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Abstract: Molecular structures of the most prominent chiral
non-racemic hypervalent iodine(I1l) reagents to date have been
elucidated for the first time. The formation of a chirally
induced supramolecular scaffold based on a selective hydro-
gen-bonding arrangement provides an explanation for the
consistently high asymmetric induction with these reagents. As
an exploratory example, their scope as chiral catalysts was
extended to the enantioselective dioxygenation of alkenes. A
series of terminal styrenes are converted into the corresponding
vicinal diacetoxylation products under mild conditions and
provide the proof of principle for a truly intermolecular
asymmetric alkene oxidation under iodine(l/I11) catalysis.

Enantioselective catalysis has been recognized as a core
technology toward the supply of chiral molecular entities with
defined absolute configuration. Different methods have been
devised over past decades and synthetic molecular catalysts
based on transition-metal complexes!!! or small organic
compounds? represent the most advanced concepts in the
field.”) Within the context of small organic catalysts, chiral
hypervalent iodine reagents have enabled the development of
significant advances in catalytic oxidation reactions that do
not rely on common transition metals.*>) Examples include
the ester derivative 17 and the amide derivative 2a,®’]
which has been identified as a particularly successful reagent.

In contrast to the rapidly growing number of successful
examples of chiral molecular iodine(I/IIT) catalysts,>® !
defined structural information on the accurate enantiocontrol
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of these compounds is notably missing. A definite under-
standing of the mode of action of chiral hypervalent iodine
reagents can form the basis to enlarge the differentiation of
prochiral face recognition from the established intramolecu-
lar reaction control to more challenging topics, such as the
asymmetric oxidation of prochiral substrates by intermolec-
ular reaction control, and particularly in terms of catalysis.
Within this context, no definite mechanistic investigation has
so far been reported for the parent iodine(III) reagents 1 and
2a bearing lactic esters and amides as chiral entities
(Figure 1)."12l Regarding the important iodine 2a, structural

I(OAc), Enantioselective oxidation reactions
X0C._0 O._COX  pasedonZa:
\‘/ - Kita spirolactonization(8a..fl
- Oxyamination and diamination of alkenes!®¢!
1: X = OCH,4 - Rearrangement reactions!®
2a: X = NHMes - Umpolung functionalization of silyl enol ethers!®e]

Figure 1. Representative chiral iodine reagents 1 and 2a and success-
ful enantioselective intramolecular reactions with 2a.

information could now be obtained for the derivatives 2b and
2¢, which contain sterically enlarged anilide groups. As
unambiguously determined by X-ray analyses (Figure 2) for
both compounds, the amide NH groups engage in hydrogen
bonding with the acetoxy groups located at the iodine
center.® These hydrogen bonds have the expected values
for NH-O contacts of 2.201 and 2.243 A, and for N-H-O bond
angles of 163.3 and 160.0°/'* and generate two nine-
membered rings.'* 1!

Figure 2. Intramolecular hydrogen-bonding properties of chiral hyper-
valent iodine compounds 2b (Ar=2,4,6-iPr;C¢H,) and 2¢ (Ar=2,6-
iPr,CeHs). All hydrogen atoms except the N-H groups are omitted for
clarity.
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The main stereochemical consequence of this hydrogen
bonding rests in the effective creation of a supramolecular
helical chirality around the central iodine atom.'**¢ This is
best envisioned through the respective top view representa-
tions (Figure 3, top). The chiral helicity is of C, symmetry and
forms with complete diastereoselectivity as demonstrated by
'"H NMR spectroscopy. X-Ray data and circular dichroism
(CD) spectroscopy (Figure 3, bottom) confirm that the helical

circular dichroism [mdeg]

-25 T T T T T "
250 275 300 325 350 375 400
wavelength [nm]

Figure 3. Top: Intramolecular hydrogen-bonding properties of chiral
hypervalent iodine compounds 2b and 2c result in helical chiral
assemblies (all hydrogen atoms except the N-H group are omitted for
clarity). Bottom: CD spectra for compounds 2b (red) and 2c (blue).

chirality is obtained with identical configuration for both 2b
and 2¢ and thus directly originates from the absolute
configuration of the chiral lactamide as the stereoinducing
group. CD and one- and two-dimensional '"H NMR data*¥l
furthermore confirm that the H-bonding persists in solution.
With the demonstration of the effective hydrogen-bonding
motif, the lateral lactamide chains are recognized as a source
of chiral induction for the generation of the supramolecular
helical chirality. It is the helical chirality that is expected to
exercise efficient enantioselection in asymmetric catalytic
oxidation reactions with 2a. In this context, we studied the
requirements to obtain intermolecular enantioselective oxi-
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dation reactions based on using the chiral motif 2 as the
catalyst. While intramolecular reactivity has been widely
explored with reagent 2a,”®! related intermolecular asymmet-
ric transformations have remained without demonstration. In
addition, the general scope of compounds 2 as chiral catalysts
still remains to be explored, since the Kita intramolecular
spirolactonization currently stands out as the single successful
example. b0

