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Abstract

Cardiovascular disease is the leading cause of death worldwide. Achieving the next phase of 

potential treatment strategies and better prognostic tools will require a concerted effort from 

interdisciplinary fields. Biomaterials-based cardiac tissue models are revolutionizing the area of 

preclinical research and translational applications. The goal of in vitro cardiac tissue modeling is 

to create physiological functional models of the human myocardium, which is a difficult task due 

to the complex structure and function of the human heart. This review describes the advances 

made in area of in vitro cardiac models using biomaterials and bioinspired platforms. The field has 

progressed extensively in the past decade, and we envision its applications in the areas of drug 

screening, disease modeling, and precision medicine.
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1. Introduction

Drug discovery and development is a challenging road, and current methods to evaluate drug 

safety and efficacy are costly and inefficient. The average time between drug discovery and 

commercialization is 10 - 15 years, with median costs over $5 billion [1]. During preclinical 

and clinical development, cardiotoxicity remains a major cause of failure, with high rates of 

post-approval withdrawal of medicines [2]. Furthermore, effective pre-clinical evaluation of 

drugs is essential for treating cardiovascular diseases affecting 17.5 million people 

worldwide and accounting for 31% of all global deaths in 2012 [3]. However, major barriers 

inhibit current research in human drug screening: experimental in vivo interventions have 

unacceptably high risks for humans enrolled in clinical trials, and non-human animal models 

fail to fully recapitulate human physiology. For example, the resting heart rate in mice is 

tenfold higher than in humans, while the mouse QT interval is one-fourth of a typical human 

[4]. Due to inter-species differences in ion channels, biological pathways, and 

pharmacokinetic properties, animal models do not faithfully predict human cardiotoxicity. 

Thus, human in vitro models of cardiac tissue that are predictive of human drug response 

would be a significant advancement for understanding, studying, and developing new drugs 

and strategies for treating cardiac diseases.

An ideal in vitro cardiac model should accurately recapitulate the physiological or 

pathological conditions of the human heart, including three-dimensional (3D) anisotropic 

tissue structure, orientation of the extracellular matrix (ECM) network, vascularization, and 

circulation (Figure 1). Traditional 2D in vitro systems, although informative [5, 6], cannot 

accurately mimic the complex 3D conditions due to their inability to recapitulate the 

dynamics of the biological and mechanical properties of the in vivo microenvironment [7]. 

The 3D models are characterized by establishment of adhesion complexes and tissue 

polarity, and by changes in cytoskeletal structure and cell volume that are significantly 
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different from those found in cells cultured as monolayers. As a result, the translational 

results in 2D conditions are fundamentally different from those in 3D [8].

Human cardiovascular conditions in vitro can be achieved by developing engineered 

physiologically relevant 3D models, for instance by embedding cells in biomaterial matrices 

or microfabricated devices. For the purpose of in vitro modeling, biomaterials and 

microsystems not only serve as scaffolds for tissue formation, but also provide a highly-

controllable microenvironment that incorporates key niche elements to enable precise 

regulation of cell fate and function [9-11]. Specifically, the complex tissue and organ 

architecture of the heart is maintained by extensive 3D ECM networks, including fibrous 

proteins (e.g. collagen, elastin), adhesive glycoproteins (e.g. laminin, fibronectin) and 

proteoglycans [12]. This ECM network, primarily in the form of perimysial collagen fibers, 

guides the anisotropic alignment of cardiomyocytes (CMs), mechanically confines the cells 

to connect each other, and contributes to stress-strain relationships for the heart [13]. 

Perimysial collagen fibers are comprised of bundles of twisted constituent fibrils (∼ 40 - 50 

nm in diameter), forming fibers that range from ∼ 0.5 - 10 μm in diameter and ∼100-200 

μm in spacing, allowing several CMs to fit in-between[14]. Furthermore, the perimysial 

collagen fibers are arranged parallel with the long axis of cardiac muscle and therefore are 

one of the most significant components of the myocardium that contributes to its non-linear 

passive stiffness in the direction of the cardiac muscle fibers [15]. The perimysial fibers 

interact with the CMs via various mechanotransduction pathways, and ultimately affect 

normal cardiac function. For example, the fibrillar collagen networks register sarcomere Z-

line across the CM membrane, and thereby ensure equal stretching of contiguous cells and 

maintenance of the mechanical continuity between CMs [16]. Given the key role of ECM in 

heart development and mechanical functions, development of an in vitro cardiac model 

requires biomaterials, methods, and systems to host the cells, control the cell-cell and cell-

ECM interactions, and regulate the cell fate and functions.

In this review, we focus on the important role of biomaterials and microsystems used for in 
vitro cardiac models. First, we briefly discuss the cell source used for cardiac tissue models, 

and emphasize human induced pluripotent stem cells (hiPSCs) as the most promising cell 

type for generation of human CMs. Then, we highlight key properties of different in vitro 
models, along with their advantages and limitations for applications such as drug 

cardiotoxicity screening and human heart disease modeling.

2. Cell Sources for Cardiac Tissue Models

In the adult human heart, CMs account for roughly 75% of the heart volume, although they 

represent only about 33% of the total cell number [17, 18]. Therefore, identifying the 

optimal source of beating CMs is the first step in the development of a functioning in vitro 
cardiac model. Early cardiac tissue models depended on either immortalized human cell 

lines or primary cells isolated from multiple species. The immortalized human ventricular 

AC cell line was developed using fusion of primary ventricular CMs with a SC-40 

transformed fibroblast cell line [19]. Primary CMs isolated from embryonic chicken and 

neonatal mice and rats were the next most common cell sources for cardiac models [20-22], 

but increased awareness that animal cell-based models cannot truly recapitulate human 
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physiology has led to the development of more sophisticated cells to build human-like tissue 

models.

