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Onto better TRAILs for cancer treatment

D de Miguel*'?, J Lemke®®, A Anel'? H Walczak® and L Martinez-Lostao*'*%%

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the
TNF cytokine superfamily. By cross-linking TRAIL-Receptor (TRAIL-R) 1 or TRAIL-R2, also known as death receptors 4 and 5 (DR4
and DR5), TRAIL has the capability to induce apoptosis in a wide variety of tumor cells while sparing vital normal cells. The
discovery of this unique property among TNF superfamily members laid the foundation for testing the clinical potential of TRAIL-R-
targeting therapies in the cancer clinic. To date, two of these therapeutic strategies have been tested clinically: (i) recombinant
human TRAIL and (ii) antibodies directed against TRAIL-R1 or TRAIL-R2. Unfortunately, however, these TRAIL-R agonists have
basically failed as most human tumors are resistant to apoptosis induction by them. It recently emerged that this is largely due to
the poor agonistic activity of these agents. Consequently, novel TRAIL-R-targeting agents with increased bioactivity are currently
being developed with the aim of rendering TRAIL-based therapies more active. This review summarizes these second-generation
novel formulations of TRAIL and other TRAIL-R agonists, which exhibit enhanced cytotoxic capacity toward cancer cells, thereby

providing the potential of being more effective when applied clinically than first-generation TRAIL-R agonists.
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Facts

e On its discovery, TRAIL was described to be capable of
inducing apoptosis selectively in cancer cells. However,
soon afterwards it was found that many cancer cell lines as
well as primary cancer cells are either intrinsically TRAIL-
resistant, or become resistant upon TRAIL treatment.

e The results from TRAIL using clinical trials have been
disappointing, showing little antitumor efficacy. All these
clinical trials have used a soluble form of the protein, which
is known to be rather unstable and to have poor
physicochemical properties.

e TRAIL has four receptors that are expressed at the plasma
membrane, of which two can trigger apoptosis. Little is
known about the relative contribution or differential roles of
these two pro-apoptotic TRAIL receptors (TRAIL-Rs).

e Physiologically, TRAIL is expressed as a transmembrane
protein. This fact may be exploitable therapeutically since
membrane-bound as well as artificially cross-linked TRAIL
is by several orders of magnitude more active than
conventional soluble trimeric TRAIL.

e New TRAIL formulations with increased bioactivity due to
improved stability and/or cross-linking efficiency have been
developed. Besides, new approaches trying to combine
inherent TRAIL pro-apoptotic ability with delivery systems
based on nanoparticles are also being explored.

Open Questions

e Could new forms of TRAIL or other TRAIL-R agonist
formulations with increased bioactivity, improved pharma-
cokinetic and targeting properties contribute to overcoming
TRAIL resistance without causing systemic toxicity?

e Could such novel TRAIL-R-targeting biotherapeutics exert
improved synergy with known TRAIL-sensitizing agents,
over TRAIL-R agonists used clinically to date?

Despite remarkable advances in understanding the biology of
cancer and the development of novel diagnostic and
therapeutic strategies, cancer still remains one of the major
causes of death. To date, in addition to surgical resection of the
tumor, conventional radio- and chemotherapy constitute the
central pillars of cancer treatment. These therapies aim to limit
proliferation and/or induce the death of cancer cells. However,
they mostly lack cancer specificity and, therefore, also
damage normal, healthy tissues resulting in often severe side
effects that constitute the dose-limiting toxicities. In addition,
many cancers acquire resistance to these therapies, render-
ing them ineffective in consecutive treatment rounds. Hence,
during the past decades great efforts have been made to
develop new therapeutic approaches, aiming to improve the
specific targeting of cancer cells and to overcome resistance
to current therapies."?
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The better understanding of tumor biology, tumor immuno-
logy and how cancer cells interact with the tumor micro-
environment, sparked the development of cancer
immune-therapeutics as well as so-called targeted cancer
therapeutics.?™® The identification of the tumor necrosis factor
(TNF)-related apoptosis-inducing ligand (TRAIL), also
referred to as Apo-2 ligand (Apo2L),%” and most importantly,
the discovery of TRAILs capacity to kill cancer cells while
sparing all the vital normal cells,® appeared to represent a
promising step forward in the development of targeted
anticancer therapies. TRAIL belongs to the TNF superfamily
(SF) of cytokines and is capable of inducing apoptosis in cells
by binding to either of two cognate death receptors (DRs),
TRAIL-R1/DR4 (ref. 9) and TRAIL-R2/DR5."%"'* Physiologi-
cally, TRAIL has been implicated in the function of cytotoxic
effector cells'™'® and the homeostasis of the lymphoid
compartment by being a mediator of activation-induced cell
death (AICD) in effector immune cells."”

Given the cancer-selective apoptosis-inducing potential
of TRAIL and the fact that TRAIL-R1 and, even more
so, TRAIL-R2 are often highly expressed in different
malignancies,® 3141823 thg yse of TRAIL or other agonists
for TRAIL-R1/R2 for cancer therapy appeared an attractive
concept. Consequently, TRAIL-R agonists were developed for
clinical application. The results of the clinical studies
performed with these first-generation TRAIL-R agonists so
far have been rather disappointing, however, with limited
patient benefit despite promising pre-clinical results.?42® The
fact that many human tumors are partially or completely
resistant to monotherapy with TRAIL and other TRAIL-R
agonists likely contributed to the limited therapeutic activity
observed in these studies. However, another—perhaps
decisive—factor for the lack of clinical efficacy of the specific
TRAIL-R agonists that have been tested clinically most likely is
that their agonistic capacity was simply not sufficiently potent.
This is exemplified by a recent study in which it was shown
that, only when used in combination, two of the above-
mentioned clinically developed TRAIL-R agonists exerted
virtually the same agonistic activity as isoleucine zipper-
TRAIL (iz-TRAIL),%” a highly active form of TRAIL that has
been in use for some time®®3° and is based on the original
leucine-zipper form of TRAIL (LZ-TRAIL) used in the study in
which TRAIUs tumor-selective apoptosis-inducing potential
was discovered, importantly, in the absence of systemic
toxicity.® Unfortunately, this fact went largely unnoticed and
because of safety concerns with certain more potent forms of
TRAIL,®" several TRAIL-R agonists with, as it turned out,
insufficient agonistic activity and consequently pro-apoptotic
potency were developed for clinical use. Yet, the fact that to
date no sufficiently potent TRAIL-R agonist that lacks systemic
toxicity has been clinically validated, has led to the develop-
ment of novel formulations of TRAIL and other TRAIL-R
agonists with improved bioactivity, with the aim to overcome
TRAIL resistance in combination with improved sensitization
strategies and patient-selection criteria.?

