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ABSTRACT

Residual proteinuria, the amount of proteinuria that remains
during optimally dosed renin-angiotensin-aldosterone system
(RAAS) blockade, is an independent risk factor for progressive
renal function loss and cardiovascular complications in
chronic kidney disease (CKD) patients. Dual RAAS blockade
may reduce residual proteinuria but without translating into
improved cardiorenal outcomes at least in diabetic nephropa-
thy; rather, dual RAAS blockade may increase the risk of
adverse events. These findings have challenged the concept of
residual proteinuria as an absolute treatment target. Therefore,

new strategies must be explored to address whether by further
reduction of residual proteinuria using interventions not pri-
marily targeting the RAAS benefit in terms of cardiorenal risk
reduction would accrue. Both clinical and experimental inter-
vention studies have demonstrated that vitamin D can reduce
residual proteinuria through both RAAS-dependent and
RAAS-independent pathways. Future research should pro-
spectively explore vitamin D treatment as an adjunct to RAAS
blockade in an interventional trial exploring clinically relevant
cardiorenal end points.

Keywords: cardiovascular disease, chronic kidney disease,
proteinuria, vitamin D
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PROTEINURIA : A TARGET FOR THERAPY IN
CHRONIC KIDNEY DISEASE

The presence of proteinuria is a risk factor for adverse cardior-
enal outcome across the spectrum of chronic kidney disease
(CKD) stages. In the general population, proteinuria is asso-
ciated with renal function loss independently of baseline renal
function [1], while in patients with established CKD, the pres-
ence of proteinuria is a risk factor for the development of end-
stage renal disease (ESRD) [2]. Recent large-scale analyses
from the CKD prognosis consortium revealed that the relative
risk for ESRD by estimated glomerular filtration rate (eGFR)
and albuminuria was independent of the presence of diabetes
[3] or hypertension [4], highlighting the importance of pro-
teinuria per se as a predictor of clinical outcomes. Proteinuria
is also strongly associated with cardiovascular mortality, inde-
pendent of other cardiovascular risk factors [5].

Successful proteinuria reduction has been shown to lower
the risk of reaching both renal and cardiovascular end points in
concert with, but also independent of, blood pressure reduction
[6, 7], while further blood pressure reduction over and above
adequate proteinuria reduction in non-diabetic CKD may have
no additional benefit in terms of ESRD prevention [8]. Protein-
uria is thus proposed as an independent treatment target that
should be resolutely addressed to reduce the risk of progressive
renal function loss and cardiovascular complications.

RENIN-ANGIOTENSIN-ALDOSTERONE
SYSTEM BLOCKADE FOR PROTEINURIA :
ASSETS AND BOUNDARIES

Renin-angiotensin-aldosterone system (RAAS) blockade is the
mainstay of treatment for proteinuric CKD, both in diabetic
and in non-diabetic patients. RAAS blockade reduces, but
rarely abrogates, proteinuria, resulting in ‘residual proteinuria’
(or ‘treatment-resistant proteinuria’). Bolstering the import-
ance of addressing residual proteinuria, the extent of residual
proteinuria is associated with the rate of renal function loss
across populations [9] while it also determines the remaining
cardiovascular risk [6]. Under optimal conditions, each RAAS-
blocking agent is able to reduce proteinuria by around 40%
(ratio of means angiotensin receptor blocker [ARB] versus
placebo 0.66, ARB and ACEi equally effective) [10]. In adher-
ence to ‘the rule of halves’—one drug halves the amount of
proteinuria, whereas the additive antiproteinuric effect of the
second drug is only a modest 25% reduction, i.e. ‘halved’ effect—
addition of another RAAS-blocking agent resulted in only
25% further reduction of proteinuria (ratio of means 0.76–
0.78 of combination therapy versus ARB or ACEi, respective-
ly). Exposure to high doses of two agents targeting the same
pathway may provide further reductions in blood pressure
and proteinuria; however, this no longer translates into further
incremental outcome benefits but rather clear safety signals
emerging in the form of hyperkalemia and acute kidney injury
(Table 1). Combination of a RAAS-blocking compound (ACEi
or ARB) with the direct renin inhibitor aliskiren even increased

the cardiorenal risk, along with a higher incidence of hyperkale-
mia and hypotension [12].