The advancement of stem cell biology has spearheaded the development of in vitro cardiac 

models that employ differentiated pluripotent stem and progenitor cells [23]. Originally, 

mesenchymal stem cells (MSCs) were widely used for cardiac tissue models to investigate 

their beneficial effects on damaged cardiac tissues, either through transdifferentiation or 

paracrine signaling [24-26]. However, MSCs suboptimal capability for cardiac 

differentiation has limited the use of these cells in cardiac tissue models.

For better recapitulation of human physiology and pathology, in vitro cardiac models now 

focus on human pluripotent stem cells, including human embryonic stem cells (hESCs) and 

hiPSCs [27, 28] (Table 1). Contracting CMs were first generated from hiPSCs through co-

culture with END2 mouse endoderm-like cells, a methodology restricted by its reliance on 

animal cells [29]. hiPSCs suspended in fetal bovine serum to make 3D aggregates of 

embryoid bodies was later used to generate CMs. Initial protocols produced contracting 

embryoid bodies with only 5%-15% efficiency [30], and subsequent optimization with 

timely addition of growth factors (such as Activin A, BMP4 and FGF) improved this 

efficiency to over 70% [31]. Nowadays, monolayer differentiation, which involves simple, 

serum-free, and scalable protocols, has largely replaced embryoid body formation [32, 33]. 

Meanwhile, Activin A and BMP4 have been replaced by small molecules CHIR99021 and 

IWP4, which leads to greater reliability and higher efficiency [34]. Recently, chemically 

defined method to replace Matrigel-coating with synthesized vitronectin peptide, and “B27” 

with L-ascorbic acid 2-phosphate and recombinant human albumin has been used to 

generate CMs at 85% purity, that can be enriched to 95% with sodium lactate [35]. Based on 

these advances, City of Hope scientists funded by California Institute of Regenerative 

Medicine (CIRM) are currently developing a bag-based bioreactor system for scalable and 

controllable production of Good Manufacturing Practices (GMP)-level hESC-CMs, which 

will remove a key barrier to developing regenerative medicine products, especially for 

cardiac repair requiring for high doses of human CMs [36].

Exciting advances in genome-editing methods by endonuclease (ZFN or TALEN) or 

palindromic repeat (CRISPR) are being introduced to engineer cardiac disease-associated 

gene mutations into hiPSC lines with the same genetic background, which will be 

instrumental for generating libraries of disease-specific CMs for drug testing and disease 

modeling [37, 38]. To work effectively in the area of patient-specific cells and disease 

models, a high degree of collaboration and coordination amongst academic laboratories and 

industry is required. To this end various institutions like CIRM, Cellular Dynamics 

International (CDI), Coriell Institute for Medical Research, Axiogenesis, and Stanford 

University are working cohesively to establish a bank of hiPSCs, which will ensure the 

development of standard operating procedures and practices in order to achieve efficiency, 

consistency, and high throughput [39, 40]. Making this hiPSC bank available to a broader 

base of researchers would strongly support a more thorough understanding of the nature of 

cardiovascular diseases, and the development of cures and stem cell therapies for said 

diseases.
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One key area of research that needs to be addressed prior to full-scale use of iPSCs for 

cardiac drug screening and development is the maturity of the CMs. During heart 

development, cardiac muscle cells undergo a complex series of structural changes that 

ultimately result in their adult phenotype [41]. CM maturation in vivo is also regulated by 

diverse factors, including topographical, electrical, mechanical, biochemical, and cellular 

interaction cues. However, hiPSC-CMs in vitro retain a relatively immature phenotype and 

exhibit relatively small size, reduced electrical excitability, impaired excitation-contraction 

coupling, and incomplete adrenergic sensitivity [42]. This is one of the critical obstacles to 

the successful development of predictive drug and toxicology screens, as well as safe and 

efficient cardiac therapies. Currently, efforts focus on dissecting the external cues (e.g., 

chemical, physical, electrical), deciphering signaling pathways, and harnessing this 

information to accelerate the maturation process [43]. Hereby, engineering methods will 

play a crucial role to stimulate the in vitro processing of hiPSC-CMs maturation by 

providing relevant environmental motifs, such as anisotropic morphology, external electrical 

stimulation, mechanical loading, and extracellular matrices.

3. Cell Micropatterning for 2D CM Alignment

An optimal in vitro model would incorporate the aforementioned hiPSCs into an in vivo-like 

tissue structure while providing researchers with precise control over cell types, ECM 

composition, cell-cell interactions, and microenvironment geometry. In early studies on the 

effect of CM anisotropic morphology, cardiac cells were aligned on a thin collagen surface 

coating that was spread using a cell scraper and polymerized while slowly being poured 

within a slightly tilted dish [44]. Later, microabrasion was employed to create aligned CMs 

with anisotropic sarcomeric structure, by unidirectional abrading polyvinyl chloride (PVC) 

coverslips using lapping papers with different grit sizes [45].

More recently, microfabrication-based patterning techniques (Figure 2) have been used to 

establish in vitro culture models and investigate the fundamental physiological and 

pathological characteristics of CMs. Cell alignment can be controlled by surface topography 

[46-50] or by micromolding with microchannels fabricated from PDMS [51-53]. 

Microcontact printing ECM proteins created cell-adhesive areas of various shapes on cell-

repelling surfaces, using, for instance, laminin onto polyacrylamide thin films [54, 55], 

fibronectin onto alginate [56], laminin onto PDMS [57], or repelling areas on adhesive 

surfaces using chitosan and hyaluronic acid onto PDMS and glass [58, 59]. Significant 

observations in calcium handling, action potentials, and conductional velocities were more 

similar to adult mouse myocardium in aligned CMs as compared to those grown in randomly 

oriented cultures [60, 61]. Monolayer of aligned neonatal rat CMs created by microcontact-

printing method was found to undergo fibrosis after activation of TGF-β signaling pathway 

and reduce electrical conduction due to the mechanical interactions between myofibroblasts 

and CMs [62].

