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Abstract

Several different mechanical models of double-helical nucleic-acid structures that have been 

presented in the literature are reviewed here together with a new analysis method that provides a 

reconciliation between these disparate models. In all cases, terminology and basic results from the 

theory of Lie groups are used to describe rigid-body motions in a coordinate-free way, and when 

necessary, coordinates are introduced in a way in which simple equations result. We consider 

double-helical DNAs and RNAs which, in their unstressed referential state, have backbones that 

are either straight, slightly precurved, or bent by the action of a protein or other bound molecule. 

At the coarsest level, we consider worm-like chains with anisotropic bending stiffness. Then, we 

show how bi-rod models converge to this for sufficiently long filament lengths. At a finer level, we 

examine elastic networks of rigid bases and show how these relate to the coarser models. Finally, 

we show how results from molecular dynamics simulation at full atomic resolution (which is the 

finest scale considered here) and AFM experimental measurements (which is at the coarsest scale) 

relate to these models.
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1. INTRODUCTION

DNA and RNA double helices are fairly stiff and are often treated as homogeneous elastic 

rods. However, double helices with different base compositions are not structurally or 

dynamically equal, thus leading to studies of rigid-base and rigid-base-pair models. In this 

paper, we focus on a unified Lie-group framework that reconciles the most typical levels of 

coarse-graining in DNA and RNA modeling—from molecular dynamics, to rigid-base, to 

rigid-base-pair, to elastic filament models. We provide a survey of common models recast in 

terms of Lie groups while also demonstrating new methods for reconciliation between the 

disparate models. Figure 1 illustrates the different levels of modeling that are compared and 

contrasted in this paper, and some of the ways that they are related. It also depicts several 

connections that are made between these models and experiments/simulations that have been 

performed, namely, molecular dynamics simulations and measurements using atomic force 

microscopy.

The structure of DNA and RNA plays an important role in the function of these molecules, 

and hence has been studied extensively.1,2 Different double helix structures can allow for 

different compaction ratios within the cell, initiate supercoiling, affect the local 

concentration of the solution (e.g., by interacting with ions and water), and create a variety 

of nanostructures. Studying the properties of these double helices can help determine these 

structure–function relationships. A standard helical structure and its implementation into 

nanostructures is shown in Figure 2. Such structures, as well as naturally occurring DNAs 

and RNAs, consist of a combination of double-helical regions, stiff bends, and/or regions of 

increased flexibility (bulges and defects). The models and methods that we present here are 

general enough to address all of these scenarios.

Over the past few decades, experimental and theoretical studies of the mechanical behavior 

of double-stranded DNA have focused on long length scales (>100 nm). The most popular 

theoretical method is the elastic-filament model that treats the macromolecule as an 

inextensible elastic rod, and attributes to its bending deformations a classical elastic energy 

cost (Hooke’s law). Its success can be attributed to its simplicity and its successful 

description of experiments such as force spectroscopy on single DNA molecules.3–5 

However, for short and intermediate length scales, the elastic-filament model using DNA 

stretching, atomic force microscopy (AFM), and other methods has been largely insensitive 

to the details of mechanics crucial for cellular function, DNA packaging, transcription, gene 

regulation, and viral packaging.6–10

To further evaluate the elastic properties of DNA, DNA sequence-dependent flexibility has 

been examined.11–13 Sequence-dependent local (base-pair step) force fields and chain 
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properties have been inferred from molecular dynamics simulations and compared with 

results from other techniques. Accumulating evidence shows that there are preferential DNA 

binding sequences and significant variability depending on sequence. For example, it was 

shown that alternating AT repeats are 20% more flexible than control sequences.14 

Interestingly, studies on RNA elasticity models (of varying length scales) and RNA 

sequence-dependent flexibility are few, especially considering the greater wealth of 

structural features available.