This review summarizes the main novel formulations of such
TRAIL-R agonists that are currently being tested or developed
to improve biological attributes such as stability, delivery,
targeting and cytotoxic activity against tumor cells as well as
their potential for applications in cancer therapy.

Cell Death and Differentiation

TRAIL signaling

Physiologically, TRAIL is expressed as a type 2 transmem-
brane protein that can be cleaved, resulting in the release of a
24 kDa extracellular portion comprising amino acids 114-281
of the protein. The C-terminal extracellular domain of TRAIL
shares high homology with other members of the TNF SF and
is composed of two anti-parallel B-sheets.>*=*° As shown by
the crystal structure of TRAIL interacting with TRAIL-R2,
TRAIL forms a trimer and each receptor molecule interacts
with the crevice formed by two monomers of the trimer.
Thereby, the TRAIL trimer can engage three receptors
simultaneously. Interestingly, unlike other TNF SF members,
the ligand trimer appears to be stabilized by an internal zinc
atom, which interacts non-covalently with three cysteine
residues, one from each TRAIL monomer. This interaction is
thought to be crucial for the stability, solubility and bioactivity of
trimeric TRAIL.332°

TRAIL can bind to four transmembrane receptors: TRAIL-
R1, TRAIL-R2, TRAIL-R3, also known as decoy receptor 1
(DcR1) and TRAIL-R4 (DcR2), as well as to the soluble
receptor osteoprotegerin (OPG).* 133639 Among them, only
TRAIL-R1 and TRAIL-R2 are able to trigger apoptosis as
TRAIL-R3, TRAIL-R4 and OPG lack the functional cyto-
plasmic death domain (DD) that is required for apoptosis
induction.*®*' On the basis of overexpression experiments,
TRAIL-R3 and TRAIL-R4 have been suggested to act as
decoy receptors that inhibit apoptosis induction by TRAIL as a
consequence of ligand scavenging.?3*? In addition, TRAIL-R4
has been proposed to be capable of inhibiting TRAIL-induced
apoptosis by forming ligand-independent inactive complexes
with TRAIL-R2 or the induction of pro-survival pathways such
as NF-kB.**~*5 However, there is still controversy concerning
the physiological role of TRAIL-R3 and TRAIL-R4, and their
function might depend on the cell type. For example, and in
contrast to the mentioned studies, these receptors have also
been described not to function as DcRs in the human
hepatocellular carcinoma cell lines Hep3b and a TRAIL-
resistant variant of HepG2 (HepG2-TR).*®

TRAIL triggers the extrinsic apoptosis pathway upon
binding of the TRAIL trimer to TRAIL-R1 and/or TRAIL-R2,
resulting in receptor trimerization, which in turn leads to
recruitment of the adaptor protein Fas-associated DD (FADD)
via homotypic DD-DD interaction between the DDs of the
ligand cross-linked receptors and FADD, respectively. FADD,
in turn, recruits pro-caspase-8 and pro-caspase-10 via
homotypic interactions of death-effector domains (DED)
present both in FADD and caspase-8 and -10, respectively.
This multi-protein complex formed by TRAIL-DRs, FADD and
caspase-8/10 is called death-inducing signaling complex
(DISC).*”®" On recruitment to the DISC, the pro-caspases-8
and -10 form homodimers. This induces a conformational
change that exposes their proteolytically active sites, resulting
in auto-activation and subsequent cleavage of additional pro-
caspase-8 and -10 molecules leading to full caspase activa-
tion at the DISC.5275®

TRAIL can activate both branches of the apoptosis pathway
by caspase-8-mediated cleavage and activation of the effector
caspase-3 and the BH3-only protein Bid. In so-called type |
cells, cleavage and activation of caspase-3 by activated



caspase-8 is sufficient to induce apoptosis, whereas in type I
cells, activation of the mitochondrial pathway is required for
apoptosis induction as a consequence of TRAIL DISC
activation.’®%” The latter is triggered by caspase-8-mediated
cleavage of Bid, which results in the formation of truncated Bid
(tBid) as the active fragment of this protein.>®=®" Subsequently,
tBid activates the mitochondrial pathway by enabling the
pro-apoptotic Bcl2-family members Bax and Bak to insert in
the mitochondrial outer membrane (MOM), resulting in MOM
permeabilization (MOMP) and release of cytochrome C and
Smac/DIABLO (second mitochondrial activator of caspases/
direct inhibitor of apoptosis-binding protein with low pl)®2:53
from the mitochondrial intermembrane space into the
cytosol.5+©5

Although TRAIL-R1 and TRAIL-R2 bear high structural
similarity and both are able to trigger apoptosis upon
TRAIL-induced cross-linking, functional differences bet-
ween them have been reported. First, TRAIL-R2 has higher
affinity for TRAIL than TRAIL-R1.%® Yet, higher affinity does not
necessarily result in enhanced DISC activation as although
TRAIL-R2 can be engaged by the soluble ligand, this
interaction only triggers a comparably weak DISC
formation.®” This result supports the notion that TRAIL-R2
may require further cross-linking of soluble TRAIL (sTRAIL),
whereas stimulation of TRAIL-R1 by sTRAIL appears to be
able to trigger apoptosis independently of further cross-
linking.®8° However, recently it was shown that oligomerized
TRAIL versions can also activate TRAIL-R1 more efficiently
than sTRAIL.”® Altogether, it seems clear that TRAIL presents
a much stronger activity when it is presented in its
transmembrane form than their soluble counterparts, and this
enhanced activity is directly linked to its ability to cluster and
arrange their specific receptors in supramolecular structures.
In line with this, several studies showed that clustering of two
trimers was sufficient to improve their activity to optimal levels
for the other members of the TNF family ligands.”"”2 The
requirement for oligomerization for optimal agonistic activity
has also been proposed for the other members of the TNF SF,
including CD95L (also known as FasL or APO-1L) whose
ability to induce apoptosis is dramatically increased (up to
1.000-fold) on clustering of soluble trimers.”*”* Once clus-
tered, the receptors adopt a supramolecular hexagonal
organization, similar to a ‘honeycomb’ structure.”® In line with
this, several studies showed that dimerization of two trimers
was sufficient to improve their activity to optimal or near-
optimal levels.”"”2 The clustering of DRs achieved thereby
most likely facilitates and stabilizes DISC assembly.”>""