In early work on chiral hypervalent iodine reagents Wirth
devised an enantioselective dioxygenation reaction under
stoichiometric conditions,"” which was later extended using
the chiral bislactate derivative 1. Herein, we now provide
the first catalytic enantioselective version based on the use of
hypervalent iodine compounds 2 of the bislactamide motif.
The initial optimization process focused on a suitable reox-
idant, for which peracetic acid was identified.' It is note-
worthy that this oxidant is superior to the commonly
employed mCPBA,"! which promotes epoxidation in the
present case. Our current hypothesis is that owing to its lower
reactivity, peracetic acid does not promote such a background
reaction."™" The iodine(I/11T)-catalyzed diacetoxylation of
styrene 4a was then investigated for several structurally
related aryl iodine(I) catalyst precursors 3. First, the estab-
lished compound 3a was employed. At a catalyst loading of
20 mol %, a reasonable conversion was obtained and the
product 5a was obtained with 84 % ee (Table 1, entry 1). A
similar outcome was obtained for new derivative 3b as the
catalyst precursor to 2b (83 % ee, entry 2). While an attempt
to lower the catalyst loading led to a decreased conversion
(entry 3), the introduction of a 4-methyl group into the central

Table 1: Enantioselective catalytic diacetoxylation of styrenes: Optimi-

zation.
catalyst 3 (x mol %) ?Ac OA
X AcO,H (2 equiv), AcOH, RT ¢
then Ac,0 (2.5 equiv),
pyridine (2.5 equiv)
4 DMAP (0.25 equiv), DCM, RT 5a
En- Catalyst Loading Yield ee

[mol %]  [9%6] [9%]"

r),lal
o | 0]

1 NJK;/O\©/O])LN 3a 20 61 84
H H H

2 iPr

iPrO | OiPr iPr 20 58 83
3 \Q[N’U\,/O i o]/kNjQ/ b 10 43 83
. H H H .
iPr = iPr
j\/ | [e]
o (0]
4 N (;( ])LH ad 10 57 83

10 55 86

iPr iPr
o | o
@NJ\ZO o\ﬁLNQ 3c 109 71 85
7 pr M2 e 59 61 83

t

()}

[a] Yield after purification. [b] Determined by HPLC on chiral stationary
phase after conversion into the free diol. [c] With additional 5 mol % of
TfOH.
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arene core of 2a greatly enhanced the reactivity (57 %
isolated yield of 5a, 83 % ee, entry 4). Further modification of
the aniline substitution led to identification of 3¢ as the most
active and enantioselective catalyst precursor (86% ee,
entry 5). The yield of isolated product could be enhanced by
addition of trifluoromethansulfonic acid (TfOH) as Brgnsted
acidic co-catalyst (entry 6), which resulted in a reasonable
conversion even at a 5 mol % catalyst loading (entry 7).

New aryl iodide 3¢ displays additional advantageous
features. In contrast to other catalyst precursors 3, it is fully
soluble at the start of the reaction and can be fully recovered
afterwards, while compounds 3a, 3b, and 3d suffer degrada-
tion over time. In the same context, the isolated active catalyst
2c¢ has an unprecedentedly high stability in solution and
prolonged life-time in the isolated form.!'* It is further
noteworthy that the enantioselectivity of the catalytic reac-
tion is identical to that from a stoichiometric reaction with
preformed 2 ¢. This result corroborates again the involvement
of hydrogen bonding in the catalytic transformation.!

The optimized conditions proved to be generally appli-
cable, and a total of twenty-four differently substituted
styrenes 4a—x could be converted into the corresponding
dioxygenation products Sa-x in an enantioselective and
completely chemoselective manner (Figure 4). Besides
parent styrene 4a, several para-substituted styrenes 4b—
1 could be cleanly diacetoxylated and the products Sb—
1 were obtained with up to 94 % ee. Likewise, meta-substituted
products Sm—p were obtained with up to 90 % ee, and ortho-
substituents led to diacetoxylation in 86-90% ee (products
5q-s). Higher-substitution pattern was equally tolerated as

iPr iPr
o I 0
N)k:/o o])LN
jpr H2 H e

3¢ (10 mol%) QAc
N X TFOH (5 mol%) x
I// AcO,H (2 equiv), ACOH, RT I// Ohc
R 4 then Ac,0 (2.5 equiv), R 5a-
a-y pyridine (2.5 equiv) y
DMAP (0.25 equiv), DCM, RT
OAc OAc OAc OAc

5b (X = F): 72%, 80%ee 5e: 75%, 86%ee 5f: 63%, 63%ee
5¢ (X = Cl): 81%, 84%ee
5d (X = Br): 76%, 84%ee