Micropatterning hiPSC-derived CMs (hiPSC-CMs) by microcontact printing collagen onto 

polyacrylamide has been used to increase the maturity level of hiPSC-CMs with optimized 

culture media [63]. A similar microcontact printing approach with laminin was used to 
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generate hESC-CM microarrays for functional analysis and drug screening, assessing the 

effects of treatment with H2O2 on CM viability and contractility [64].

Micropatterning techniques also enable precise control over the shape and size of cell 

colonies and are regularly used to generate uniform embryoid bodies (EBs) for studies of 

embryogenesis and cardiomyogenesis. Contained in poly(ethylene glycol) (PEG) hydrogel 

microwells, mouse ESCs formed homogeneous EBs of different sizes. The size of the EBs 

modulated differential expression of WNT5a and WNT11, leading to higher CM 

differentiation in large EBs, compared to higher endothelial differentiation in small EBs 

[65]. The size of 3D polyurethane microwells was also found to modulate cell-cell contact 

and canonical Wnt/β-catenin signaling in human ESCs, resulting in higher CM 

differentiation in larger wells [66, 67]. A more extensive study of microwells in silicone 

rubber sheets fabricated via laser cutting revealed that cell patterning resulted in 

homogeneous expression of pluripotent markers in hiPSCs and improved yield and 

reproducibility of cardiac differentiation [68]. Studies on the effects of patterning sizes on 

embryogenesis and cardiogenesis were also conducted by microcontact printing Matrigel to 

generate uniform EBs. Patterned EBs revealed that the ratio of Gata6 (endoderm-associated 

marker) to Pax6 (neural-associated marker) expression increased with decreasing colony 

size. Larger EBs with endoderm-biased (high Gata6/Pax6) gene expression at early stages 

exhibited higher mesoderm and cardiac induction[69]. This approach was further used for 

high-throughput analysis of cell fate determination and endogenous signaling pathway 

activation and differentiation bias [70].

Recently, researchers found that the geometric confinement from the micropatterned 

substrate was able to trigger self-organization of hESCs, which recapitulated spatial cell fate 

patterning during early embryonic development. In response to BMP4, colonies 

reproducibly differentiated to an outer trophectoderm-like ring, an inner ectodermal circle, 

and a ring of mesendoderm expressing primitive-streak markers in between [71]. Synergism 

of biochemical cues and geometric confinement on micropatterned hiPSCs can induce self-

organizing lineage specification and creation of a 3D beating human cardiac microchamber, 

which resembles the developing primitive human heart. These in vitro cardiac 

microchambers were used to screen drugs likely to generate cardiac malformations during 

development. For example, applying thalidomide during the cardiac differentiation not only 

reduced differentiation efficiency, but also significantly damaged the formation of cardiac 

microchambers with smaller size, lower contractility, and decreased beat rates compared to 

the control [72].

Although micropatterning methods can confine colony geometry, regulate cell morphology 

and functions, and support high-throughput analysis, these 2D culture platforms lack the full 

architecture and functional properties of 3D human tissues and organs, and thus are of 

limited use for cardiac research. These 2D results have been seen as the first step towards 

engineering cardiac models, which can be used as templates for 3D tissue structure. Ongoing 

2D research would focus on single-cell micropatterning and analysis, which can provide 

insight on cellular machinery, characterize the heterogeneity of cell population, and enable 

high-throughput screening for single-cell response to different environmental factors. 

Compared to CM alignment for mimicking heart muscle tissue, single CM micropatterning 
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is extensively involved in exploring myofibrillogenesis and its relationship with extracellular 

factors. By microcontact printing ECM protein on the coverslip to shape single CM into the 

predesigned patterns, researchers found that not only cell shape was defined but also the 

cytoskeleton was under reorganization into the predicted architecture [73]. It was noticed 

that the spatial configuration of ECM played a key role in regulating the other three factors: 

cell shape [20], sarcomere orientation [74], and nuclear morphology [75].

4. Biomaterials Used to Generate 3D Cardiac Models

Engineering a 3D cardiac tissue with physiologically relevant microenvironment and cell 

morphology presents a significant challenge for in vitro cardiac modeling. Biomaterials have 

played a major role in creating 3D tissue models, since they not only support cell attachment 

and alignment, but also transmit load, provide physiologically relevant stiffness, and ideally 

can be degraded and replaced over time by cell-secreted ECM proteins. Several 

representative natural and synthetic biomaterials-based engineered heart tissue (EHT) 

systems are shown in Figure 3. We have classified theses as either hydrogel based or fibrous 

cardiac models, each is discussed in greater detail below.

4.1 Natural hydrogel-based cardiac models

Hydrogels consisting of two naturally occurring proteins, collagen and fibrin, have been 

widely used to generate EHT. Matrigel was often used as a supplemental material to increase 

cell viability and attachment due to its various growth factors and matrix components. The 

first EHT consisted of a 3D scaffold of collagen I with embryonic chick CMs [76]. Later, 

they were further developed into ring structures with neonatal rat CMs [77], which could be 

stacked and implanted for successful improvement of the function of infarcted rat heart [78]. 

Currently, EHTs are primarily designed in a two-post configuration, allowing for 

characterization of contraction forces. Parallel EHT arrays consisting of a mixture of 

fibrinogen, Matrigel, thrombin, and neonatal rat CMs [79] or hESC-CMs [80], on a silicone 

post rack casted from Teflon molds, were used for preliminary drug screening. 