In the emerging field of nanotechnology, it is becoming very important to know the 

properties of these biological motifs, especially when designing nanostructures.15 For 

example, if the desired nanostructure is a very rigid cube, a natural building block for the 

sides of the cube would be the double helix. However, it would be useful to know the 

stiffness parameters for helices with different base compositions so that the stiffest helix 

could be selected for structure. This is one of many scenarios in which coarse-grained 

mechanical models can be used. Bridging different length scales is facilitated by 

methodologies such as those presented here.

The remainder of this paper is organized as follows. Section 2 provides a brief review of the 

Lie-group methods that are common to all four models of DNA detailed in this paper. 

Section 3 reviews the generalized elastic filament or worm-like chain model in which local 

stiffness can be completely anisotropic, and the baseline backbone shape can be an arbitrary 

curve. The worm-like chain model is then applied to DNA with a drug induced bend as a 

special case. Section 4 describes the bi-rod model in which a double-helical nucleic acid 

structure is viewed as two intertwined elastic rods, and reconciles this model with the single 

elastic filament case using properties of the classical Ornstein–Uhlenbeck stochastic process. 

The rigid-base-pair model discussed in section 5 uses a rigid body to represent each base 

pair in double-stranded DNA or RNA. Predictions of this model with fine-grained molecular 

dynamics simulations are shown to be consistent. The final model detailed in section 6 

represents each of the bases of DNA and RNA as rigid bodies connected by a network of 

elastic constraints to create a double-helical structure. Section 7 provides conclusions and 

discusses avenues for future work.

2. A LIE-GROUP TREATMENT OF RIGID-BODY MOTIONS

The set of rigid-body motions is denoted in this paper as G = SE(3) (the special or proper 

Euclidean motion group in three space). Any g ∈ G can be faithfully represented with a 4 × 

4 homogeneous transformation matrix of the form

(1)

where R ∈ SO(3) (the special orthogonal group) is a 3 × 3 rotation matrix,  is the n × n 
identity matrix, t is a translation vector, and 0T = [0, 0, 0] is a row of zeros. The first matrix 

on the right-hand side of eq 1 is a pure translation, and the second is a pure rotation. The set 

of all such transformations together with the operation of matrix multiplication (which 
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sometimes is denoted as ○) forms a group, (G, ○). Often we will suppress the ○ and denote 

the group product as the juxtaposition of group elements unless it is useful to emphasize it.

Every such rigid-body motion can be parametrized using the matrix exponential as

(2)

The matrix exponential can be defined using the Taylor series such that

The matrix logarithm can be used as the inverse of the matrix exponential so that

It should be noted that log(g) is not well-defined everywhere, but it can be used for nearly 

every g ∈ SE(3). Here

are the infinitesimal generators of the group.

The linear vector space spanned by {Ei}, together with the matrix commutator operation [X, 

Y] = XY − YX, defines the Lie algebra  associated with the Lie group G = SE(3).

The explicit closed-form expression for the matrix exponential in eq 2 is known,16 but the 

most relevant fact for our presentation is that when ‖x‖ ≪ 1, .

Let g(s) be a reference frame that evolves with curve parameter s and ġ(s) ≐ dg/ds 
(throughout our formulation, the curve parameter, s, takes the place that “time” would 

normally have in formulations of rigid-body mechanics). The composite translational and 

angular “velocity” corresponding to g(s) = exp X(s) and described in the moving reference 

frame is extracted from
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using the “∨” operator, which is the unique linear operator such that

the ith natural unit basis vector for ℝ6. Then,

The opposite operation of ∨ is

It is often convenient to decompose ξ into its angular (ω) and translational (v) parts as

Two important adjoint matrices are Ad(g) and ad  which for SE(3) and se(3) are defined 

as follows

(3)

where Ω = −ΩT is the skew-symmetric matrix such that Ωy = ω × y for any y ∈ ℝ3, and 

likewise, T and V are the skewsymmetric matrices such that Ty = t × y and Vy = v × y.

