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Reward sensitivity and possible alterations in the dopaminergic-reward system are associated with obesity. We therefore aimed to
investigate the influence of dopamine depletion on food-reward processing. We investigated 34 female subjects in a randomized placebo-
controlled, within-subject design (body mass index (BMI)= 27.0 kg/m2 ± 4.79 SD; age= 28 years ± 4.97 SD) using an acute phenylalanine/
tyrosine depletion drink representing dopamine depletion and a balanced amino acid drink as the control condition. Brain activity was
measured with functional magnetic resonance imaging during a ‘wanting’ and ‘liking’ rating of food items. Eating behavior-related traits and
states were assessed on the basis of questionnaires. Dopamine depletion resulted in reduced activation in the striatum and higher activation
in the superior frontal gyrus independent of BMI. Brain activity during the wanting task activated a more distributed network than during the
liking task. This network included gustatory, memory, visual, reward, and frontal regions. An interaction effect of dopamine depletion and the
wanting/liking task was observed in the hippocampus. The interaction with the covariate BMI was significant in motor and control regions but
not in the striatum. Our results support the notion of altered brain activity in the reward and prefrontal network with blunted dopaminergic
action during food-reward processing. This effect is, however, independent of BMI, which contradicts the reward-deficiency hypothesis. This
hints to the hypothesis suggesting a different or more complex mechanism underlying the dopaminergic reward function in obesity.
Neuropsychopharmacology (2016) 41, 1551–1559; doi:10.1038/npp.2015.313; published online 4 November 2015
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INTRODUCTION

Obesity is associated with neuronal changes especially related
to processing of food items. Several studies showed differential
neuronal response in appetite-associated regions such as the
anterior insula, orbitofrontal cortex, hippocampus, but also
striatal reward regions and prefrontal areas (for review see
Carnell et al (2012) and Dagher (2012)). Dopamine is one of
the most important neurotransmitters involved in reward
processing in general. Alterations in the dopamine system are
therefore strongly associated with addictive behavior (Volkow
et al, 2012). Over the last few decades, the importance of
reward/hedonic processing in eating behavior has also been
widely acknowledged. This shift in research from a pure
homeostatic control of eating behavior to an interaction model
of homeostatic and reward processes was mainly triggered by

studies investigating brain processes related to eating behavior.
The behavioral impact of food reward can be operationalized
by subdividing the construct into ‘wanting’ and ‘liking’
(Berridge, 1996). While liking can be explained as the hedonic
reaction to the pleasure of a reward, the wanting component
can be described as the incentive salience linked with the
motivation towards an item (Berridge, 2009). This approach,
first applied in animal research, was also translated to human
studies (Finlayson et al, 2007).
Thanks to numerous studies investigating neuronal corre-

lates, dopamine is known to be one of the key agents for food
reward and control of food intake (Kenny, 2011; Richard
et al, 2012; Volkow et al, 2011). The mechanism of striatal
dopaminergic hypofunctioning, as found in reduced striatal
D2-receptor availability, ie, blunted striatal response to food,
is believed to be a major contributor to overeating according
to the reward-deficiency model of obesity (Blum et al, 2014;
Wang et al, 2001). In addition, a blunted striatal response in
obesity appears to be moderated by a Taq1A polymorphism
that influences the dopamine D2-receptor binding (Stice et al,
2008). However, a causal interpretation of such findings has
led to some controversy (Berridge, 2009). An alternative
model leading to obesity is the reward surfeit theory which
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postulates that, in obese individuals, greater inborn-neuronal
reward activity in response to food intake might trigger
overeating (Stice et al, 2011). The incentive sensitization
theory is based on an acquired higher neuronal reward
activity in response to food items in individuals showing
higher reward sensitivity (Davis et al, 2004).
To investigate such food-reward aspects as a function of