Proarrhythmic compounds chromanol and erythromycin was shown to affect EHT 

repolarization inhibition, and the cardiotoxic drug doxorubicin affected EHT force 

generation in a time- and dose-dependent manner [79]. Isoprenaline and carbachol were 

found to affect the spontaneous contractile rate. Repolarization was inhibited by E-4031 (3 

nM IC50), procainamide (100 μM IC50), sertindole (10 nM IC50), quinidine (1000 nM IC50), 

and cisapride (30 nM IC50). [80].

EHTs of collagen I and fibrinogen were also generated on microfabricated devices with 

micron-scale standing posts, and researchers found that the matrix composition affected the 

dynamic and static contractility of the cardiac tissues [81]. Using these micro-EHTs, 

researchers were able to model dilated cardiomyopathy caused by titin mutation, and 

demonstrated that 3D titin-mutant EHTs exhibited lower contraction forces compared to WT 

EHTs, such difference in contractile function was not possible to be detected by single-cell 

assays [82]. This configuration was further employed to generate EHTs based on a mixture 

of collagen I, Matrigel, and hESC-CMs for preclinical drug screening and gene transfer. The 

610 nM IC50 value generated for verapamil in these EHTs surpassed the 160 nM IC50 for 
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traditional iPSC cells in 2D culture, indicating better recapitulation of human physiology 

compared to a 2D culture system. However, an insufficient response to isoproterenol 

suggested cardiac tissue immaturity [83]. A multi-post configuration with collagen I and 

Matrigel was used to design and formulate cardiac microtissues using hiPSC-CMs, and 

researchers found that tissue structure and non-CM population played important roles in 

tissue integrity and maturation [84]. This multi-post platform was further applied to establish 

a tachycardiac model of arrhythmogenesis for in vitro patient-specific disease modeling.

The 3D cardiac tissue structure was also created using fibrin-based hydrogel matrix 

generated by soft lithography technique with controllable size and architecture; these EHTs 

demonstrated increased spontaneous beat rate and twitch amplitude upon exposure to 

isoproterenol, with an EC50 of 95 nM falling within the reported 30-160 nM range for adult 

human ventricular tissue. CMs differentiated from ESCs and from cardiac progenitor cells 

(CPCs) were seeded into this engineered hydrogel to yield highly aligned CMs and robust 

intercellular coupling with rapid action potential conduction (22–25 cm/s) and significant 

contractile forces (up to 2 mN) [85, 86].

In all post-based in vitro cardiac microtissues, various natural biomaterials (e.g. collagen I, 

fibrin, Matrigel) served as an initial scaffold and ECM to support cell attachment, whereas 

the posts stabilized the developing tissue as the cells condensed and remodeled the scaffold, 

which had the effect of aligning in 3D the encapsulated CMs. The flexible PDMS posts 

additionally served as the sensor enabling the measurement of contraction force generated 

by the beating CMs. These contractile forces are a key output of EHTs and are coupled with 

CM electrophysiology and hypertrophy within EHTs; however, these forces are highly 

dependent on the biomaterial composition, making it difficult to compare drug responses 

among different EHTs developed by different research groups. A high degree of natural 

material variability is of major concern in efforts to establish standardized assays for drug 

screening with the requirements of consistency, reproducibility, and high-throughput 

capability. Such material variability will affect tissue formation and cellular responses, 

which will eventually lead to the variation of functional readout, such as contractile force 

measured by the posts.

4.2 Synthetic fibrous cardiac models

Synthetic biomaterials provide an attractive alternative to natural materials, as researchers 

can control the entire synthesis process as well as the materials' mechanical properties, 

topography, and structure. A number of synthetic polymers have also been used to create 3D 

cardiac scaffolds for either in vitro models or implantable patches to repair and regenerate 

the infarcted tissue. Key requirements for synthetic scaffolds are that they recapitulate the 

native 3D hierarchical fibrillar structure, possess biomimetic surface properties, and 

demonstrate mechanical integrity. The most frequently used synthetic polymers for cardiac 

tissue engineering are polyurethane, poly e-caprolactone (PCL), polylactic acid (PLA), 

polyglycolic acid (PGA), and their copolymers. One example of synthetic material-based 

cardiac constructs were generated with neonatal rat CMs and poly(glycerol sebacate) (PGS) 

and maintained in a bioreactor with simultaneous culture medium perfusion and electrical 
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conditioning, which led to enhanced organization and functionality of engineered cardiac 

tissue [87].

Cell alignment can be obtained with electrospun nanofiber-based scaffolds, which provide 

flexible matrices and topographic properties offering support and guidance for the CMs. 

CMs organized into anisotropic cardiac tissue on aligned PCL/gelatin composite electrospun 

nanofibrous scaffolds to structurally mimic the oriented ECM in myocardium [88]. The 

orientation and density of electrospun polymethylglutarimide (PMGI) nanofibers defined the 

overall architecture of the cardiac tissue, which was optimized for best alignment with 30-50 

fibers/mm and an average distance between fibers of under 30 μm [89]. An aligned fibrous 

mesh of electrospun polyester blend, poly(3–hydroxybutyrate-co-3-hydroxyvalerate) 

(PHBV), P(L-D,L)LA, and poly(glycerol sebacate) (PGS) was shown to enhance 

cardiomyogenic differentiation of human umbilical cord mesenchymal stem cells [90]. 

Similarly, rotary jet spinning was used to fabricate highly aligned nanofiber constructs from 

a blend of collagen, gelatin, and PCL polymer, which promotes better sarcomere formation 

in CMs [91].