The argument of ad(·) need not be a velocity. It can be any linear combination of the 

matrices {Ei}, including X. The matrices Ad(g) and ad(X) are related by the equality

Their structure follows from the conditions
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3. ELASTIC-FILAMENT (CHIRAL, ANISOTROPIC, AND SEQUENCE-

DEPENDENT WORM-LIKE CHAIN) MODEL

The Fokker–Planck equation for the family of probability density functions (pdfs) {f(g; s)|s 
∈ [0, L]} describing the elastic filament model with referential (unperturbed) backbone 

shape g0(s) defined by  and arc length/sequence-dependent diffusion 

matrix D(s) is17,18

(4)

where

(5)

is a Lie derivative (which can be thought of as a directional derivative in the direction 

defined by Ei). The collection of these derivatives can be written in a column vector as a 

gradient

Equation 4 has diffusion and drift parameters, D(s) and ξ0(s), which can be sequence 

dependent, consistent with observations in the literature.19 Methods for generating marginal 

densities associated with f(g; s) that differ from ours are known.20 Throughout the text, f(·) 
will be used to describe a variety of probability density functions, the meaning of which 

should be clear based on the arguments of the function and the context in which it is used.

The translational part, t0(s), of g0(s) = (R0(s), t0(s)) might be helical or straight, depending 

on the type of DNA or RNA. Here s is the arc length of this curve, so that

However, for deformed and stretched versions of this curve, g(s), s generally will not 

correspond to arc length, though the arc length of a deformed filament will always be a 

monotonically increasing function of s. Figure 3 shows an arbitrary curve filament and the 

relationship between g(s), the curve, and s.

Subject to Dirac delta initial conditions, f(g; 0) = δ(g) (throughout the text, δ will be used as 

both the Dirac delta and the Kronecker delta; the Kronecker delta will be indicated using 

subscript arguments such as δab), the solution to the Fokker–Planck equation in eq 4 gives 

the distribution of relative positions and orientations at a point s along the sequence relative 

to the proximal end. The solution is a probability density function for each fixed value of s ∈ 

[0, L],
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(6)

Here, the integral is over the group G with respect to the Haar measure dg. The Haar 

measure is used to provide a notion of consistent volume for the group allowing for a valid 

definition of an integral.21

The diffusion equation in eq 4 has been derived using several different analogies. First, the 

potential energy for a worm-like chain with flexibility in all six infinitesimal rigid-body 

motions is

where K is the 6 × 6 stiffness matrix, L is the total length, and 0 ≤ s ≤ L. In several 

works,17,22–24 a path integral approach was used viewing this total potential energy as the 

“kinetic energy” of a rigid body

(7)

(with K interpreted as a 6 × 6 inertial matrix) integrated along a trajectory. The relationship 

between D and K is

(8)

where kB is the Boltzmann constant, T is temperature in degrees Kelvin, and K is measured 

in units of kBT. Therefore, the way to interpret eqs 4 and 8 is that diffusion is akin to 

flexibility, which is amplified by temperature.

Keeping with the analogy between s and time, the stochastic differential equation that is 

equivalent to eq 4 is

(9)

where  is a vector of uncorrelated unit-strength white noises and B is any matrix 

such that BBT = D. For B = (2kBT)1/2K−1/2, eq 9 can be written as

(10)

Equation 10 can be interpreted in such a way that K is neither the stiffness nor the inertia 

matrix. Rather, it is a damping matrix as if there were a six-dimensional dashpot connecting 

an infinitesimal part of the filament at curve parameter s, which is also acted on by thermal 

agitation with strength (2kBT)1/2K1/2 consistent with the fluctuation–dissipation 

theorem.25,26 When taking this point of view,  in eq 7 would not be the kinetic energy but 

rather this same quantity should be viewed as a Rayleigh dissipation function, and denoted 

as .
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Two methods for solving eq 4 have been presented in the literature corresponding to two 

different scenarios. The first is for relatively short segments (i.e., those less than one 

persistence length). In this case, when using exponential coordinates, g = exp X, the 

approximation

is valid because the probability density is concentrated around the baseline value. In this 

case, eq 4 reduces to a classical diffusion equation with a Gaussian solution of the form

(11)

where

(12)

and  is a normalizing factor to make the function a pdf for each fixed value of s. 