central dopaminergic processes, it is necessary to compare
brain functions during normal and experimentally reduced
dopamine levels. The neuronal dopamine level can be
manipulated by using amino acid drinks containing or
lacking the precursors of dopamine. Acute phenylalanine/
tyrosine depletion leads to a significant short-term reduction
in the tyrosine (tyr) and phenylalanine (phe) concentrations
(McTavish et al, 1999a) and, therefore, also in central
dopamine level, as shown in positron-emission tomography
studies (Leyton et al, 2004; Montgomery et al, 2003).
In previous studies using the depletion approach, dopa-

mine depletion was observed to have an impact on
behavioral reward processes (Bjork et al, 2013), perceptual
timing (Coull et al, 2012), valuation processes (Medic et al,
2014), working memory (Ellis et al, 2007; Nagano-Saito et al,
2008), decision-making (Nagano-Saito et al, 2012), and
addictive behavior (Leyton et al, 2000, 2002, 2005; Munafo
et al, 2007; Venugopalan et al, 2011). As regards eating
behavior, Hardman et al (2012) did not observe any
compensatory food intake in the dopamine-depleted state
in normal weight subjects. However, as assumed by the
authors, only the normal weight subjects experience the
depletion acutely and may not be comparable to the
overweight subjects. In rodent studies, there is evidence for
reduced-feeding behavior in dopamine-depleted rats
(Ninan and Kulkarni, 1998; Tellez et al, 2013). Another
study showed that dopamine depletion decreased the
motivation to work for food but increased free-food
consumption (Salamone et al, 1991).
In the current study, we therefore tested the acute effect of

different neuronal dopamine levels, induced by nutritional
dopamine depletion, on the wanting/liking evaluation of
food items in a subject sample covering a wide body mass
index (BMI) range. We used the dopamine depletion model
to simulate the assumed hypofunction of the dopaminergic-
reward system of obese individuals. On the basis of a
generally high dopamine-receptor density in striatal regions
(Montgomery et al, 2003), we hypothesized reduced activity
in the striatum during depletion within the wanting and the
liking task in general. Furthermore, we predicted that the
effect of dopamine depletion in obese subjects would be
reduced on account of their presumed predisposition to
blunted dopaminergic activity.

MATERIALS AND METHODS

We conducted a randomized placebo-controlled functional
magnetic resonance imaging (fMRI) study using a within-
subject design in female participants.

Participants

In all, 36 female subjects participated in the study. As
previous literature states that women are more sensitive to

the depletion effect (de Wit et al, 2012; Munafo et al, 2007;
Robinson et al, 2010), only females were recruited. Two
subjects could not be included in the analyses owing to
nausea during the measurements, resulting in a total of 34
participants. Because BMI was one of the main variables of
the study, a wide BMI range was covered within this
population (BMI: mean 27.0 kg/m2 ± 4.79 SD, range 18.8–
37.2 kg/m2; age: 28 years ± 4.97 SD, range 21–44 years).
During a screening appointment, we ensured that all

subjects were healthy and had no diagnosed psychiatric
disorder.
The study protocol was approved by the ethics committee

of the University of Tübingen and all subjects gave their
written informed consent. Subjects were informed about the
procedures and the protocol beforehand, the single-blinded
design and possible side effects of the scanning procedure
and the amino acid drinks (such as nausea). The study was
registered at ClinicalTrials.gov, NCT01906411.

Acute Dopamine Depletion

To manipulate central dopamine levels simulating acute
dopamine depletion (DOPD), a phe/tyr-depleted amino acid
drink and a balanced amino acid drink as a control condition
(CON) were used on two separate study days in randomized
and single-blinded but balanced order. The study days were
at least 2 weeks apart.
The amino acids composition of both drinks is based on a

formula by McTavish et al (1999b) that has been used in
several subsequent studies (Hardman et al, 2012; Hitsman
et al, 2008; Munafo et al, 2007). In several of these studies the
formula used for men was reduced by 20% for women to
allow for differences in weight (de Wit et al, 2012;
McTavish et al, 1999b; Munafo et al, 2007). On the basis
of a rather wide BMI range in the current study, we used
three formulas of the amino acid drink for the three weight
categories. We applied the formula for male subjects by
McTavish et al (1999b) for the heaviest group of women
(484 kg); for women in the weight range of 68–83 kg, we
reduced the formula by 20%, and for women with a weight of
50–67 kg, by 40%. The resulting formulas are shown in the
Supplementary Table S1.