Electrospun 3D scaffolds with aligned nanofibers using synthetic polymers successfully 

mimic the structure and orientation of native ECM in the myocardium and help CMs self-

organize with anisotropic structure. However, the micron scale porosity of these scaffolds 

limits cell infiltration into the matrix and thereby the creation of a 3D tissue. As such, the 

scaffolds are 3D in nature, but the tissue is really a 2D structure similar to those created on 

micropatterned surfaces. To address this limitation, a highly defined scaffold structure was 

fabricated by two-photon initiated polymerization (TPIP) with unprecedented control over a 

wide range of matrix features. A human cardiac disease model was created by seeding 

hiPSC-CMs, with long QT syndrome type 3 (LQT3), on the TPIP-fabricated synthetic 

filamentous scaffolds. Tailoring the mechanical properties of the scaffolds modulated the 

contractility of residing hiPSC-CMs and, more importantly, recapitulated the abnormal 

contractility of long QT syndrome. Treatment with caffeine increased the spontaneous 

contractile rate and maximum contractile velocity and high doses of caffeine and nifedipine 

both caused cessation of beating. In contrast, treatment with E-4031 indicated irregular 

beating patterns, and propranolol induced significant uncoordinated beating, suggestive of 

cardiac arrhythmias, in a dose-dependent manner [92].

A collagen-based cardiac tissue model, termed ‘biowire’, combined architectural and 

electrical cues to generate a microenvironment conducive to maturation of hiPSC-derived 

cardiac tissues [93]. The hiPSC-CMs were seeded with collagen type I into a 

microfabricated well and subjected to electrical stimulation with a progressive increase in 

frequency. Biowires submitted to electrical stimulation had markedly increased myofibril 

ultrastructural organization, elevated conduction velocity, and improved both 

electrophysiological and Ca2+ handling properties compared to non-stimulated controls. 

These changes suggested enhanced CM maturation that depended on the stimulation rate. 

The biowire maturation represented an intermediate phenotype as CMs undergo maturation 

from the embryonic state, as evidenced by low membrane conductance. The use of electrical 

stimulation in conjunction with stretch as a mimic of cardiac load, concurrently or 
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sequentially, might be required to induce terminal differentiation and maturation in hiPSC-

CMs [94, 95].

These findings collectively suggest that 3D tissue engineered models with defined cellular 

microenvironments hold great promise for high-content drug screening and cardiotoxicity 

testing. The integration of biomaterials with existing iPSC-based disease models could better 

recapitulate disease pathology and may represent superior scalability and flexibility for 

creating large numbers of personalized models to meet diverse and urgent patient needs.

5. Microdevices for 3D Cardiac Models

Moving away from scaffold-based cardiac models, highly miniaturized and integrated 

microphysiological systems are currently being developed as “heart-on-a-chip” technology 

to provide more controlled 3D microenvironments, with enhanced multiple functionalities 

and increased throughput. Such microphysiological systems (Figure 4) combined with 

hiPSC technology are expected to not only better predict on toxicity and efficacy of potential 

drugs in human physiologically relevant conditions, but also provide a more in-depth 

understanding of human cardiac disease in complex and heterogeneous microenvironments.

An engineered anisotropic ventricular myocardium was first developed by micropatterning 

neonatal rat CMs on poly(N-isopropylacrylamide) (PIPAAm)/PDMS-based thin elastomeric 

film, which can simultaneously measure the contractile function, quantify the electrical 

propagation, and evaluate cytoskeletal architecture in cardiac tissues during pharmacological 

interventions. A dose-dependent increase in spontaneous beat rate and stress was reported in 

response to epinephrine. [96]. This microsystem was further incorporated with fluidic 

control for drug washout, a heating element for temperature control, and embedded 

electrodes for electrical field stimulation [97]. This system was not only used to characterize 

the cardiac tissue derived from various cell types (primary neonatal mouse CMs, mouse 

iPSC-CMs, and human iPSC-CMs) [98], but also to model maladaptive cardiac hypertrophy 

[99] and patient-specific mitochondrial cardiomyopathy, specifically, the Barth Syndrome 

(BTHS) - a mitochondrial disorder caused by mutation of the gene encoding tafazzin (TAZ) 

[100]. To study the pathophysiology underlying BTHS the group generated hiPSC-CMs 

from two patients with BTHS and discovered metabolic, structural and functional 

abnormalities associated with TAZ mutation. This elegant study provided new insights into 

the pathogenesis of Barth syndrome, and pointed to a new treatment strategy for BTHS.

For improved modeling specific types of cardiac disease, unique platforms should be 

designed to mimic the pathological microenvironment occurring during the disease 

progression. A paper-based culture system was developed with multiple layers of paper-

containing cells, suspended in hydrogels, stacked to form a layered 3D model of a cardiac 

tissue. Mass transport of oxygen and glucose into this 3D system was modulated to induce 

an ischemic environment in the bottom layers of the stack. This in vitro cardiac model 

mechanistically studied cellular motility and viability, and recapitulated the cellular 

interactions and gradients of molecules in the heart under ischemia. However, the 

cardiospheres in the stacked papers lacked the aligned structure to mimic the in vivo tissue 

structure. Moreover, this system currently makes it difficult to determine the concentration 
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of small molecules (e.g., oxygen, glucose, or cytokines) in situ and to measure the 

contractility of CMs without complex optics [101].

To allow accurate prediction of drug cardiotoxicity, a microfluidic-based microphysiological 

system was designed to recapitulate a minimal organoid of the human myocardium [102]. 