Along these lines, a new way to improve sTRAIL bioactivity
by enhancing TRAIL-R2 clustering was described very
recently.?”"® In these studies, sTRAIL was used in combina-
tion with the TRAIL-R2-specific agonistic antibody AMG-655/
Conatumumab. Of note, both sTRAIL and AMG-655 had been
developed to be used individually as novel anticancer
biotherapeutics and had already been tested in clinical trials
as discussed in more detail below. Co-administration of
AMG-655 and sTRAIL was able to greatly enhance the
inherent ability of STRAIL to activate TRAIL-R2, even sensiti-
zing certain cancer cell lines that are resistant to sTRAIL. This
synergistic effect was due to secondary TRAIL-R2 cross-
linking exerted by the antibody, which acted in cooperation
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with the normal engagement of TRAIL-R2 exerted by sTRAIL.
In a similar way, a recent work has used another specific
TRAIL-R2 antibody in combination with sTRAIL, obtaining the
same synergistic effect.®”

It is, however, still largely unresolved what the relative
contribution of the two individual TRAIL-DRs to apoptosis
induction in a given cancer is. Although TRAIL-R1 has been
described to mediate cell death in chronic lymphocytic
leukemia cells, acute myelogenous leukemia cells and
pancreatic tumors,’®%2 TRAIL-R2 appears to be the main
contributor to apoptosis induction in several other epithelial-
derived cancers.®3®* This differential pro-apoptotic perfor-
mance of TRAIL-R1 and TRAIL-R2 depending on the cell/
cancer type may be exploitable therapeutically by specifically
targeting the receptor that is preponderant at inducing
apoptosis in the particular cancer type in question. Such
targeting may increase the specific cytotoxic effect by sparing
non-apoptotic interactions with other TRAIL-Rs. Apart from
antibody-based biotherapeutics, such receptor-specific TRAIL
constructs can be generated by inducing point mutations in
residues within the TRAIL sequence that are required for
interaction with particular TRAIL-Rs and not others. A number
of such TRAIL variants have been devised and have become
valuable tools for assessing specific roles of the different
TRAIL-Rs, and, moreover, have recently been shown to bear
the potential of improving the efficacy of specifically activating
TRAIL-R1 and TRAIL-R2, respectively.*5-80-8385-87

TRAIL-induced apoptosis is tightly regulated at different
stages to prevent excessive cell death in normal cells. These
mechanisms are exploited by tumor cells to evade TRAIL-
induced apoptosis. At the level of expression of the TRAIL-Rs
it has been suggested that, as mentioned above, the non-
apoptotic receptors TRAIL-R3, -R4 and/or OPG may modulate
sensitivity to TRAIL. At the DISC level, the main regulator
protein is cellular FLICE-Like Inhibitory Protein (cFLIP), that
closely resembles caspase-8 but lacks the protease activity
required for apoptosis induction.®8° Two main variants of
cFLIP are expressed on the protein level: a short isoform
(cFLIPg) and a long isoform (cFLIP,).%° Both cFLIP isoforms
contain two DEDs that are structurally similar to the DEDs
presentin the N-terminal portion of pro-caspase-8 and -10 and
allow recruitment to the DISC. The cFLIPg isoform can inhibit
caspase-8 activation in a dominant-negative manner by
competing with it for binding to FADD. The role of cFLIP_ is,
however, more complex and seemingly depends on the ratio
between caspase-8 and cFLIP_.%""%% Although cFLIP, was
first reported to act as an anti-apoptotic protein in a manner
similar to cFLIPg,®® later studies demonstrated that the
cFLIP /caspase-8 heterodimer, apart from retaining enzy-
matic activity, also displays an enhanced and more localized
activity toward certain substrates when compared with
the caspase-8 homodimer, somehow modulating caspase-8
substrate specificity.”*~°® In fact, the activity of the FLIP/
caspase-8 heterodimer is required to prevent necrop-
tosis.?179397:98 Nevertheless, it should be noted that, when
expressed at high levels, cFLIP_ can also completely prevent
DR-induced apoptosis. Several studies have demonstrated
that cancer cells exploit overexpression of cFLIP to
evade TRAIL-induced apoptosis®~"°" and, consequently,
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downregulation of cFLIP may sensitize certain cancers to
TRAIL-induced apoptosis.*®:192-105

Another important checkpoint in the apoptotic cascade is
exerted by XIAP (X-linked inhibitor of apoptosis protein), a
molecule that can bind caspases 3, 7 and 9, thereby inhibiting
their pro-apoptotic activity.'® Several additional mechanisms
of different nature can modulate TRAIL signaling. Post-
translational modifications such as O-glycosylation, which
promotes ligand-stimulated clustering of TRAIL-DRs and
recruitment/activation of procaspase-8,'®” ubiquitination reg-
ulating the full activation of caspase-8 upon TRAIL
stimulation'®® and endocytosis of the DISC upon TRAIL
binding'®® are just a few examples of several mechanisms
proposed to be implicated in the modulation of TRAIL
signaling.