Study Protocol

Dietary information was provided beforehand to all subjects,
who were requested to keep a low protein diet the day before
the measurements to ensure that the amino acid drinks
provided on the study days could take full effect. On
scanning days, subjects were requested not to eat or drink
anything except water. The application of CON and DOPD
was counterbalanced. Two subjects per scanning day were
measured one after the other. The scheme of a scanning day
is illustrated in Figure 1. Subjects arrived at the study site at
1030 hours and 1145 hours, respectively. After the ‘baseline’
blood sample, subjects rated mood, hunger, and well-being
parameters (hunger, satiety, appetite, good mood, sadness,
anxiety, nausea, bloating, and urge to move) on a 100mm
visual analogue scale (VAS). Drink intake was considered as
time point 0. As the peak effect of DOPD occurs between 3
and 5 h after intake, subjects were instructed to fill in
several food-related trait questionnaires during the 3-h
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period prior to the scanning session (TFEQ: Three Factor
Eating Questionnaire with the scales cognitive restraint,
disinhibition, and experienced hunger (Pudel and
Westenhöfer, 1989), PFS: Power of Food Scale investigating
the power of available, present, or tasted food (Lowe and
Butryn, 2007), and EDE: eating disorder examination with
the scales restraint eating, eating concern, weight concern,
and shape concern (Hilbert et al, 2007)). During this period,
subjects were provided with water and protein-free snacks
(100 g carrots, 100 g cucumber). After 210 min, a further
blood sample was taken and participants were instructed to
fill in the VAS a second time. Afterwards, subjects were
positioned in the scanner. Within the first 30 min of
scanning, both a reward paradigm and resting-state mea-
surement were performed (data not included). Four hours
after the drink, subjects were stimulated with 40 food
pictures (20 high- and 20 low-caloric value) and performed a
wanting/liking task. Each picture was presented for 3 s
with an inter-stimulus interval of 1–12 s. The task was
programmed with the presentation software (version 10.2,
www.neurobs.com). In two runs, each lasting 5 min, subjects
were first asked to rate each picture for wanting
(‘how much do you want to eat this food now’, run 1) and
then for liking (‘how much do you like this food in general’,
run 2) on a 5-point Likert scale within the 3 s in which the
picture was presented. Responses were given via an fMRI
compatible button box. After the scanning session, the third
blood sample was taken and subjects filled in the VAS a
third time.

Blood Samples

Blood samples were taken at three time points (before
drink intake as a baseline measurement, after 210 min
(pre-scan) and after 300 min (post-scan)). In the DOPD
condition, the 210 and 300 min samples are missing for one
subject and the 300 min sample for another subject. In the
CON condition, the 300 min sample is missing for one
subject.
Phe and tyr, together with other large neutral amino acids

(LNAA: valine, leucine isoleucine, and methionine) were
analyzed by ion-exchange chromoatography (F. Gutjahr
Chromatographie, Balingen, Germany). A proxy of neuronal
dopamine synthesis is represented in the supply of its
precursors (Fernstrom and Fernstrom, 1994). We therefore
calculated the availability of the dopamine precursors tyr
+phe by the formula tyr+phe/LNAA (Coull et al, 2012). To
evaluate the change on dopamine precursor availability after
drink intake, the 210 min and the 300 min value were

standardized on the baseline value (210/baseline, 300/base-
line, respectively).