Pharmacological studies on this system with verapamil (950 nM IC50), isoproterenol (315 

nM EC50), metoprolol (244 μM IC50), and E-4031 (392 nM IC50) predicted a higher safety 

margin and had better concordance with tissue-scale values and clinical observations, 

compared to those in cellular-scale studies and large-scale animals. The human cardiac 

microphysiological system was proposed to complement animal models, and in the future 

may have the potential to replace animal studies, which often are expensive, unethical, and 

unable to accurately predict the drug's actual effect.

Since the discovery of Moore's law semiconductor industry has come a long way and the 

development of new microfabrication techniques has equipped the bioengineering 

community with tools, which can be employed for basic and translational applications. 

Microengineered in vitro models with multiple readouts have a great potential to better 

mimic the in vivo physiology and provide a deeper understanding of the physiological events 

that characterize cardiac development and function. These systems provide fine control over 

fluid flow creating microcirculation mimicking the in vivo transport; massive parallelization 

for high content readouts; miniaturization of large systems for convenient operation and 

reduction of reagent use leading to lower operational costs; and unprecedented control of 

system architecture and dimensions at the biological scale (nm to μm). We envision the use 

of microtechnologies coupled with hiPSC biology to revolutionize the areas of drug 

screening, disease modeling, and personalized medicine.

6. Perspective and Conclusions

The heart is a powerful, complex organ that has intrigued both artists and scientists for 

millennia. In vitro cardiac tissue models present great opportunities for regenerative 

medicine, drug screening, and disease modeling. The opportunities, however, coincide with 

enormous challenges due to the complexity of cardiac structure and function. A 

standardized, reproducible, and scalable process for differentiating hiPSCs to CMs is 

required for consistent cell quality. Recent developments in the cardiogenic differentiation 

open the possibility of obtaining such human CMs in the laboratory [34, 35].

The immaturity of hiPSC-CMs complicates the cells' adoption as a reliable readout for 

translational applications. Such immature embryonic or neonatal-like CMs cannot compare 

morphologically with large and stiff ventricular CMs in the adult human heart [103]. Thus, 

cardiac tissues constructed from hiPSC-CMs have significantly lower field potentials and 

contraction forces than adult ventricular tissue, so at this point cannot be considered an exact 

in vitro model of mature myocardium. It has been suggested that tissue-engineering methods 

would necessitate the maturation of hiPSC-CMs in a physiologically mimicked 

microenvironment [63, 86, 93]. This suggests that genetic and environmental factors interact 

and lead to CM maturation, though the mechanism and process is not fully understood.
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We summarize the current in vitro cardiac tissue models, along with their advantages and 

limitations for applications, such as drug cardiotoxicity screening and human heart disease 

modeling (Table 2). An ideal in vitro cardiac tissue model should be physiologically relevant 

with multiple biological, mechanical, and electrical readouts, ensuring different functional 

endpoints for a particular application. Appropriate biomaterials used for the cardiac tissue 

models need to be chosen carefully according to the specific applications. For example, 

microsystems with conventional PDMS as a substrate result in drug stability problems and 

unpredictable device performance, due to its absorption and retention of highly hydrophobic 

compounds [104, 105]. Acceptance of these models will require automation, robustness, and 

easy integration into the workflow at pharmaceutical companies. Specifically for drug 

development and testing, the microfluidic-based system with standardized fabrication and 

process holds great promise on high-content screening with electrical and mechanical 

measurement and integration with multiple organs to achieve “human on a chip.”

A more futuristic application is envisioned in the area of precision medicine, an emerging 

approach for disease treatment and prevention that takes into account individual variability 

in genes, environment, and lifestyle for each person [106, 107]. The promise of precision 

medicine for cancer therapeutics is already being realized with the recent introduction of 

several targeted therapies, some with companion diagnostic tests that identify patients most 

likely to benefit from treatment [108]. Moving forward, we hope to see physiologically 

functional in vitro cardiac models of individual- and disease-specific hiPSCs on chips, 

which can be termed as “patient on a chip”. This approach will help to diagnose and design 

better treatment strategy for individual patients. Success, however, will depend on how 

effectively and how efficiently engineering and biology can be integrated to create such 

systems.
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Figure 1. 
Overview of in vitro cardiac tissue model. New in vitro biomaterial-based cardiac tissue 

models have the potential to be used for fundamental research and translational applications. 

In particular, the areas of drug discovery, disease modeling, and precision medicine could 

benefit immensely from these emerging technologies.
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Figure 2. 
Micropatterned 2D cardiac models. Topographical alignment of CMs with (A) 

microfabricated nanostructured surface [50]; (B) prestressed thermoplastic shrink film with 

tunable multi-scaled wrinkles [49]; and (C) microcontact-printed patterns of pattern CMs 

into (D) aligned stripes to mimic adult cardiac tissue structure [55] and (E) circular colonies 

for high-throughput screening [64]. (F) Using oxygen plasma to etch PEG surfaces under a 

PDMS stencil protection allows micropatterning hiPSCs and determining stem cell fate 

during cardiac differentiation [72].
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Figure 3. 
Biomaterial-based 3D cardiac models. (A) Engineered heart mini-tissues (millimeter scale) 

were made from fibrin and hiPSCs for implantation [78] and drug-screening purpose [79]. 