The dissociation of proteinuria reduction from improved
cardiorenal outcomes during and beyond optimally dosed
RAAS blockade raises the question of whether we have
reached the maximum beneficial effect of RAAS blockade or
whether we are reaching the toxicity threshold of the
pharmacological instruments we choose to deploy. Agents
with a different pharmacological and side effect profile, i.e.
with limited or no effect on blood pressure and serum potas-
sium concentrations, are urgently needed to address whether
the relationship between proteinuria and cardiorenal out-
comes may persist when using a different interventional
treatment modality to further reduce proteinuria. One im-
portant type of drug currently under investigation to this extent
is the endothelin antagonist. Atrasentan, a selective endothelin A
receptor antagonist, was recently demonstrated to reduce albu-
minuria and improve blood pressure and lipid spectrum with
manageable fluid overload-related adverse events in patients
with type 2 diabetic nephropathy receiving RAAS inhibitors
[14]. The effect of atrasentan on hard end points in this popula-
tion is investigated by the currently ongoing SONAR trial in
over 4000 patients (NCT01858532).

VITAMIN D IN CKD

CKD is characterized by a progressive inability to generate
active vitamin D (1,25(OH)2-vitamin D, calcitriol) from its
precursor 25(OH)-vitamin D (calcidiol). CKD patients are
also more commonly deficient in 25(OH)-vitamin D in com-
parison with subjects with normal renal function [15]. The
urinary loss of vitamin D bound to albumin and its carrier
protein vitamin D-binding protein (VDBP) might predispose
patients to vitamin D deficiency. In line with this concept, pro-
teinuria reduction by ACE inhibition also reduced urinary
VDBP loss [16]. The impact of urinary VDBP loss on vitamin D
status and the potential of antiproteinuric therapy to improve
vitamin D status in patients with non-nephrotic range proteinuria,
however, remain to be established. Genetic variation in VDBP
may also influence 25(OH)-vitamin D concentrations, although
this may not translate into different concentrations of bioavail-
able 25(OH)-vitamin D [17]. Moreover, in CKD the vitamin
D-activating enzyme 1-alpha hydroxylase (Cyp27b1) is sup-
pressed by increased fibroblast growth factor 23 (FGF23) concen-
trations [18]. The progressive deregulation of vitamin D
metabolism with deteriorating renal function is mirrored by the
fact that vitamin D deficiency itself may contribute to progressive
renal function loss [19]. If untreated, this vicious circle may well
be one of the forces driving progressive kidney disease, bone
disease and possibly also cardiovascular disease in CKD patients.

VITAMIN D, RAAS BLOCKADE AND CKD
PROGRESSION

Over the past decade, several animal studies demonstrated the
capacity of supplementation with either endogenous vitamin
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D (cholecalciferol, calcidiol or calcitriol) or its analogues (e.g.
paricalcitol) to reduce proteinuria along with renal inflamma-
tion, glomerulosclerosis and interstitial fibrosis in models of fi-
brotic and inflammatory CKD, as reviewed elsewhere [20]. In
humans, observational studies have documented associations
between the use of vitamin D supplements (calcitriol and cal-
citriol or alfacalcidol, respectively) and survival in CKD [21,
22]. Together, these findings set the stage for a number of pro-
spective randomized controlled trials (RCTs) addressing the
effect of vitamin D analogues on proteinuria as a surrogate
end point. We recently performed a systematic review of all
RCTs with either endogenous-active vitamin D (calcitriol) or
its synthetic analogue paricalcitol as an antiproteinuric inter-
vention. During follow-up, active vitamin D analogues
reduced proteinuria on average by 16%, whereas proteinuria
increased by 6% in patients receiving control treatment (P <
0.001) [23].

Of interest, these results were obtained in the majority of
cases (84% overall) against the background of pre-existing
chronic RAAS blockade, underlining the capacity of vitamin
D analogues to reduce residual proteinuria. The additive effect
of RAAS blockade and vitamin D on proteinuria could point
towards interactions between the RAAS and vitamin D [24] as
well as towards RAAS-independent renoprotective effects of
vitamin D. Of note, a recent study found that ramipril reduces
FGF23 levels in Stage 1–2 CKD patients with diabetic nephro-
pathy, without clear effects on parathyroid hormone, 25(OH)-
vitamin D or calcium levels [25]. In a very recent study, it was
found that proteinuria in itself affects renal phosphate