5a: 71%, 85%ee

OAc OAc

OAc ? T F
OAc X mm OAc mAc
/@“

MeO,C
5g: 74%, 94%ee 5h (X = Cl): 63%, 88%ee PN

5i (X = NPhth): 7%, 85%ee

5) (X = Ny): 66%, 82%ee

5k (X = OAC) 93% 80%ee

51: 94%, 87%ee 5m (X = CF3): 78%, 86%ee
5n (X = F): 66%, 90%ee

OAc

m@““@ﬁ

50 (R' = Me): 56%, 80%ee  5q (X = F): 77%, 86%ee 5t: 70%, 68%ee 5u: 61%, 73%ee
5p (R'=Ph): 72%, 83%ee  5r (X = Cl): 84%, 90%ee
5s (X = Br): 73%, 90%ee

F OAc F OAc
OA OA
Br © ©

5v: 81%, 82%ee

H
5x: 52%, 5:1d.r.

5w: 57%, 85%ee

Figure 4. Scope of the enantioselective catalytic diacetoxylation of
styrenes.
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demonstrated for products 5t-w. Finally, 3-vinyl estra-1,3,5-
(10)-trien-17-one 4x was converted into the corresponding
diol 5x under catalyst control and with complete chemo-
selectivity."" In view of these results and given the inherent
advantage that hypervalent iodine catalysis does not suffer
from potential product contamination by the presence of
residual transition metal ions, the metal-free catalysis de-
scribed provides reactivity that can complement established
enantioselective transition-metal-based procedures.'¥ The
benign use of peracetic acid as the terminal oxidant adds to
the overall attractiveness of the process since no by-products
other than the solvent acetic acid and water are produced.

The observed results can be rationalized by the underlying
catalytic cycle depicted in Figure 5. At the reaction outset,
peracetic acid oxidizes iodine(I) precursor 3¢ to the active
catalyst 2 ¢. Its established H-bonding motif offers a chance to

HOTf HOAc ®
o (o]
\f 07\, \>_ Oort
At H—-O_ _OH. A (O HL A
N | N J\/
Arl 0. 0.
0@"@%&0 T
: H
2c A /— +HOAc
H,0 Ar
AcOH + HOTY
AcO,H
O
AcO

o | (o]
At J\/O OW)J\ _Ar* oA ‘|’O >>>>> H. N’
N7 N
Ho: H Ar. J\/o \‘/g
. ‘}_/ H

J\\e

AQ OH HO OAc WO ORP

s /o, 2 /
A" 74 A7 - HOAC A g

lAQO AcOe\' 07/
A OAc N Q0-H. A"
2 o -I/ SN
Ar
A .
5 Ar \NJK{O o\r§o
H H
o]

Figure 5. Catalytic cycle.

study the enantioselection in the prochiral alkene recognition.
As explored in detail by Gade and Kang, triflic acid activation
of PhI(OAc), via protonolysis is a prerequisite to accelerate
diacetoxylation reactions.'"”! This points to a different role of
the two acetate groups in 2¢. One engages in hydrogen
bonding for the generation of a cyclic stereochemical arrange-
ment. The second one should be prone to dissociation and
thus to formation of the iodine(III) catalyst state A, which is
no longer of C,-symmetry, but rather C,-symmetry. This
catalyst state with its free coordination site at iodine(III)
engages in the required efficient prochiral face differentiation
of the unsaturated hydrocarbon substrate within a preferential
coordination C. Subsequent nucleophilic attack of acetate to
the exposed re-face establishes the correct S-configured
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benzylic C—O bond formation at intermediate B. Intramo-
lecular nucleophilic addition of the acetate regenerates
iodine(I) catalyst state 3¢ and provides the Woodward
dioxolane intermediate 6,/ which upon aqueous addition
generates the two regioisomeric acetoxy alcohols 7 and 7’ that
can be unambiguously detected in the crude reaction product.
Treatment of this crude mixture with acetic anhydride
furnishes 5 as the uniform product.

In summary, we have uncovered hydrogen bonding as the
significant structural force in chiral hypervalent iodine
reagents 2. Based on this structural insight, we have devel-
oped a first method for an iodine(III)-catalyzed enantiose-
lective vicinal dioxygenation of alkenes under entirely
intermolecular reaction control. The reaction proceeds
under mild conditions and provides the corresponding
oxidation products with up to 94% ee. The successful
intermolecular diacetoxylation reaction using 2c¢ suggests
for the first time that the broad potential of asymmetric
hypervalent iodine catalysis can indeed be realized for
intermolecular reactions. It can be expected that building on
the structure-determining features of hydrogen bonding as
a guiding principle in catalyst development will lead to
additional catalytic asymmetric reactions.
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