Imaging Procedures and Analyses

Whole-brain fMRI blood oxygen-level dependent data were
obtained by a 3-T fMRI scanner (Siemens TimTrio,
Erlangen, Germany) equipped with a 12-channel head coil.
During the stimulation paradigm, each session consisted of
150 scans (repetition time= 2 s, echo time= 30 ms, matrix
64 × 64, flip angle 90°, voxel size 3.3 × 3.3 × 3.2 mm3, slice
thickness 3.2 mm, 0.8 mm gap, 30 slices, images acquired in
ascending order). On one of the measurement days, high-
resolution T1-weighted anatomical images (MPRage: 160
slices, matrix: 256 × 224, 1 × 1 × 1 mm3) of the brain were
obtained at the end of the scanning period.
FMRI data were analyzed with the Statistical Parametric

Mapping 8 (SPM8) software (http://www.fil.ion.ucl.ac.uk/
spm/). Data were preprocessed, beginning with slice timing
and realignment of the images to the mean image. To allow
for susceptibility by movement artifacts, unwarping of time
series was performed. The anatomical T1-weighted image
was co-registered to the mean functional image. Normal-
ization into Montreal Neurological Institute space (3 mm iso-
trop voxel size) and Gaussian spatial smoothing (FWHM:
6mm) were then performed. A general linear model with the
condition types wanting, liking, and high- and low-caloric
food items for both the DOPD and the CON condition was
applied to each subject. For each condition, a separate
regressor was modeled using a canonical hemodynamic
response function including time derivatives. Movement
parameters were modeled as confounds. Data were high-pass
filtered (cutoff: 128 s) and global AR(1) autocorrelation
correction was performed.

Statistical Analyses

For the fMRI data, a repeated-measurement ANCOVA was
performed including the factors ‘food’ (high- or low-caloric),
‘task’ (wanting, liking), and the repeated measure ‘dopamine’
(DOPD, CON). Analyses were controlled for BMI, age, and
hunger. The interaction effect of the covariate BMI with the
factors ‘dopamine’, ‘task’, and ‘food’ was modeled as an
additional regressor on the basis of the hypothesis of impaired
dopaminergic function with increasing BMI. Main effects and
interactions were considered significant on a cluster level at
Po0.05 family-wise error-corrected using an uncorrected
primary threshold level of Po0.001 (Woo et al, 2014).
In addition to the whole-head analyses, a region of interest

analyses with a priori defined masks of the nucleus caudatus
and the putamen were performed, as those striatal regions
are the main target of dopaminergic (food) reward activity
and dopamine depletion (Wang et al, 2001). Masks were
derived from the wake forest pick atlas (www.fmri.wfubmc.
edu/software/pickatlas).
Behavioral data were analyzed using SPSS (IBM SPSS

Statistics Version 22, Armonk, NY, USA). To investigate
differences between the wanting and liking rating, an
ANOVA was performed that included the factors ‘task’ and
‘food’ and the repeated-measurement factor ‘dopamine’.
Behavioral analyses were controlled for age, BMI, and
hunger. Results were considered significant at Po0.05.

Figure 1 Study design. Four hours after intake of the drink, subjects were
scanned during a wanting and liking rating. At baseline (before drink intake)
and pre- (210 min) and post- (300 min) fMRI measurement blood samples
were taken as indicated by the syringe; whereas hunger, mood parameters,
and well-being parameters were obtained by a VAS.
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RESULTS

Dopamine Precursor Availability

The plasma amino acid levels of all subjects confirmed a
successful intervention, suggesting a depletion of neuronal
dopamine level in the DOPD condition vs the CON
(Supplementary Figure S1). As a consequence of the intake
of the control drink, the tyr and phe levels increased. After
intake of the DOPD drink, tyr and phe levels decreased. In
accordance with previous literature (Coull et al, 2012), the
tyr+phe availability decreased more radically in the DOPD
condition than in the CON condition (Figure 2).
At baseline (before drink intake) on both measurement

days, the tyr+phe/LNAA quotient, as an approximation of
the neuronal dopamine level, correlated positively with BMI,
indicating higher baseline tyr and phe availability with
increasing BMI (both scanning days r= 0.33, Po0.05,
Supplementary Figure S2). In addition, in the CON, the
higher the BMI, the lower the decrease of tyr+phe availability
after 210 min (r=− 0.37, Po0.05) and 300 min (r=− 0.44,
Po0.05, Supplementary Figure S3).