handling, increasing serum phosphate and FGF23 levels [26].
This may very well explain the observed relationship between
proteinuria (reduction) and FGF23. In turn, reduced FGF23
levels as a consequence of ACE inhibitor therapy may very
well increase the bioavailability of active 1,25(OH)2-vitamin
D, contributing to proteinuria control. Thus, the capacity of
ACE inhibitors to lower proteinuria may in fact be in part
through an effect of FGF23 and vitamin D. Departing from a
long known association between calcitriol and renin levels,
elegant experimental studies have elucidated interference of
the vitamin D receptor (VDR) with a transcription factor
binding site in the (pro)renin promoter region, inhibiting
renin expression [27]. Consequently, VDR−/− mice display
strongly increased renal and circulating renin concentrations
as well as increased angiotensin II generation [28]. In man,
vitamin D deficiency is accompanied by increased circulating
angiotensin II concentrations and blunted renal plasma flow
responses to infused angiotensin II, indicating both systemic
and intrarenal RAAS activation [29]. The capacity of vitamin
D analogues to reduce the compensatory induction of renin
during RAAS blockade may at least in part explain their reno-
protective effect in addition to RAAS blockade.

Despite this relatively well-defined negative regulatory effect
on renin production, VDR agonists should not be considered
equal to conventional RAAS blockers (Figure 1). From a clin-
ical perspective, vitamin D analogues such as paricalcitol may
display limited to no effects on blood pressure [30], nor have
hyperkalemia as a side effect, making them more suitable for
combination with RAAS blockers further to downtitrate

Table 1. Three major randomized controlled trials aimed at reducing residual proteinuria and cardiovascular outcome by combined RAAS blockade

ONTARGET [11] ALTITUDE [12] VA NEPHRON-D [13]

Population 25 620 patients ≥55 years with diabetes and
end organ damage or with atherosclerotic
vascular disease

8561 patients ≥35 years with diabetes and
microalbuminuria, macroalbuminuria or
cardiovascular disease

1448 patients with type 2 diabetes and
macroalbuminuria

Renal function Mean eGFR 74 mL/min/1.73 m2

eGFR < 60 mL/min/1.73 m2: n = 8034
eGFFR < 30 mL/min/1.73 m2: n = 263

Mean eGFR 57 mL/min/1.73 m2

eGFR < 60 mL/min/1.73 m2: n = 5778
eGFR < 30 mL/min/1.73 m2: n = 210

Mean eGFR 54 mL/min/1.73 m2

eGFR < 60 mL/min/1.73 m2: n = 894
eGFR < 30 mL/min/1.73 m2: none

Intervention • Telmisartan 80 mg/day

• Ramipril 10 mg/day

• Telmisartan + ramipril

ACEi/ARB therapy combined with:
• Aliskiren 300 mg/day

• Placebo

Losartan 100 mg/day combined with:
• Lisinopril 10–40 mg/day

• Placebo

Median follow-up 56 months 32.9 months (study halted prematurely) 26.4 months (study halted prematurely)
Proteinuria outcome Combination therapy reduced the increase in

albuminuria compared with ramipril
monotherapy (21 versus 31%, P = 0.0009)

Combination therapy decreased albumin-
to-creatinine ratio more than
monotherapy [between group difference:
14% (95% CI 11–17%)]

Combination therapy decreased
albumin-to-creatinine ratio more (786–
517 mg/g) than losartan monotherapy
(829–701 mg/g),
P < 0.001

Primary outcome Combination therapy had an increased
occurrence of the composite renal end point
[dialysis, doubling serum creatinine, death;
HR 1.09 (1.01–1.18), P = 0.037]

Combination therapy showed no
beneficial effect on the primary
composite end point (cardiovascular
events; renal events, i.e. ESRD, RRT
needed but not given, death by renal
cause, doubling of creatinine)

There was no benefit of combination
therapy on primary end point (eGFR
decline of ≥30 mL/min/1.73 m2 or 50%
reduction, ESRD or death), secondary
end point (eGFR decline or ESRD) or
tertiary end points (cardiovascular
events, eGFR slope)

Safety concern Increased occurrence of the primary composite
renal end point with combination therapy

Combination therapy was associated with
higher incidence of hyperkalemia (11.6
versus 7.2%) and hypotension (12.1
versus 8.3%), both P < 0.001

Combination therapy increased the risk
of hyperkalemia (6.3 versus 2.6 events
per 100 person-years) and acute kidney
injury (12.2 versus 6.7 events per 100
person-years), both P < 0.001)

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; eGFR, estimated glomerular filtration rate, ESRD, end-stage renal disease; HR, hazard ratio.
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proteinuria in more advanced CKD, where hyperkalemia can
be more problematic (Table 1).