Apart from inducing apoptosis, TRAIL can also trigger non-
apoptotic signaling such as necroptosis and the activation of
pro-inflammatory pathways (via NF-kB, Akt, MAPK and JNK
activation). Induction of these non-apoptotic pathways
depends on the cell type and is often triggered in scenarios
when apoptosis induction is inhibited.*®'%=1"2 The induction
of pathways resulting in gene activation has been suggested
to be mediated by the formation of a secondary complex
following DISC activation. This secondary complex also
contains the DISC components FADD, caspase-8 and
cFLIP'"® and, additionally, recruits receptor interacting protein
1 (RIP1), TNF receptor-associated factor 2 (TRAF2) and the
NF-kB essential modulator (NEMO).'™ Initially, TRAIL-
induced activation of pro-inflammatory pathways was pro-
posed to be mainly a mechanism to negatively regulate
apoptosis induction by TRAIL. However, activation of these
pathways, such as NF-kB, AKT and MAP kinases can also
enhance the malignancy of cancer cells by increasing their
proliferation, migration, invasion and/or metastasis.''>""”

In addition, both exogenous TRAIL and FasL were shown to
induce proliferation and to promote migration in KRAS-
mutated cancer cells upon external administration.''® These
findings led to the recent discovery of a pro-invasive role for
endogenous TRAIL in KRAS-mutated cells. In these cells,
autocrine endogenous TRAIL stimulates cancer cell-
expressed TRAIL-R2 to activate Rac1 which, in turn, activates
PI3K to induce cell migration."'® Interestingly, activation of this
signaling pathway was independent of TRAIL-R2’s DD but
instead required its membrane proximal domain (MPD).""®

TRAIL-R agonists as anticancer therapeutics

So far, two main TRAIL-DR-targeting therapeutic strategies
have being pursued in clinical trials: (i) a recombinant form
of human sTRAIL (Apo2L.0 or AMG-951/Dulanermin) and
(i) agonistic antibodies that specifically target TRAIL-R1 or
TRAIL-R2.%2 Although these TRAIL-R agonists have been
shown to be safe and well tolerated in patients, their respective
anticancer activites have been largely disappointing®*2°
(extensively reviewed by Lemke et al.*® and Holland'?°). The
fact that most primary tumor cells are intrinsically resistant
to TRAIL or may acquire resistance during the course of
treatment'2'~'2% has most likely contributed to this failure.

In addition to these considerations, non-apoptotic signaling
induced by TRAIL has been shown to be exploited by tumor
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cells, at least in certain cases, to their own advantage. For
example, it has been shown that TRAIL promotes the
development of liver metastasis in a pancreatic adenocarci-
noma xenograft model, pointing toward potentially harmful
effects of monotherapy with TRAIL-R agonists.’'® In this
context, it is noteworthy to mention that TRAIL-R1 expression
positively correlates with tumor grade in patients with breast
cancer.'26:127

To avoid the undesired pro-tumorigenic effects of mono-
therapy with TRAIL-R agonists in TRAIL-resistant cancers,
it has been proposed to combine them with sensitizing
agents (reviewed in Lemke et al,?). However, regardless of
the promising results obtained with such combinatorial
approaches, careful evaluation, both pre-clinically and in early
clinical testing, is needed as it may bear the risk of sensitizing
a vital normal cell type to TRAIL-induced cell death.28-30:46

It is now clear that, besides adding more potent sensitizing
agents to a TRAIL-R-agonist-comprising therapy, improve-
ment of the agonistic capacities of TRAIL-R agonists is
imperative to render TRAIL-based therapies effective. To
enhance the therapeutic potential of TRAIL, different short-
comings of currently used TRAIL-R agonists need to be
addressed. In the specific case of Apo2L.0/AMG-951/Dula-
nermin, the disappointing results obtained in clinical trials are
most likely due to the combination of its short plasma half-life
and rapid clearance from circulation'?®'2° with its limited
ability to cluster TRAIL-DRs. It should be noted that antibodies
directed to TRAIL-DRs have a comparably long half-life in
serum, whereas their in vivo activity is hampered by the
fact that they require external cross-linking to induce
effective  TRAIL-DR clustering and, hence, TRAIL-DR-
mediated apoptosis.'3%'3! To overcome these shortcomings
and pharmacological downsides, novel TRAIL formulations
have been developed with the aim to increase the efficiency of
TRAIL-DR-targeting therapies (Figure 1).

These novel formulations improve the activity of TRAIL-R
agonists by tackling the following two main aspects: (i)
increasing stability and valency and (ii) enhancing cancer-
specific delivery. A wide variety of experimental approaches
are currently engineered to address these aspects, resulting in
novel versions of TRAIL-R agonists with promising attributes,
which will hopefully prove useful to cancer treatment in the
future.

Increasing the stability of TRAIL

The correct conformation and stability of TRAIL has a crucial
role for its biological activity since trimerization of TRAIL
monomers is pivotal to induce TRAIL-R clustering on the cell
surface. The physical and chemical changes can, however,
result in the collapse of TRAIUs trimeric structure 31:33:34.132
Furthermore, TRAIL monomers can easily form disulfide-
Iinke3<1 dimers that impairs its apoptotic potential by up to 90-
fold.

The first recombinant versions of TRAIL comprised
the extracellular portion of the protein or its TNF homology
domain (THD) with an N-terminally added poly-Histidine tag
(His-TRAIL®) or FLAG epitope tag (FLAG-TRAIL"). These tags
were added merely to facilitate the purification process.
Noteworthy, FLAG-TRAIL alone was poorly active, and



New TRAIL formulations for cancer treatment
D de Miguel et al

731

Stablllty
® J
zpper zZipper
isoleucine
polyethyene
glycol
@ PEG-TRAIL @ @
FclgGt SCTRAR PEG ® pu Ny E coli DH5a
,,Ep,,,m,,,g ‘l : ‘\ PGEX-sTRAIL = STRAIL
$ ‘s \) O B
] = ‘ . o
~ poly-Hysin —n Passive
lnker G HSAHP (_targeting /
d g 2
Fni4 * —_—
liposome
)’ l e PEG-TRAIL
magneﬁr/,.;/ #2 @ "".V \ .
0 é ferric oxide NP \ { [ N doxorubicin
. Apo2L.0 /
<. pa @) ‘F’; £
Liposome— = v !QL dviysufone wj’“ ‘$\ Sk —PLGA
.~ \ D, microspheres
1—' ; IV doxorubicin
Ve
M _—
DSPE-PEG 00-maleimide ( ’c b. t. ‘n\
\\ @) osome M \\om ination )
DOGS-NTA-Ni HSA-NP —_
N r T
@ Q- =1 'y
\ “ = —
V.*scvaZZS lrunsierm , p - ( )