Behavioral Results

Hunger, mood, and well-being parameters did not differ
between the dopamine conditions. Significant increases in
hunger towards the end of the measurement day were shown
by significant time changes in the hunger, satiety, and appetite
rating. In general, low nausea, bloating, anxiety, and sadness
levels were observed, but medium-to-high good mood ratings
showed a slight decrease as time went on in both measure-
ment days. No time changes in sadness, anxiety, bloating, or
urge to move were observed. Low nausea level showed a
significant time change with a slight increase after 210min
and a decrease by 300min (Supplementary Table S2).
For the analysis of the picture ratings, an ANOVA with the

between factors ‘task’ and ‘food’ and the within factor

‘dopamine’ revealed a significant effect for the factor task
(Po0.001). The wanting scores were higher than the liking
scores on both measurement days (mean wanting: 3.5± 0.05
SEM, mean liking: 3.1± 0.06 SEM, Po0.001). BMI did not
show any significant correlation between the rating in the two
tasks or on the two measurement days.
Descriptive data of eating behavior traits and snacking

behavior between the drink and the fMRI measurement are
shown in the Supplementary Tables S3 and S4.

Brain Activation Pattern

The main effect ‘dopamine’ revealed reduced activation in
the DOPD condition in two separate clusters within the
striatum (caudate body and head, Figure 3a, Table 1). Higher
activation was found in the superior frontal gyrus during
depletion than in the CON (Figure 3b, Table 1).
For the factor ‘task’ we found higher activity for wanting

than for liking in middle frontal (ventromedial prefrontal
cortex (vmPFC), anterior cingulate cortex (ACC)), hippocam-
pal/parahippocampal and amygdalar, as well as in striatal
regions (putamen) and the fusiform gyrus (Figure 3c, Table 1).
A significant interaction between ‘dopamine’ and ‘task’

was found in the hippocampus. No differential effect for
wanting and liking was observed for the DOPD condition,
whereas hippocampal activation increased during the want-
ing task in the CON only (Figure 3d, Table 1).
No significant differences were observed for the factor

‘food’ nor for any other interaction.
To further investigate the possible effects of the covariate

BMI, we analyzed the corresponding interaction effects. For
the factor ‘dopamine’ (contrast CON4DOPD) we observed
a significant interaction resulting in higher activation
differences in the supplementary motor area, superior
temporal regions, and the ACC with increasing BMI. Brain
acitivity was positively associated with the BMI in the CON
but negatively (or around zero) in the DOPD condition
(Figure 3e, Table 1). However, no interaction effect of the
BMI in any reward area was observed. No differential
interaction was found between the wanting and liking task or
between the high- and low-caloric pictures in association
with BMI.

DISCUSSION

In our study, we investigated neuronal and behavioral
correlates of DOPD. With the model of nutrition-based
alterations of the dopamine level, we intended to introduce
an acute hypofunction of the reward system which is
proposed to lead to overeating in obese individuals within
the reward-deficiency model of obesity (Blum et al, 2014;
Wang et al, 2001). We were able to show that reduced-

Figure 2 Availability of tyr+phe, represented in the plasma tyr+phe/
LNAA ratio.

