W, bias vector b, and vector v such that f(x) = v⊤(Wx + b)+ for all x ∈ 

ℛm.

Proof. Denote by Wi,j the entry of W corresponding to the i-th row and j-th column. Assume 

each element in ℛm can be represented as a d dimensional vector with no more than m ones 

(and the remaining entries are zeros). Given a specific xi ∈ ℛm, let Si be a set of indexes j ∈ 

{1,…, d} such that the j-th component of xi is one. We create a row Wi,. in W such that Wi,j 

= 2I (j ∈ Si) − 1 for 1 ≤ j ≤ d, where I(·) is the set indicator function. Let bi = − |Si| + 1 where 

bi denotes the i-th component of b. It follows that Wi,. x + bi = 1 if x = xi, and Wi,. x + bi ≤ 

0 otherwise. In this manner we create one row of W per every member of ℛm. Let vi = f(xi). 

Then it follows that f(x) = v⊤(Wx + b)+

The proof essentially constructs the indicator functions of all the m-grams (text regions of 

size m) in ℛm and maps them to the corresponding function values. Thus, the representation 

power of RETEX is at least as good as m-grams, and more powerful than the sum of word 

embeddings in spite of the seeming similarity in form. However, it is well known that the 

traditional m-gram-based approaches, which assign one vector dimension per m-gram, can 
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suffer from the data sparsity problem because an m-gram is useful only if it is seen in the 

training data.

This is where RETEX can have clear advantages. We show below that it can map similar m-

grams (similar w.r.t. the training objective) to similar lower-dimensional vectors, which 

helps learning the task of interest. It is also more expressive than the traditional m-gram-

based approaches because it can map not only co-presence but also absence of words (which 

m-gram cannot express concisely) into a single dimension. These properties lead to 

robustness to data sparsity.

We first introduce a definition of a simple concept.

Definition 2. Consider ℛm of the seq-representation. A high level semantic concept C ⊂ 

ℛm is called simple if it can be defined as follows. Let V1,…, Vm ⊂ V be m word groups 

(each word group may either represent a set of similar words or the absent of certain words), 

and s1,…, sm ⊂ {±1} be signs. Define C such that x ∈ C if and only if the i-th word in x 
either belongs to Vi (if si = 1) or Vi (if si = −1).

The next proposition illustrates the points above by stating that RETEX has the ability to 

represent a simple concept (defined above via the notion of similar words) by a single 

dimension. This is in contrast to the construction in the proof of Proposition 1, where one 

dimension could represent only one m-gram.

Proposition 2. The indicator function of any simple concept C can be embedded into one 

dimension using RETEX.

Proof. Consider a text region vector x ∈ ℛm in seq-representation that contains m of |V|-

dimensional segments, where the i-th segment represents the i-th position in the text region. 

Let the i-th segment of w be a vector of zeros except for those components in Vi being si. 

Let . Then it is not difficult to check that I(x ∈ C) = (w⊤x + b)+.

The following proposition shows that RETEX can embed concepts that are unions of simple 

concepts into low-dimensional vectors.

Proposition 3. If C ⊂ ℛm is the union of q simple concepts C1,…, Cq, then there exists a 

function f(x) that is the linear function of q-dimensional RETEX vectors so that x ∈ C if and 

only if f(x) > 0.

Proof. Let b ∈ ℝq, and let W have q rows, so that I(x ∈ Ci) = (Wi,. x + bi)+ for each row i, 
as constructed in the proof of Proposition 2. Let v = [1,…, 1]⊤ ∈ ℝq. Then f(x) = v⊤(Wx + 

b)+ is a function of the desired property.