For sufficiently concentrated distributions,

(13)

Alternatively, given f(g; s), the mean, g0, and covariance, , for any fixed value of s can 

be extracted so as to satisfy the conditions

(14)

and

(15)

For relatively long segments (from about half of a persistence length and longer), an 

alternative formulation based on the group Fourier transform is applicable. The only 

limitation on the filament lengths for which this model is applicable is that it is a phantom 

model, and does not account for excluded-volume effects. Therefore, in unconfined 

environments, this method (and the original governing equation, eq 4) is valid perhaps up to 

two or three persistence lengths. The group Fourier transform and corresponding inversion 

formula are written abstractly as

(16)
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where λ is a “frequency” parameter drawn from the unitary dual of G, denoted as Ĝ, and 

{U(g, λ)|λ ∈ Ĝ} is a complete set of irreducible unitary representation matrices (the “hat” 

operator  was previously defined for elements of the Lie algebra; in this context, it will be 

used to represent the Fourier transform of a function).16,21,27

The group Fourier transform has operational properties that are useful in solving eq 4. 

Namely, Fourier-space operator matrices, {Wi}, exist such that

(17)

This allows us to write

(18)

In the case when ξ0(s) and D(s) are not sequence-dependent (e.g., pristine B-form DNA of 

homogeneous composition),  becomes independent of s. In this case, 

, and the Fourier-space solution simply becomes the matrix exponential 

. In the more general case, the linear system of ordinary differential 

equations can be solved by numerical integration.16,21,27

3.1. Bent DNA

One application of the elastic-filament model is in analyzing bent DNA. As shown in Figure 

4, it is known that proteins bend DNA to activate or repress transcription;28–34 DNA often 

forms loops or is wrapped around proteins,7,35–42 and proteins scan (diffuse) along DNA to 

search for sites that are more flexible, or pre-bent.30,43–47

Moreover, many cancer drugs such as Cisplatin primarily target DNA and induce structural 

and mechanical changes like bending and cross-linking,54 which can ultimately lead to 

apoptosis,55,56 the desired outcome of cancer therapy. Cisplatin has a success rate of more 

than 90% against testicular and ovarian cancer but a low success rate for other cancers, such 

as lung cancer.57 The underlying reason for these disparate success rates may be that DNA 

in different cancer cells responds differently to drug-induced DNA damage, such as DNA 

bends.58–61 Cisplatin targets the major groove of DNA62–64 and forms intrastrand biadducts 

between purine bases,65,66 thus bending the major groove and subsequently opening up the 

minor groove. The major adduct is a 1,2-intrastrand adduct between adjacent guanine 

bases.67 Despite the fact that this drug has been used for several decades, the structural 

changes induced by cisplatin in a DNA molecule, especially the local changes due to its 

interaction with a single molecule of cisplatin (e.g., bend angle, bend flexibility, binding 

geometry) are still debated, even though these properties may play a key role in how cellular 

proteins process this damage.67,68 For example, the bend angle of a GG adduct in 

cisplatinated DNA, as determined by bulk experimental techniques and gel electrophoresis, 

NMR, and X-ray, ranges from 30 to 80°.54,62,69–72 However, recent high resolution X-ray 
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data point to a bend angle between 35 and 40°.54 In the discussion below, we compare the 

techniques derived for the elastic-filament model with experimental data.