Figure 3 Brain activation pattern superimposed on an anatomical brain and thresholded with Po0.001 by way of illustration. (a) Lower activation in striatal
regions (caudate head and body) in the depleted state. Results are significant with Po0.05 family-wise error small volume corrected. (b) Higher activation in
the superior frontal gyrus in the depleted state. (c) Activation differences between the wanting and liking task in 5 consecutive sagittal slices for each
hemisphere (upper row: left hemisphere, lower row: right hemisphere). Each brain region that is more activated in the wanting than in the liking task is labeled
one-time exemplary. (d) Interaction-effect dopamine × task in the hippocampus. (e) Interaction-effect dopamine ×BMI (covariate) in the supplementary
motor area, superior temporal gyrus, and the anterior cingulate cortex. The color bars represent T-values. If not otherwise stated, results are significant with
Po0.05 family-wise error-corrected. L, liking; W, wanting.
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dopaminergic action affects reward processing of food items.
However, the data provide no strong support for the
aforementioned model, as several findings especially the
independence of the effect on BMI are not consistent with
the reward-deficiency model.
The depletion protocol was successful and dopamine

availability was significantly reduced in the depletion state
for all subjects as assessed by reduced-relative concentrations
of the dopamine precursors tyr and phe.
As anticipated, the DOPD condition resulted in lower

caudate activation than the CON condition, which tallies
with previous studies (Leyton et al, 2004; Nagano-Saito et al,
2012). This effect was independent of BMI. However, we
found that the baseline tyr+phe availability were positively
correlated with BMI. Such findings can be discussed from the
perspective of opposing theories. Proposing lower striatal
dopamine-receptor availability in obese, this result suggests
that there is a compensatory higher dopamine level in the
obese population. A general compensatory mechanism of a
higher endogenous dopamine synthesis rate with lower-
binding potential of dopamine D2 receptors was also
suggested independent of BMI differences (Ito et al, 2011).
Furthermore, the tyr+phe availability decrease after meal
intake in the CON of our study was more pronounced for
obese than for normal weight subjects. The proposed
compensatory mechanism of higher baseline tyr+phe avail-
ability and consequently higher neuronal dopamine level
after meal intake might therefore not be sufficient to
compensate for the reduced striatal dopamine-receptor
availability. This finding supports the theory that striatal
dopamine availability is reduced in obese subjects after meal
consumption, thereby possibly resulting in increased food
intake achieving the same relative dopamine response as lean
subjects. On the other hand, our results can be interpreted
from opposing models of higher reward activity after food
consumption in obese, with might be inborn (reward surfeit
model) or acquired (incentive sensitization model). There is
evidence that obese individuals experience higher neuronal

reward activity during visual food processing (Stoeckel et al,
2008), as well as during the anticipation of palatable food
(Burger and Stice, 2013). Furthermore, normal weight
adolescents with an increased risk for developing obesity
show greater reward responsivity to food compared with
adolescents at low risk (Stice et al, 2011). Dopaminergic
food-reward variations are furthermore moderated by
dopamine-related genetic variations (Stice et al, 2012, 2015).
These contradicting models are, however, not necessarily

exclusive. Burger and Stice (2011) offered a possible
combination of the two models by introducing the dynamic
vulnerability model of obesity. This model describes an
increased risk for obesity in individuals initially hyper-
reward responsive to food intake which leads to overeating
and weight gain. Through chronic overeating, however,
striatal dopamine-receptor availability reduces and simulta-
neously a hyper-responsivity of regions encoding the
incentive salience of food emerges induced by the condition-
ing processes during chronic overeating. This again leads to
further overeating (Alonso-Alonso et al, 2015; Burger and
Stice, 2011).
Besides striatal differential activity in the BAL and DOPD

condition, we furthermore observed higher activity in the
superior frontal gyrus during depletion. The superior frontal
gyrus is involved in self-awareness (Goldberg et al, 2006; Sui
et al, 2012) and inhibitory control (Batterink et al, 2010;
Dambacher et al, 2014). In several studies, activity in frontal
control regions was increased in obese subjects, particularly
when the latter were confronted with tasty and high-caloric
food (Scharmuller et al, 2012; Stoeckel et al, 2008). In a food-
related go/no-go paradigm, the activity in the superior
frontal cortex was increased during the no-go compared with
the go trials (Batterink et al, 2010).
In the light of the hypothesis of a blunted dopaminergic-

reward system in the obese, we expected to find BMI-related
differential effect in the CON and DOPD condition.
However, no association of the BMI within reward regions
was observed and so such results do not support the