Liposome

Mal-PEG;c-DSPE

K12TRAIL

ﬁ
.a DOGSNTA—M

anti-MCSP

/}»\\

scFuz
inker
ke @
linker
TRNmeRs
A
ScFYCD19 e
ScFv:G28

# linker E ’
scFvCDTO

angiopep-2
o

surfaceNH; g

doxarubun -

liposome

/ : \nacnm
PEGFP-hTRAIL
sCTRAIL
Active
SCFVEGFR targeting

scFchm.sTRAA L

® w:ﬁ
' CD40ed

RGD

peptide f%

Figure 1  TRAIL formulations with increased bioactivity for cancer treatment. Different formulations of TRAIL using distinct experimental approaches have been developed to
increase its therapeutic potential. These formulations are mainly based in fusion proteins with single-chain variable antibody fragments (scFv), conjugation with nanoparticles and,
cell-based methods to express and/or secrete Apo2L/TRAIL. The main properties improved with these highly bioactive formulations are the increase of the molecule stability,
tumor targeting and the possibility of combination with other antitumor agents in a unique formulation. References: 1: leucine zipper-TRAIL;®*? 2: Isoleucine zipper-TRAIL
homotrimer;® 3: PEG-HZ-TRAIL;'®*"®2 4: APG350;**° 5: Fn14:TRAIL;'%2'%® 6: TRAIL HSA-NPs;'®® 7: PEG-TRAIL microspheres;'**'®® 8: TRAIL-PEG-NPs;'** 9: TRAIL-
LPs;'73174.176 10: PEG-TRAIL/Dox microspheres;'®" 11: TRAIL/Dox HSA-NPs;'®” 12: magnetic NPs-TRAIL;'”® 13: LUV-TRAIL;S"17":172212 14 | UV-Apo2L.0;*'® 15: sTRAIL-
targeted stealth liposome;'”® 16: TRAIL/Tf/Dox HSA-NPs;'®8 17: immuno-LipoTRAIL;'”” 18: Anti-CD3:TRAIL K12:TRAIL;'* 19: leukocytes coated with LUV-TRAIL-ES;'”®
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scFVCD20-sTRAIL;'®” 33: ANG-CLP/PTX/pEGFP-hTRAIL;'™® 34: sTRAIL-expressing E. coli DH5a2"®

required further cross-linking by the FLAG-specific anti-
body M2.” These constructs rendered promising results
in vitro and also provided promising in vivo safety profiles in
the different animal models, mainly rodents and nonhuman
primates.®3"13% However, both His-TRAIL and cross-linked
FLAG-TRAIL were capable of killing freshly isolated primary
human hepatocytes (PHH) in vitro.2%13413% Most likely, the
main reason for this hepatotoxicity was the formation of

aberrant supramolecular aggregates owing to the interactions
between the added tags. In particular, in the case of His-
TRAIL, metal analysis showed an abnormally low molar ratio
between zinc and the TRAIL trimer, implying that anomalous
supramolecular structures may have formed.®' These findings
suggested that TRAIL trimer stability may impact hepato-
toxicity in vivo and turned the focus on potential liver toxicity of
systemic TRAIL administration.
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The only recombinant form of TRAIL approved for use in
clinical trials to date has been an untagged version of the
molecule comprising residues 114-281 of TRAIL. This
version, known as the aforementioned Apo2L.0 or AMG-951/
Dulanermin, appeared to be both active and safe as it worked
well in several xenotransplant cancer models®84128:133 pt did
not kill freshly isolated PHH and was well tolerated by
cynomolgus monkeys and chimpanzees.3031:128.136 Gonge-
quently, Apo2L.0/Dulanermin was tested in the cancer
patients where it indeed proved to be safe, though also
disappointingly inactive.?52%:137=141 Apo2L.0/Dulanermin is
rather unstable, presenting low pharmacokinetic profiles,
especially concerning its serum half-life with an extended
distribution half-life (t;,0a) of only 3-5 min and an elimination
half-life (t28) of 20min.®'?® |n addition, as previously
mentioned, Apo2L.0/Dulanermin mainly induces activation of
TRAIL-R1 and appears to be unable to potently activate
TRAIL-R2.68:69

To address these issues, improved versions of TRAIL have
been engineered to enhance its stability while retaining the
proper trimer structure. The first approach that, interestingly,
even predated the engineering of Apo2L.0/Dulanermin, was
the inclusion of a specific trimerization domain, a modified
leucine zipper motif (LZ-TRAIL)® followed by the use of an
isoleucine zipper (iz-TRAIL)* at the N terminus of the
extracellular domain. The addition of these trimerization motifs
achieves robust stabilization of the TRAIL trimer by specific
interactions between the modified leucine or isoleucine zipper
domains that form stable triple helices. These first high-activity
recombinant forms of TRAIL were significantly more active
than Apo2L.0/Dulanermin, both in vitro and in vivo, and also
exhibited better pharmacokinetic profiles in rodents with an
extended distribution half-life (;,,a) of 1.3 h and an elimination
half-life (t,08) of 4.8h. Most importantly, however, these
proteins showed neither specific toxicity on PHH ex vivo nor
systemic toxicity in vivo in mice.® 42

More recently, Berg et al.'*® developed a new highly stable
version of TRAIL by the incorporation of the tenascin-C (TNC)
oligomerization domain (TNC-TRAIL), which stabilized the
trimeric conformation in a similar fashion to LZ-TRAIL and iz-
TRAIL. Besides, several groups recently developed novel
versions of highly stable TRAIL trimers that build upon a
single-chain TRAIL (scTRAIL) trimer.'**4® Contrarily to
‘classic’ approaches in which TRAIL is expressed from a
monomer-encoding cDNA, scTRAIL is expressed as a single
amino-acid sequence encoding a TRAIL trimer as three
consecutive extracellular TRAIL domains that are fused in a
head-to-tail configuration, inserting a short linker between
each domain. Hence, once correctly folded, scTRAIL already
forms an active TRAIL trimer, reducing the risk of unspecific
aggregation of the monomers. The common feature of these
constructs is their more stable trimerization, which enhances
their pro-apoptotic potential so that they are even able to kill
some of the cancer cell lines that are resistant to the less-
active Apo2L.0/Dulanermin.®3%142=145 |n  addition, these
forms of recombinant TRAIL also exhibit increased in vivo
half-lives, whereas the formation of higher-order, aberrant
protein oligomers that can result in hepatotoxicity and
systemic toxicity®! appears not to occur,8-30:142:144.145
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Another strategy to improve the in vivo performance of
TRAIL is based on covalently linking TRAIL to molecules
known to have favorable pharmacokinetic properties such as
human serum albumin (HSA)'*® or polyethylene glycol (PEG).
PEGylation is a process by which polymer chains of PEG are
added covalently to biomolecules such as peptides, proteins
or antibodies. The resulting PEGylated biomolecules usually
present improved pharmacokinetic properties and, conse-
quently, enhanced therapeutic efficacy.'*”~'*® Hence, PEGy-
lated versions using site-specific N-terminal PEGylation of iz-
TRAIL showed widely improved pharmacokinetic profiles
in vivo and, furthermore, greatly augmented stability and
solubility under physiological conditions.'*®~'** In addition,
PEGylation improved TRAILs efficacy at targeting cancer cells
owing to the enhanced permeability and retention (EPR)
effect, which will be discussed in more detail below.