Numerical and Experimental Results—Since stiffnesses are measured in terms of 

kBT, it follows that, under the extreme condition T → 0, no diffusion would take place, and 

. As T increases, these probability densities become less 

concentrated. For the biologically relevant case (T ≈ 300), eq 4 can be solved using the 

harmonic analysis approach summarized by eqs 16–18.21,73,74 If we make the shorthand 

notation , then it will always be the case for s1 < s < s2 that (the 

notations  and f(s; s1, s2) are used interchangeably)

(19)

This is the convolution of two position and orientation distributions. While eq 19 will always 

hold for semiflexible phantom chains, for the homogeneous rod, there is the additional 

convenient properties that

(20)

The first of these says that for a uniform chain the position and orientation distribution only 

depend on the difference of arc length along the chain. The second provides a relationship 

between the position and orientation distribution for a uniform chain resulting from taking 

the frame at s1 to be fixed at the identity and recording the poses visited by s2, and the 

distribution of frames that results when s2 is fixed at the identity. When eq 20 holds, we can 

use the shorthand f(g; s1, s2) = f(g; s2 − s1). Note that neither of these nor eq 19 will hold 

when excluded-volume interactions are taken into account, but our DNAs are short enough 

that excluded-volume effects are not important.

Since g describes fully the motion permissible in the group being considered, f(g; s) is a 

joint density in all rigid-body degrees of freedom and any of the usual quantities of interest 

in polymer theory can be extracted: end-to-end distance, ring closure probabilities, end-to-

end orientation distributions, etc. When a bend is present, the distribution of end-to-end 

position and orientation can be formulated as a convolution of the form f(g; s1)∗b(g)∗f(g; 
s2), where b(g) describes the kind of bend/twist between two segments and convolution is 

defined as in eq 19. Candidates for the form of b(g), which are a product of delta functions 

in position and shifted delta functions in orientation, were given by Zhou and Chirikjian.75 

This convolution approach is particularly useful when coupled with the fact that for the 

group Fourier transform defined in eq 16

(21)

Figure 5 shows a series of position measurements along DNA conformations taken with an 

atomic force microscope (AFM) of an untreated and cisplatined 300 base pair DNA 

fragment. Conformations have been translocated in order that each proximal end has a 
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common position and orientation. The DNA fragment had a single GG site in its center 

(G150G151) at which a GG intrastrand cisplatin cross-link was formed. The cisplatinated 

fragment had, thus, one central cisplatin-induced bend. The single GG sites in the DNA 

construct were selected because cisplatin has a high specificity of cross-linking GG sites in 

DNA.76 The DNA substrate was treated with a 500-fold excess of cisplatin for 6 h and 

purified with a G-50 Sephadex spin column. Using inductively coupled plasma-mass 

spectrometry (ICP-MS), the platinum/DNA ratio was found to be 0.95, indicating nearly 

complete platination at the single GG site in the center of the fragment. The AFM images 

were obtained using deposition and imaging conditions in which the DNA molecules can 

equilibrate on the two-dimensional mica substrate.77 In other words, the AFM-imaged DNA 

molecules behave like, and can be modeled as, worm-like chains constrained to a plane. The 

AFM-imaged molecules can then be compared to DNA molecules that were simulated with 

a range of different parameters, such as different persistence lengths (or diffusion constants) 

and different bend angles. Figure 6 shows simulated trajectories for unperturbed or “naked” 

DNA and for the same DNA that has a bend induced in the middle. The comparisons of the 

R/L distributions of the AFM-imaged DNA molecules and the simulated DNA molecules 

were done using the chi-squared test, the Ansari–Bradley test,78 and the bootstrap method 

using Matlab statistical subroutines. Here R represents the end-to-end distance and L, the 

total arc length. Comparing the normalized end-to-end distance distributions of simulated 

and real DNA molecules, a persistence length of 45 nm was obtained for the unmodified 

DNA fragment. Comparing the distributions of cisplatinated molecules with the same 

methods and assuming a persistence length of 45 nm for the DNA arms, a cisplatin-induced 

bend angle in the range 30–44° was obtained, with the best fit giving a value of 36°.79,80 