Table 1 Significant Differences in Brain Activation of the Repeated-Measurement Analyses with the Factor ‘Dopamine’, ‘Task’ and ‘Food’

Effect Brain region MNI coordinates Cluster size
(in voxels)a

T-value

x y z

Main ‘dopamine’: DOPDoCON Caudate (head) 6 11 − 2 7 3.99b

Caudate (body) 12 5 16 10 3.76b

Main ‘dopamine’: DOPD4CON Superior frontal gyrus 18 47 31 23 4.84

Main ‘task’: W4L Parahippocampus/hippocampus/amygdala/putamen/fusiform gyrus − 24 − 37 − 11 603 5.58

Anterior/middle cingulate cortex − 3 17 37 128 5.63

Parahippocampus/hippocampus/amygdala/putamen/fusiform gyrus 30 − 28 − 11 615 5.41

Ventromedial prefrontal cortex 0 47 − 8 276 4.88

Dopamine ´ task Hippocampus − 30 − 25 − 11 15 5.09

Dopamine ´ BMI (CON4DOPD) Supplementary motor region/postcentral cortex − 18 − 7 64 306 5.77

Superior temporal cortex 48 − 22 − 5 16 5.56

Anterior cingulate cortex − 6 44 4 101 5.54

Abbreviations: CON, control; DOPD, dopamine depletion; L, liking; W, wanting.
All results are family-wise error-corrected for multiple comparison.
aThe cluster size of FWE-corrected clusters, based on a primary uncorrected-threshold level of Po0.001.
bROI analyses, results are significant with Po0.05 at cluster and peak level.
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dopamine reward-deficiency hypothesis in obese subjects.
However, motor control for voluntary movements (SMA), as
well as cognitive control (ACC) regions showed differential
interaction with the BMI during the dopamine conditions.
Thus, the BMI was positively associated with motor- and
cognitive-control areas during the CON, but negatively or
not at all during depletion. Therefore, in the CON condition,
the higher the BMI, the higher the necessity to recruit motor
and cognitive control during the wanting/liking task (which
included button presses). This reflects the BMI effect after a
‘normal’ meal intake. Considering that dopamine availability
is a major mediator of this effect, we can assume that we
observed the lower BMI associations in the DOPD condition,
as the depleted state simulates a hypofunctioning reward
system equally in all subjects independent of BMI.
Changes in cognitive-control regions in association with

BMI in cognitive tasks has been reported (Bosak and Martin,
2014; Carnell et al, 2012; Hege et al, 2013; Kullmann et al,
2013) and dopamine has a crucial role in cognitive-control
processes (Cools and D'Esposito, 2011). Furthermore, there
is evidence of reduced executive function in obese (Smith
et al, 2011; Stingl et al, 2012), mainly in decision-making,
planning, and problem-solving tasks (Fitzpatrick et al, 2013).
This might lead to increased recruitment of motor and
cognitive regions also during our food-related rating task.
Yet, the task in our study was not cognitively or motorically
challenging and our results therefore do only allow for a
careful speculation. In addition, dopaminergic signaling in
relation to the performance of voluntary exercise is described
in rodents (Garland et al, 2011). DOPD, thus, leads to
reduced exploratory, open-field, spontaneous and locomotor
activity in rats. Furthermore, dopamine has an impact on
general energy balance by mediating the effects of leptin and
ghrelin on eating behavior (van Zessen et al, 2012). Yet,
studies investigating the cost of food in relation to dopamine
showed no changed energy balance on hyperdopaminergic
mice (Beeler et al, 2012).
For the task conditions, we found distinct activation