Note that q can be much smaller than the number of m-grams in concept C. Proposition 3 

shows that RETEX has the ability to simultaneously make use of word similarity (via word 

groups) and the fact that words occur in the context, to reduce the embedding dimension. A 

word embedding can model word similarity but does not model context. m-gram-based 

approaches can model context but cannot model word similarity — which means a concept/
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context has to be expressed with a large number of individual m-grams, leading to the data 

sparsity problem. Thus, the representation power of RETEX exceeds that of single-word 

embedding and traditional m-gram-based approaches.
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Figure 1. 
One-hot CNN example. Region size 2, stride 1.
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Figure 2. 
Tv-embedding learning by training to predict adjacent regions.
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Figure 3. 
GN word vectors integrated into our base models. Better than [13]'s CNN (Table 3, row 3).
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Figure 4. 
Region tv-embeddings vs. word2vec word embeddings. Trained on our unlabeled data. x-

axis: dimensionality of the additional input to supervised region embedding. ‘r:’: region, 

‘w:’: word.
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Table 2

Tested tv-embeddings.

names in Table 3 X2: target of  training

unsup3-tv. bow vector bow vector

parsup-tv bow vector output of supervised embedding

parsup-tv bag-of-{1,2,3}-gram vector bow vector
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Table 4

IMDB: previous error rates (%).

NB-LM 1-3grams [18] 8.13 –

[11]'s best CNN 7.67 –

Paragraph vectors [14] 7.46 Unlab.data

Ensemble of 3 models [18] 7.43 Ens.+unlab.

Our best 6.51 Unlab.data
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Table 5

Elec: previous error rates (%).

SVM 1-3grams [11] 8.71 –

dense NN 1-3grams [11] 8.48 –

NB-LM 1-3grams [11] 8.11 –

[11]'s best CNN 7.14 –

Our best 6.27 Unlab.data
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Table 6

RCV1 micro- and macro-averaged F on the multi-label task (103 topics) with the LYRL04 split.

models micro-F macro-F extra resource

SVM [16] 81.6 60.7 –

bow-CNN [11] 84.0 64.8 –

bow-CNN w/three tv-embed. 85.7 67.1 Unlabeled data
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c0.335,0,0.768-0.215,1.299-0.644c0.531-0.43,0.785-0.645,0.761-0.645c0.057,0,0.086,0.028,0.086,0.085
c0,0.047-0.038,0.11-0.113,0.19c-0.808,0.822-1.489,1.232-2.047,1.232c-0.453,0-0.68-0.328-0.68-0.984
c0-0.023,0.02-0.193,0.057-0.51c-0.708,0.996-1.303,1.494-1.784,1.494c-0.24,0-0.427-0.104-0.56-0.312
C9.533,7.705,9.474,7.49,9.474,7.24c0-0.604,0.267-1.446,0.8-2.527c0.501-0.906,0.999-1.813,1.494-2.719
c0.538-0.982,0.808-1.659,0.808-2.032c0-0.316-0.103-0.565-0.309-0.747c-0.205-0.182-0.466-0.273-0.782-0.273
c-0.85,0-1.786,0.56-2.811,1.678c-1.006,1.1-1.508,2.084-1.508,2.953c0,0.217,0.06,0.408,0.181,0.573
c0.12,0.165,0.286,0.248,0.499,0.248c0.59,0,1.213-0.494,1.869-1.48c0.608-0.92,0.913-1.697,0.913-2.33
c0-0.288-0.023-0.531-0.071-0.729l0.248-0.042c0.095,0.307,0.142,0.651,0.142,1.034c0,0.67-0.187,1.322-0.56,1.954
C10.024,3.415,9.55,3.906,8.964,4.274C8.549,4.529,8.176,4.656,7.846,4.656c-0.628,0-0.941-0.375-0.941-1.126
c0-0.996,0.534-2.052,1.604-3.168c1.068-1.116,2.097-1.675,3.083-1.675c0.463,0,0.839,0.156,1.129,0.468
c0.291,0.312,0.436,0.701,0.436,1.168c0,0.515-0.231,1.239-0.693,2.174c-0.038,0.08-0.425,0.786-1.161,2.117
c-0.236,0.42-0.488,0.925-0.758,1.515C10.175,6.917,9.99,7.417,9.99,7.63c0,0.203,0.083,0.305,0.248,0.305
c0.373,0,0.968-0.6,1.784-1.799c0.486-0.708,0.956-1.47,1.409-2.287l2.131-3.873H16.406z"/>
</svg>
) were the rectifier; response normalization was performed; optimization was done by SGD.Model selection—On all the tested methods, tuning of meta-parameters was done by testing the models on the held-out portion of the training data, and then the models were re-trained with the chosen meta-parameters using the entire training data.
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