Targeting TRAIL to cancer cells

An important obstacle when treating primary tumors effectively
with TRAIL is that they are often intrinsically TRAIL-resistant,
or acquire resistance when treated with TRAIL. Several
studies have shown that co-administration of certain che-
motherapeutic drugs can sensitize the cancer cells to TRAIL-
induced apoptosis.'*®~'%° However, chemotherapeutics lack
cancer cell selectivity and cause severe adverse effects by
also targeting normal cells. Thus, this obstacle could be
overcome by improving the specificity of TRAIL for cancer cells
when used in combination with chemotherapeutics or other
sensitizing compounds. Furthermore, targeted delivery of
TRAIL specifically to the tumor would increase the local
concentration and minimize dilution of the drug in circulation.
Mainly two approaches of targeting methods have been
pursued: (i) passive targeting based on the EPR effect and (ii)
active targeting by using antibody fragments or peptides that
target TRAIL to specific tumor-enriched antigens.

Passive targeting: combining TRAIL with nanoparticles.
The nanoparticle (NP)-based systems have emerged as a
promising means to improve drug delivery in vivo.'®%162
Structurally, NPs have a diameter in the range of 50-150 nm
and can be composed of a wide variety of compounds,
including lipids and polymers. These compounds can be
combined with different therapeutic molecules trapped inside
the NPs and/or presented on the NP surface. Independent of
the NP composition, they possess interesting and desirable
general features such as improved pharmacokinetics,
pharmacodynamics and in vivo stability of the therapeutic
molecules encapsulated by them (Figure 2). Another impor-
tant characteristic of NPs is the aforementioned EPR effect.
Depending on the size and surface property of the NP in
question, and given that blood and lymph vessel systems in
tumors are thought to be leaky to macromolecules, NPs
readily spill from capillaries and lymph vessels that vascular-
ize tumor tissue. Consequently, the EPR effect allows the
NPs to better target tumors than the therapeutic molecules
alone.'®®'% The optimal diameter of the NPs to take
advantage of the EPR effect is in the range of 10-150 nm.
Regarding the EPR effect, many anticancer drug-containing
nano-systems such as micelles, microspheres and liposomes
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Figure 2 Main effects of nanoparticle-based formulations of TRAIL. Different
formulations of TRAIL using nanoparticle-based methods have been recently
developed, including liposomes. These experimental approaches show a variety of
advantages that help to improve the therapeutic potential of TRAIL in cancer.
Conjugation with nanoparticles increases the stability of TRAIL therefore increasing
its half-life and allowing a sustained release in the tumor. The so-called enhanced
permeability and retention (EPR) effect allows the nanoparticles to be more specific
targeting tumors than the antitumor molecules alone. This passive targeting may be
improved including different molecules in the nanoparticle composition that
specifically target them to the tumor. Finally, nanoparticles loaded with other drugs
than TRAIL, which specifically sensitize tumor cells to TRAIL and enhance its pro-
apoptotic effect, may have a synergistic effect killing tumor cells

have been developed, and several NP products such as
Doxil (Centocor Ortho Biotech Products, Horsham, PA, USA),
DaunoXome (Diatos, Paris, France) and Genexol-PM
(Samyang, Seoul, Korea) have already been approved for
clinical use or are currently tested in clinical trials.

As summarized in Table 1, a number of TRAIL-containing
NPs are currently being developed. To engineer the NP-core,
different chemical compositions have been used such as
human serum albumin,'3167:168 poly (lactic-co-glycolic) acid
(PLGA) microspheres,'®"152169 3 combination of PEGylated
heparin and poly-L-lysine,'®* magnetic ferric oxide'”® or
liposomes.®”-"1=17® Among them, thanks to their versatility,
liposomes have emerged as the most versatile of these
platforms. Moreover, liposomes can be easily modified size-
and composition-wise depending on the desired physico-
chemical properties. In addition, they represent a safe choice
as liposomes have been widely studied and used in the clinic
as drug carriers, 18018

Concerning the manner in which TRAIL is integrated with
the NPs, there are two different strategies: (i) to encapsulate
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TRAIL inside the particles so that they are released from the
particle in a constant and stable manner;!5'~154.169.173-176
or (i) to attach TRAIL to the surface of the nanoparticles
so that TRAIL gets immobilized, resembling the physio-
logical membrane-bound protein, increasing its bio-
activity.168’170_172’177_179

An additional benefit of both strategies is the possibility to
load NPs with additional drugs that could act in concert
with TRAIL thereby enhancing its pro-apoptotic effect. In fact,
the combination of TRAIL with doxorubicin'®"168.173.174 qp
paclitaxel”® in NPs has already been reported. In all the cases,
the therapeutic effect was greatly enhanced by co-delivery
of the chemotherapeutic agents with TRAIL, whereas no
systemic toxicity was detected in vivo.

Besides the EPR effect, some authors have boosted
the intrinsic tumor-targeting ability of NPs by functionalizing
them with targeting molecules such as single-chain variable
fragments (scFv),'”” transferrin, allowing transferrin-mediated
endocytosis of the NPs,'®® or angiopep-2,'”® a molecule that
specifically targets the low-density lipoprotein receptor-related
protein, which is highly expressed on the blood—-brain barrier
and glioma cells.'® Furthermore, angiopep-2 has recently not
only been used for enhanced delivery across the blood—brain
barrier, but also for targeting brain tumors by the so-called

‘dual targeting effect’.’”®

Active targeting: antigen-restricted activation of TRAIL
receptors. An additional strategy to enhance TRAIL target-
ing is the use of domains or motifs that specifically target
cancer cells or cells of the tumor stroma. Several groups have
developed novel TRAIL constructs that have been fused to
such domains. The resulting fusion proteins are intrinsically
bivalent, maintaining the ability to engage TRAIL-DRs and
simultaneously combining this with the specific targeting of an
antigen expressed on the surface of particular tumor cells or
cells in the tumor microenvironment.