(B) Engineered heart micro-tissue (micron scale) made from collagen were used to model 

the dilated cardiomyopathy caused by titin mutation [82]. (C) Fibrin-based cardiac tissue 

patch was generated by soft lithography with controllable size and architecture and its drug 

response to isoproterenol [85]. (D) A biowires platform combining architectural and 

electrical cues generated a microenvironment conducive to the maturation of hiPSC-derived 

cardiac tissues [95]. (E) Electrospun nanofiber scaffolds were made for creating the 

continuous anisotropic cardiac tissue [89]. (F) Aligned nanofiber scaffolds made by rotary 

jet spinning promoted better sarcomere formation in CMs [91]. (G) High-defined 

filamentous scaffolds made by two-photon initiated polymerization were used to create an 

aligned hiPSC-CMs-based cardiac model for drug screening [92].
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Figure 4. 
Microdevice-based 3D cardiac models. (A) PIPAAm-based ‘heart-on-chip’ microsystem 

[97] can measure the deformation of the elastomeric thin film to characterize the 

contractility of cardiac tissue derived from various cell types and assess the drug response to 

isoproterenol [98]. (B) A stacked-paper culture system containing CMs was used to mimic 

the pathological microenvironment occurring during cardiac ischemia [101]. (C) A 

microfluidic-based microphysiological system was designed to recapitulate a minimal 

organoid of the human myocardium with highly aligned tissue architecture and anisotropic 

beating behavior, allowing for accurate prediction of drug cardiotoxicity [102].
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Table 1

Generation of cardiomyocytes from human pluripotent stem cells.

Methods Media Yield Disadvantage

Feeder Layer Serum-based media Mouse END-2 cells [29] 35% Low yield
Serum media
Requirement of mouse feeder cells

Embryoid Bodies Serum-based media [30] 5-15% Low yield
Serum media

RPMI+B27 supplement ActivinA + BMP4 [31] 60% Medium yield
Requirement of EB formation
Batch variability of growth factors
Chemical undefined “B27”

Bioreactor suspension culture [36] RPMI+B27 supplement 
Small molecules

90% Chemical undefined “B27”

Monolayer RPMI+B27 supplement ActivinA + BMP4 [33] 35% Low yield
Batch variability of growth factors
Chemical undefined “B27”

RPMI+B27 supplement Matrigel Sandwich ActivinA + 
BMP4 [32]

90% Batch variability of Matrigel and growth factors
Chemical undefined “B27”

RPMI+B27 supplement Small molecules [34] 90% Chemical undefined “B27”

RPMI + human albumin L-ascorbic acid 2-phosphate (AA 2-
P) Small molecules [35]

85%

Adv Drug Deliv Rev. Author manuscript; available in PMC 2017 January 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mathur et al. Page 24

Ta
b

le
 2

A
na

ly
si

s 
of

 in
 v

itr
o 

ca
rd

ia
c 

tis
su

e 
m

od
el

s 
an

d 
th

e 
co

rr
es

po
nd

in
g 

m
ec

ha
ni

ca
l, 

el
ec

tr
op

hy
si

ol
og

ic
al

, a
nd

 b
io

lo
gi

ca
l o

ut
co

m
es

.

C
ha

ra
ct

er
is

ti
cs

O
ut

co
m

es

P
la

tf
or

m
C

el
l T

yp
e

M
at

er
ia

ls
C

oa
ti

ng
M

ec
ha

ni
ca

l
B

ea
t 

R
at

e 
(b

pm
)

B
io

lo
gi

ca
l

M
ic

ro
pa

tt
er

ni
ng

Su
rf

ac
e 

to
po

gr
ap

hy

nr
C

M
PV

C
 c

ov
er

 s
lip

s
Fi

br
on

ec
tin

 [
45

]
*

+

nr
C

M
PD

M
S

L
am

in
in

 [
46

]
*

++

nr
C

M
Po

ly
ur

et
ha

ne
, p

ol
ys

ty
re

ne
[4

7]
15

-5
0

+

nm
C

M
PD

M
S

Fi
br

on
ec

tin
, l

am
in

in
, 

co
lla

ge
n 

I 
[4

8]
*

++

M
ic

ro
co

nt
ac

t p
ri

nt
in

g

nr
C

M
Po

ly
ac

ry
la

m
id

e
L

am
in

in
, M

at
ri

ge
l [

54
]

Y
ou

ng
's

 m
od

ul
us

 
5-

35
 k

Pa
*

++

nr
C

M
A

lg
in

at
e

Fi
br

on
ec

tin
 [

56
]

Y
ou

ng
's

 m
od

ul
us

 
57

 k
Pa

60
-2

40
 (

pa
ci

ng
)

++

nr
C

M
PD

M
S,

 S
tr

et
ch

 d
ev

ic
e

C
ol

la
ge

n 
[5

7]
*

+

nr
C

M
Po

ly
st

yr
en

e
C

hi
to

sa
n 

[5
8]

*
++

nr
C

M
PD

M
S

H
ya

lu
ro

ni
c 

ac
id

, 
fi

br
on

ec
tin

 [
59

]
60

-1
00

+

nm
C

M
G

la
ss

, p
ho

to
re

si
st

[6
0]

*
++

hE
SC

-C
M

, h
iP

SC
-C

M
Po

ly
ac

ry
la

m
id

e
G

el
at

in
 [

63
]

C
on

tr
ac

til
e 

st
re

ss
 

0.
2-

0.
5 

m
N

/m
m

2
60

-1
80

 (
pa

ci
ng

)
++

hE
SC

-C
M

Po
ly

ac
ry

la
m

id
e

L
am

in
in

 [
64

]
E

la
st

ic
 m

od
ul

us
 

15
-3

5 
kP

a
50

++

M
ic

ro
fa

br
ic

at
io

n

M
ic

ro
po

st
s

hE
SC

-C
M

, n
rC

M
Si

lic
on

e 
po

st
 r

ac
ks

Fi
br

in
, M

at
ri

ge
l [

80
]

C
on

tr
ac

til
e 

fo
rc

e 
10

0-
30

0 
μN

30
0

++

nr
C

M
 h

iP
SC

-C
M

PD
M

S
C

ol
la

ge
n,

 f
ib

ri
no

ge
n 

[8
1,

 
82

]
C

on
tr

ac
til

e 
fo

rc
e 

2-
6 

μN
33

-6
0

++

hE
SC

-C
M

PD
M

S 
po

st
s

C
ol

la
ge

n,
 M

at
ri

ge
l [

83
]

C
on

tr
ac

til
e 

fo
rc

e 
0.