Vitamin D supplementation yields renoprotective effects
beyond the RAAS. Recently published elegant studies revealed
that novel vitamin D analogues may also exert antifibrotic
effects by influencing the transforming growth factor (TGF)-
beta/SMAD pathway [31]. Using synthetic ligands based on
the structure of the VDR–ligand complex that were specific to
reduce TGF-beta/SMAD signaling, Ito et al. reduced renal fi-
brosis in an animal model, while hypercalcemia was avoided.
The use of 1,25(OH)2-vitamin D-derived synthetic ligands
may allow more potent blockade of pro-fibrotic pathways in
CKD, with a more limited tendency to hypercalcemia, which
commonly limits vitamin D uptitration in clinical practice.
A question that remains to be addressed is whether chemical
compounds specifically targeting TGF-beta/SMAD but with-
out activating classical VDR-mediated pathways will take away
not only hypercalcemia but also beneficial effects such as those
resulting from renin suppression. Vitamin D supplementation
also exerts beneficial effects on endothelial function. Vitamin
D directly regulates endothelial nitric oxide synthase (eNOS)
in mice, and mice lacking VDR demonstrated endothelial dys-
function and arterial stiffness [32]. In line, VDR activation by
paricalcitol improves endothelium-dependent vasodilatation
in patients with Stage 3–4 CKD [33].

Interestingly, also the precursor vitamin D compound
cholecalciferol may lower proteinuria. In a recently published
clinical trial, patients with Stage 3–4 CKD and albuminuria
were randomized to receiving 666 IU/day of cholecalciferol or

no treatment. After 6 months of follow-up, the albumin-to-
creatinin ratio (ACR) had decreased by 53.2% (95% CI 66.0–
27.0%), whereas the ACR increased by 7.1% (−25.3 to +53.3%)
in the control group (P = 0.005 between groups) [34].

POTENTIAL SIDE EFFECTS OF VITAMIN D
TREATMENT

A finding that should be interpreted as a warning sign is the
increased calcium phosphate product observed in patients
treated with vitamin D when given either as cholecalciferol [34]
or as active vitamin D (analogues), as documented in some but
not all trials [23]. On one hand, an increased calcium load eli-
cited by vitamin D may predispose to the development of ady-
namic bone disease, accompanied by a higher fracture risk but
possibly also vascular calcification [35]. On the other hand, a
higher level of serum phosphate may not only promote vascular
calcification but also (partially) blunt the renoprotective effect
of RAAS blockade [36]. The long-term effects of a higher serum
phosphate level induced by vitamin D treatment may warrant
close monitoring. Nevertheless, it is reassuring that even in the
high-risk population of hemodialysis patients, serum calcium
is only associated with increased mortality when its levels are
higher than 2.75 mmol/L [37]. Treatment decisions should be
guided by individual patient characteristics, e.g. favoring pari-
calcitol over calcitriol in the case of a high–normal serum
calcium in the CKD-Mineral Bone Disease (MBD) patient at in-
creased risk for vascular calcification [38]. Thus, the benefit–
risk ratio of vitamin D added to RAAS blockade, compared
with dual RAAS blockade, is driven by different efficacy and
safety profiles; whether this translates into clinically relevant
benefits overwhelming its side effects remains to be established.

VITAMIN D AND CARDIOVASCULAR
OUTCOME IN CKD

The cardiovascular effects of vitamin D deficiency and
its supplementation in CKD are not well understood. Epi-
demiological studies have suggested associations between
vitamin D deficiency and cardiovascular morbidity and mor-
tality in CKD patients [39], and the use of vitamin D supple-
ments (predominantly the native form cholecalciferol) has
been associated with a survival advantage [40]. However, pro-
spective intervention studies designed to establish the cardio-
protective effects of vitamin D supplementation have yielded
mixed results. In the Women’s Health Initiative study con-
ducted in postmenopausal women, combined calcium and
vitamin D3 supplementation failed to materially reduce the
risk for myocardial infarction or death by coronary heart
disease [41]. In the PRIMO trial, paricalcitol treatment had no
effect on left ventricular mass index [30], but did lower left
atrial volume index and brain natriuretic peptide in CKD
patients [42]. Therefore, at this moment, it is premature to
conclude that vitamin D supplementation can influence the
strongly increased cardiovascular risk to which CKD patients
are exposed. On the other hand, since a considerable number
of studies have now documented reduction of (residual)