differences between the wanting and liking task, with higher
activation during the wanting task in a large brain network.
It is important to note that we specifically asked for the
current state (wanting) and the general trait (liking) of the
food items. Here, the wanting component of food reward
seems to recruit brain circuits involved in memory function
(para-/hippocampus), food processing (fusiform gyrus),
emotion (amygdala), reward (putamen), and hedonic
evaluation (vmPFC), but also frontal control (ACC). This
might be represented in higher wanting compared with
liking ratings of the subjects on both scanning days,
indicating a much higher neuronal impact of the current
‘wanting’ than for the general ‘liking’ when subjects are
stimulated with food items. This lines up with higher striatal
activity during anticipation of high vs low reward (which
rather reflects the wanting condition) but not in the receipt
phase (rather reflecting the liking condition) of food-related
reward (Simon et al, 2014). In addition, a higher predictive
value of reward-related neuronal activity for weight gain was
found for the anticipation compared with the receipt of
palatable food (Burger and Stice, 2013). Such results imply
that wanting may have a larger role in individual food choice
compared with liking. Furthermore, this neuronal effect is
not independent of the dopaminergic state. We detected an

interaction of the dopamine and the task variable in the left
hippocampus. As shown in Figure 3e, the higher activation
for ‘wanting’ was visible in the CON only. We saw no
difference in behavior between the wanting and liking rating
for the two drinks. In our fMRI data, however, the
hippocampal activation is lower for the liking task in the
CON only. This might indicate that there is a higher need for
memory processes in the depleted condition in order to
‘remember’ what food is actually liked, which is not
necessary in the CON. There is evidence for dopamine as a
crucial modulator of hippocampal memory processes,
especially in terms of long-term memories (Shohamy and
Adcock, 2010). Furthermore, the dopaminergic system was
found to be involved in the consolidation for reward-related
memories during sleep (Feld et al, 2014). As the liking rating
rather recruit long-term memory functions, this is in line
with our finding of dopaminergic interaction in the
hippocampus mainly based on the liking condition.
Because we limited our study to female subjects, we cannot

draw any conclusions for the general population. Furthermore,
the order of the task condition was not counterbalanced, which
might have an influence on the task effect. However, no hunger
or tiredness-related differences between the task conditions are
to be expected as one run lasted for only 5min. In general,
DOPD was shown to be a valid method to induce reduced-
dopamine levels. However, it may not exclusively affect
dopamine synthesis, but consecutively also norepinephrine
and epinephrine which are synthesized from dopamine.
Therefore, the depletion of dopamine successors might also
mediate the results. Furthermore, the depletion is not exclusive
to the striatum, which opens the possibility that influenced
neurotransmitters such as norepinephrine binding on adre-
nergic receptors might have an unknown influence. However,
the acute phenylalanine/tyrosine depletion method (used in
our study) is at-large specific to induce mainly dopamine
changes (Booij et al, 2003).

CONCLUSION

In summary our study addresses the role of the dopaminergic-
reward system in obese individuals. According to the
hypothesis of a hypofunction in the dopaminergic-reward
system in obesity, we simulated different neuronal dopamine
levels by a DOPD approach. We observed differential BMI-
related associations in motor- and cognitive-control areas in
the two conditions, but not in reward-related regions, thereby
contradicting the aforementioned hypothesis. This points to
other hormonal or neuronal mechanisms associated with
obesity that influence the dopaminergic system. In a recent
study, the altered dopamine-receptor availability in obese
subjects was reported to have a minor role only and μ-opioid
receptors were believed to be the more important target for the
association with obesity. The authors observed that obese
subjects presented lower μ-opioid receptor availability than
lean subjects, whereas dopamine-receptor availability was
similar for both the groups (Karlsson et al, 2015). Therefore,
the focus on altered dopaminergic-reward system in obesity
might be extended to also include additional mechanisms as
the μ-opioid system.
Disturbed dopaminergic-reward pathways might therefore

be one of several contributors to overeating and obesity.
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Hence, it is still vital that we gain even deeper insight into the
neurochemical alterations involved in obesity.
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