3 
m

N
70

++

hE
SC

-C
M

, n
rC

M
PD

M
S 

po
st

s
C

ol
la

ge
n,

 M
at

ri
ge

l [
84

]
*

++

hE
SC

-C
M

PD
M

S 
po

st
s

Fi
br

in
 [

85
]

C
on

tr
ac

til
e 

fo
rc

e 
2 

m
N

*
++

hE
SC

-C
M

PD
M

S 
po

st
s,

 p
at

ch
Fi

br
in

, M
at

ri
ge

l [
86

]
C

on
tr

ac
til

e 
fo

rc
e 

3 
m

N
60

-1
80

 (
pa

ci
ng

)
++

Pe
rf

us
io

n 
B

io
re

ac
to

r
nr

C
M

Po
ly

(g
ly

ce
ro

l s
eb

ac
at

e)
, c

ha
nn

el
s

L
am

in
in

E
la

st
ic

 m
od

ul
us

 
34

.5
5±

1.
26

 k
Pa

, 
18

0 
(p

ac
in

g)
++

Adv Drug Deliv Rev. Author manuscript; available in PMC 2017 January 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mathur et al. Page 25

C
ha

ra
ct

er
is

ti
cs

O
ut

co
m

es

P
la

tf
or

m
C

el
l T

yp
e

M
at

er
ia

ls
C

oa
ti

ng
M

ec
ha

ni
ca

l
B

ea
t 

R
at

e 
(b

pm
)

B
io

lo
gi

ca
l

Po
re

 s
iz

e 
75

-1
50

 
μm

B
io

w
ir

es

hE
SC

-C
M

PD
M

S
C

ol
la

ge
n 

[9
3,

 9
4]

C
on

du
ct

io
n 

ve
lo

ci
ty

 1
1-

16
 

cm
/s

, Y
ou

ng
's

 
m

od
ul

us
 1

-6
 k

Pa

60
-3

60
 (

pa
ci

ng
)

++

Tw
o-

ph
ot

on
 p

ol
ym

er
iz

at
io

n

hi
PS

C
-C

M
, L

on
g 

Q
T

3 
sy

nd
ro

m
e

Fi
la

m
en

to
us

 m
at

ri
x

Fi
br

on
ec

tin
 [

92
]

M
ax

im
al

 
co

nt
ra

ct
io

n 
ve

lo
ci

ty
 1

5-
25

 
μm

/s

90
++

S 
sy

st

nr
C

M
, h

E
SC

-C
M

, 
hi

PS
C

-C
M

, B
ar

th
 

sy
nd

ro
m

e

PD
M

S,
 P

IP
A

A
m

Fi
br

on
ec

tin
 G

el
at

in
 [

96
, 

97
, 9

9,
10

0]
Y

ou
ng

's
 m

od
ul

us
 

1.
52

 M
Pa

, 
Sy

st
ol

ic
 s

tr
es

s 
15

-2
0 

kP
a,

 
D

ia
st

ol
ic

 s
tr

es
s 

8.
0 

kP
a

12
0 

(p
ac

in
g)

++

hi
PS

C
-C

M
PD

M
S

Fi
br

on
ec

tin
 [

10
2]

A
ve

ra
ge

 
co

nt
ra

ct
io

n 
ve

lo
ci

ty
 3

 μ
m

/s

55
 -

 8
0

++

nr
C

M
 N

eo
na

ta
l r

at
 C

M
s

nm
C

M
 N

eo
na

ta
l m

ou
se

 C
M

s
hE

SC
-C

M
 H

um
an

 e
m

br
yo

ni
c 

st
em

 c
el

l-
de

ri
ve

d 
C

M
s

hi
PS

C
-C

M
 H

um
an

 in
du

ce
d 

pl
ur

ip
ot

en
t s

te
m

 c
el

l-
de

ri
ve

d 
C

M
s

B
ea

t r
at

e 
B

ea
t p

er
 m

in
ut

e 
(B

PM
);

* S
po

nt
an

eo
us

 c
on

tr
ac

tio
ns

 r
ep

or
te

d 
w

ith
ou

t b
ea

t r
at

e

+ I
nd

ic
at

io
ns

 o
f 

C
M

s 
ar

e 
lim

ite
d 

to
: c

el
l a

lig
nm

en
t a

nd
 e

lo
ng

at
io

n,
 m

or
ph

ol
og

ic
al

 a
ss

es
sm

en
t, 

ge
ne

tic
 a

ss
es

sm
en

t

++
In

di
ca

tio
ns

 o
f 

C
M

s 
in

cl
ud

e:
 s

ar
co

m
er

es
, f

un
ct

io
na

l g
ap

 ju
nc

tio
ns

, a
pp

ro
pr

ia
te

 r
es

po
ns

es
 to

 d
ru

g 
tr

ea
tm

en
ts

, a
s 

w
el

l a
s 

in
di

ca
tio

ns
 f

ro
m

 ‘
+

’

Adv Drug Deliv Rev. Author manuscript; available in PMC 2017 January 15.


	Abstract
	Graphical abstract
	1. Introduction
	2. Cell Sources for Cardiac Tissue Models
	3. Cell Micropatterning for 2D CM Alignment
	4. Biomaterials Used to Generate 3D Cardiac Models
	4.1 Natural hydrogel-based cardiac models
	4.2 Synthetic fibrous cardiac models

	5. Microdevices for 3D Cardiac Models
	6. Perspective and Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2