Although antibodies would be an obvious choice to provide
such targeting ability, whole immunoglobulins have a mole-
cular weight of approximately 150 kDa, rendering them
sterically less than ideal to be used as fusion domains.
Single-chain variable-fragment (scFv) domains, by contrast,
bear the advantage of maintaining antigen-specificity of full
immunoglobulins, while presenting a much smaller size
(around 25 kDa) allowing them to be readily fused recombi-
nantly to other biotherapeutic such as TRAIL.'3%8 various
such scFv:TRAIL constructs have been developed (Table 2),
targeting surface antigens known to be highly expressed by
the cells of certain tumor types. These include FAPS®
CD19,"8® CD33,'8 ©D20,'®” MCSP (melanoma-associated
chondroitin sulfate proteoglycan),'®® ErbB2 (ref. 144) or
epidermal growth factor receptor (EGFR).'#%:189=191 A variant
of this experimental approach is the use of the Fn14:TRAIL
fusion protein.'¥%93 |n this case, the protein fused with TRAIL
is not an scFv, but a peptide corresponding to the extracellular
domain of Fn14, the receptor for TWEAK/Apo3L (TNF-related
weak inducer of apoptosis/Apo3L). TWEAK is a multifunc-
tional cytokine involved in many cellular activities including
proliferation, migration, differentiation, apoptosis, angiogen-
esis and inflammation, which is not only expressed by normal
cells but also in tumor tissue (reviewed in ref. 194). An Fn14:
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Table 2 Main formulations of TRAIL fusion proteins
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Fusion protein Target  Main effects Experimental testing Ref.
MBOS4:TRAIL FAP Increased bioactivity Fibrosarcoma cell lines in vitro 69
Active targeting
CD40ed:TRAILed CD40 Increased bioactivity Fibrosarcoma cell lines in vitro 214
Active targeting
scFv425:sTRAIL EGFR Increased drug bioavailability Pharmacokinetic studies in vivo 189
Active targeting Tumor xenograft model (RCC) in vivo
Absence of side effects
Increased antitumor activity Hematologic and solid tumor cell lines in vitro 190
scFvCD19:sTRAIL CD19 Active targeting Hematologic tumor cell lines and B-CLL primary cells in vitro 185
Absence of side effects Tumor xenograft model (B-ALL) in vivo
Increased antitumor activity
scFvCD33:sTRAIL CD33 Active targeting Hematologic tumor cell lines and AML primary cells in vitro 186
Increased antitumor activity
Anti-MCSP:TRAIL MCSP Active targeting Melanoma cell lines and normal primary cells in vitro 188
Absence of side effects Tumor xenograft model (melanoma) in vivo
Increased antitumor activity
Db.earr-sCTRAIL EGFR  Active targeting HCC and CRC cell lines in vitro 145
Absence of side effects Tumor xenograft model (CRC) in vivo
Increased antitumor activity
Anti-CD3:TRAIL CD3 Enhanced T-cell activity Hematologic, solid tumor cell lines and tumor primary cells 196
K12:TRAIL CD7 Increased antitumor activity in vitro
Tumor xenograft model (CRC) in vivo
scFvCD70:TRAILmutRs CD70 Increased bioactivity Hematologic and solid tumor cell lines in vitro 70
Active targeting
scFv:G28-TRAIL CD40 Increased bioactivity Fibrosarcoma cell lines in vitro 198

Active targeting

Induction of DC maturation
MSC.scFvCD20-sTRAIL CD20 Active targeting
Absence of side effects
Increased antitumor activity

CLL1:TRAIL CLL1 Enhanced T-cell activity
Increased antitumor activity
Absence of side effects

RGD:TRAIL Integrins  Active targeting

Increased antitumor activity

scTRAIL: Fc (APG350) — Increased antitumor activity

scFv-EHD2-scTRAIL — Increased antitumor activity

Active targeting
FN14:TRAIL

TWEAK Increased antitumor activity

Absence of side effects

Increased anti-inflammatory effect

Hematologic tumor cell lines and normal primary cells in vitro 187

Tumor xenograft model (NHL) in vivo

Hematologic and solid tumor cell lines in vitro 202

BC and CRC cell lines in vitro 203
Tumor xenograft model (NHL) in vivo
Several cell lines in vitro 209
Tumor xenograft model (CRC) in vivo
Several cell lines in vitro an
Tumor xenograft model (CRC) in vivo
HCC cell lines in vitro 192
Tumor xenograft model (HCC) in vivo

Multiple sclerosis experimental model in vivo 198

Abbreviations: AML, acute myeloid leukemia; B-ALL, B-cell acute lymphoblastic leukemia; BC, breast cancer; B-CLL, B-cell chronic lymphocytic leukemia;
CRC, colorectal carcinoma; DC, dendritic cell; EGFR, epidermal growth factor receptor; HCC, hepatocellular carcinoma; MCSP, melanoma-associated chondroitin
sulfate proteoglycan; MSC, mesenchymal stem cells; NHL, non-Hodgkin’s lymphoma; RCC, renal cell carcinoma; RGD, peptide with the sequence ACDCRGDCFC;

scFv, single-chain variable region.

TRAIL fusion protein that showed increased bioactivity in an
experimental model of multiple sclerosis'®® also showed
enhanced antitumor activity in vitro and in vivo against
hepatocellular carcinoma.'®? This activity relies on the ability
of FN14:TRAIL to interfere with TWEAK-Fn14 signaling in
cancer cells and simultaneously trigger TRAIL-induced
apoptosis. It is worth pointing out that some authors have

constructed such fusion proteins using novel versions of
TRAIL such as TNC-TRAIL and scTRAIL to improve trimer
Stability.7°'144'145’195