F IGURE 1 : Schematic representation of complementary renopro-
tective actions of ACEi/ARB and vitamin D in chronic kidney disease.
Vitamin D may provide renoprotection through RAAS-mediated
effects, i.e. by suppression of renin gene expression. This effect is
through VDR signaling. The second renoprotective pathway of
vitamin D is through reduction of TGF-beta/SMAD signaling. Nega-
tive regulation indicated by blue arrows, positive regulation by red
arrows. ACEi, angiotensin-converting enzyme inhibitor; ARB, angio-
tensin II receptor blocker; AT1R, angiotensin II type 1 receptor; TGF-
beta, transforming growth factor-beta. See text for references. F
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proteinuria—a well-established cardiorenal marker in CKD—
it is very worthwhile to further clarify the position of vitamin
D treatment as an adjunct to RAAS blockade. Of note, a large
randomized trial addressing, among others, whether cholecal-
ciferol can provide primary prevention against cardiovascular
disease in 20 000 men in the USA (VITAL) is currently
ongoing (ClinicalTrials.gov identifier: NCT01169259).

A secondary analysis of the other VITAL study, which was
performed in patients with diabetic nephropathy [43], sug-
gested that the capacity of paricalcitol to reduce albuminuria
depends on the patient’s dietary sodium status. This is relevant
given the fact that dietary sodium intake, through impacting
volume status, is another modifiable determinant of the anti-
proteinuric response to RAAS blockade.

RAAS BLOCKADE AND DIETARY SODIUM

High dietary sodium intake is associated with attenuated anti-
proteinuric and long-term renoprotective effects of RAAS
blockade in both diabetic and non-diabetic proteinuric CKD.
Furthermore, numerous trials have now demonstrated that
sodium restriction further reduces residual proteinuria during
RAAS blockade, with a possible role for volume markers to
identify patients who might benefit most from sodium restric-
tion, as reviewed in Ref. [44]. In hypertensive patients, every
1 g of sodium intake per day was associated with a 14% in-
creased risk of coronary heart disease [45]. These reports
underscore the necessity to reduce sodium intake below 5 g of
sodium chloride per day in CKD patients, as indicated in
current guidelines. A recent double-blinded, placebo-con-
trolled trial demonstrated that proteinuria can be halved in
just 2 weeks by reducing sodium excretion from 168 to 75
mmol/day in hypertensive Stage 3–4 CKD [46]. Notwithstand-
ing recent data reporting absence of an association of high
sodium excretion and renal failure per se [47], high sodium
intake remained associated with cardiovascular morbidity and
mortality in a worldwide study [48]. Taking into account that
a reduction of dietary sodium by 33–44 mmol/day lowered
cardiovascular risk by 25% in 744 prehypertensive patients
after 10–15 years follow-up [49], efforts to reduce and opti-
mize sodium intake in patients at risk according to current
guidelines should be increased. The persistent effect across dif-
ferent populations—particularly in CKD—favors modulation
of sodium intake as a strategy to intensify RAAS blockade effi-
cacy. Alternative strategies to increase the cardiorenal protect-
ive effect of RAAS blockade include combination therapy with
diuretics, targeting obesity, and moderate protein restriction,
as reviewed elsewhere [50].

As both vitamin D and dietary sodium restriction have a
strong potential to lower residual proteinuria during RAAS
blockade, the combination of these strategies seems prudent.
A multicenter, randomized controlled crossover trial ad-
dressing the combined impact of dietary sodium restriction
and the vitamin D analogue paricalcitol on residual pro-
teinuria in 50 non-diabetic patients is currently ongoing;
results are expected in 2015 (ViRTUE trial, Dutch trial regis-
ter NTR2898). The interaction between sodium intake and

paricalcitol on albuminuria is currently under investigation
in 112 diabetic patients (PROCEED trial, ClinicalTrials.gov
identifier: NCT01393808).

SUMMARY AND FUTURE DIRECTIONS

Although proteinuria has been considered the key target for
renoprotective therapy, recent studies using double RAAS
blockade have dissociated proteinuria reduction per se from
progressive renal function loss. Since the boundaries of RAAS
blockade-based treatment are now better defined, this paves
the way to study adjunctive antiproteinuric therapies with dif-
ferent pharmacological and side effect profiles. Given the
emerging independent observations that vitamin D analogues
are able to reduce proteinuria, even when added to RAAS
blockade, future studies are warranted to investigate whether
further reduction of proteinuria beyond the maximally toler-
ated dose of RAAS blockade can further improve cardiorenal
prognosis of CKD patients. Disturbed calcium phosphate me-
tabolism is probably the most prominent safety signal that
should be accounted for in such studies. How cardiorenal pro-
tective and adverse effects translate into hard patient-specific
outcomes remains therefore to be established in future large-
scale prospective RCTs, designed to address the effects of
vitamin D supplementation added to background RAAS
blockade on hard cardiorenal end points.
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