An interesting additional variation to this approach, which
has again been developed by several groups independently, is
the targeting of TRAIL not to the surface of tumor cells but to
that of immune cells via specific antigens expressed on their
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surface. In this regard, de Bruyn et al.'®® use TRAIL fusion
proteins with anti-CD3 or anti-CD7 scFv fragments. The aim is
to improve the tumoricidal activity of T cells ex vivo by
expanding their cytotoxic arsenal and to thereby potentially
overcome the shortcomings of conventional adoptive T-cell
therapies in achieving the desired therapeutic effect.'®" 201
With the intention to increase the tumoricidal capacity of
another type of immune cells, a TRAIL fusion protein with
CLL1 (C-type lectin-like molecule-1), has recently been
developed. This fusion protein targets human granulocytes,
attaching TRAIL to their surface. These granulocytes artificially
armed with TRAIL not only increased TRAIL induced
apoptosis but also potentiated antibody-mediated cytotoxicity
of several therapeutic antibodies.?®® In this line, El-Mesery
etal."®® generated a CD40-directed scFv-TRAIL fusion protein
using the above-mentioned TNC-TRAIL, which results in
enhanced TRAIL-mediated apoptosis and robust induction of
CD40-mediated maturation of dendritic cells that, in turn, could
serve to potentiate immune response against tumors. Along
similar lines, Trebing et al.”® developed scFv:lahCD70-TNC-
TRAIL, a fusion protein, which showed strongly enhanced
apoptosis with CD70-restricted activity. In this case, the fusion
protein would act via both, blocking the immunosuppressive
activity of tumor cells expressing CD70 and stimulating their
cell death. Another variation to this theme has been developed
by Cao et al?®® who fused TRAIL to the peptide
ACDCRGDCFC, which has high affinity for a,83 and a,8s
integrins. Thereby, the authors aimed to target blood-forming
capillaries within solid tumors as these highly express the a,3
integrin.2®* Furthermore, a,8; anda,8s integrins are highly
expressed on many tumor cells including on melanoma,?°®
colon,?%® breast®®” and ovarian 2°® cancer cells. The resulting
construct showed specificity for the tumor neovasculature and
enhanced apoptosis-inducing activity, both in vitro and in vivo.
In general, all of the above-described constructs have demon-
strated improved activity over non-fused versions of TRAIL or
‘mock’ versions that were unable to bind the respective
specific surface antigens. Of note, some of these targeted
constructs have been built using TRAIL constructs specific for
TRAIL-R1 or TRAIL-R2, which allows for selective activation to
maximize the efficiency of the apoptosis induction and
minimize possible undesired activation of non-tumoral
TRAIL-DRs.”®

In addition, there has been a recent wave of ‘second
generation’ TRAIL-based constructs, centered on the concept
of TRAIL trimer dimerization via domains that enable this in an
appropriate spatial configuration. The first description of such
a fusion protein (Db.earr-scTRAIL,'*%) used a diabody as
dimerization domain. In this case, the diabody had a dual role
as it both stabilized the structure by acting as dimerization
domain and provided targeting properties by recognizing
EGFR, directing the molecule to EGFR-expressing cells.'** In
a structurally similar manner, Gieffers et al?°° developed a
dimer of TRAIL trimers by using the Fc-portion of human IgG;4
as dimerization domain. In this case, the resulting recombinant
protein lacks a specific targeting domain but, importantly, the
authors showed that its apoptosis-inducing capacity, in
contrast to that of TRAIL-DR-targeting antibodies, was indeed
independent of Fcy receptor expression on proximal cells.?'°
Seifert et al,?'" in turn, developed a new ‘tetravalent’

Cell Death and Differentiation

TRAIL-based scFv-containing formulation that is composed
of two TRAIL trimers and two scFv regions fused together
through the dimerization domain of IgE heavy chain domain 2
(EHD2). Physiologically, this domain acts by connecting the
two heavy chains of an IgE molecule. The scFvs used in this
construct recognize EGFR. Of note, all of these TRAIL-based
constructs have been built as single-chain fusion proteins.
An additional effect of several of these constructs is that they
bind to surface antigens through the N-terminal part of the
protein, while the C-terminal, pro-apoptotic domain of TRAIL,
is exposed, thereby mimicking membrane-bound TRAIL.
Thereby, these constructs also gain the ability to efficiently
cross-link and activate TRAIL-DRs, consequently enhancing
the pro-apoptotic effect. Cell surface antigen-bound TRAIL not
only acts in an autocrine manner, by recognizing an antigen on
a cancer cell and triggering TRAIL-induced apoptosis in that
same cell, but can also act in a paracrine fashion: once the
fusion protein is attached to a surface antigen on one cell, the
TRAIL domain can induce apoptosis in neighboring cells, even
though they may not express the surface antigen, minimizing
the tumor’'s opportunities to evade treatment. However,
whether this effect will always turn out to be beneficial, or
may in certain cases specifically enhance unwanted effects
beyond an acceptable level, remains to be determined.
Another characteristic of these constructs, thought to be
advantageous in most cases, is the interaction with their
specific cell surface receptors/targets which, depending on the
construct in question, can lead to activation or inhibition of
the signals normally transduced by these targets. Thus,
depending on the type of cancer and regarding its phenotype,
targeting of the cancer cell can be rationalized by choosing
a specific antigen expressed by the tumor cells in question.
This tumor antigen can be targeted, not only with directing
purposes but also with the purpose of either activating or
blocking it. Such an activity may synergize with the pro-
apoptotic effect exerted by TRAIL-DR cross-linking via the
TRAIL component of the recombinant protein in question.

Conclusions and perspectives

The ability of TRAIL to specifically kill tumor cells makes this
cytokine a promising antitumor agent. In fact, numerous
clinical trials using TRAIL-based therapies have been
conducted.®® However, the anticancer activities of the
TRAIL-R agonists that have been tested in patients so far
has been limited to disappointing. Moreover, recent research
has demonstrated that TRAIL can induce, by far, more diverse
effects than merely apoptosis, some of which being rather
undesirable in the context of cancer therapy. Hence, it is of
crucial importance to evaluate the different TRAIL-based
therapies and how they differentially affect signaling very
carefully before delivering them to patients. Moreover, the poor
stability of untagged soluble TRAIL in vivo is not helpful with
regard to its pharmacokinetic properties. These problems are
currently being addressed by the development of a plethora
of new formulations and ways of administration of novel
recombinant forms of TRAIL and other TRAIL-R agonists as
explained in this review. Yet, the promising results that have
been obtained in vivo with some of these new formulations of
TRAIL must be further endorsed over the next years in a wider



range of cancer types, and in more complex models, such as
genetically engineered mouse models as well as in tumor
models representing the heterogeneity of human cancers and,
ultimately, in the cancer clinic.
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