This is in very good agreement with the values obtained from gel electrophoresis and X-ray 

experiments54,69,71,72,81 but disagrees with other published values.70,82

This model is confined to SE(2), the planar motion group; however, most of what has been 

discussed to this point with regards to SE(3) still holds for SE(2), except for the explicit 

forms of the elements of SE(2) and its associated Lie algebra, se(2). These are naturally 

different, since elements of SE(2) only have three degrees of freedom (as opposed to the six 

for SE(3)). These elements of SE(2) can be represented with homogeneous matrices of the 

form

(22)

using polar coordinates. Similar to eq 2, the infinitesimal generators of SE(2) are
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We can simulate a model of the worm-like chain to obtain statistics that can be compared 

with the AFM measurements. For example, the simulated strands in Figure 6 can be 

generated using a version of eq 9 of the form

(23)

Thus, the unperturbed path would have a constant “velocity” in the y direction. If we then 

look at the sampled means and covariances of the simulated and experimental data as 

defined in eqs 14 and 15 where the integrals are replaced with summations over the sampled 

values, we can determine whether or not our model accurately reflects the underlying 

phenomenon. The orientation of the distal end of the experimental data was approximated 

using the tanget of the curve at the end. For the data shown in Figures 5 and 6 where η = 0.7, 

the means of the four data sets were very similar. However, we can look at the sample 

covariances for the naked DNA

and the bent DNA

These numbers show that the simulated and measured data sets for naked DNA (or bent 

DNA) are more similar to each other than the two simulated (or measured) data sets are to 

each other. This can be expressed quantitatively by looking at the Frobenius norm of the 

difference between these matrices normalized as shown below. These normalized differences 

are calculated to be
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In addition to numerically simulating trajectories, the probability density function on the 

motion group can be obtained using Fourier techniques. Similar to the approach taken in 

previous work on SE(3),17 a probability density function on the motion group SE(2) can be 

defined to describe the ensemble of conformations of an elastic filament. For the examples 

presented (contour plots shown in Figure 7), the following was used

(24)

This is equivalent to the model given in eq 23. Using properties of the group Fourier 

transform from eqs 16 and 17, we can write

(25)

where Wi(λ)’s are found using

These matrices, which are infinite-dimensional, can be shown to be

(26)

(27)

(28)

when the irreducible representation matrices, U(g, λ), used for SE(2) are

Here Jp(·) is the pth-order Bessel function, j = (−1)1/2, and matrices are indexed such that m, 
k ∈ ℤ. It should then be clear that
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(29)

and, using the inverse Fourier transform from eq 16,

(30)

If we assume a static bend of the form21

(31)

where δ(·) is the Dirac delta and θ0 is the bend angle, we can use eqs 21, 29, and 30 to 

determine the pdf of two lengths of elastic filament connected by a static bend. Sample 

contour plots for such distributions are shown in Figure 7 for unit length and η = 0.7. In the 

bent example, the 36° bend occurs at the midpoint of the filament. Though the largest 

disparities may occur in the orientation, these contour plots have been marginalized over θ 

so that just the position remains. This was done because orientation is not as easily measured 

experimentally.

For the numerical integration, the infinite dimensional Fourier-space operator matrices, 

{Wi}, were truncated to 29 × 29 before exponentiation. Further truncation to 15 × 15 was 

performed prior to applying the Fourier inversion formula (eq 30) which was numerically 

integrated from λ = 0 to 100 using a step size of 0.1.

The contour plots in Figure 7 help to illustrate the differences inherent in the underlying 

distributions for bent and straight DNA. The broader shape and less severe peak in the 

contour plot associated with the bent case highlights the “smearing” effect that the addition 

of a bend has. This effect is more pronounced as η increases.

4. BI-ROD MODEL

In the bi-rod model due to Moakher and Maddocks,83 double-helical DNA is considered to 

be two intertwined helical elastic rods connected with elastic contacts. On short length 

scales, this has different properties than the single elastic filament, whereas, on long length 

scales, it must converge to the single filament model, which has been verified 

experimentally.

Consider a bi-rod consisting of two elastic filaments described as trajectories l(s),r(s) ∈ G 
for s ∈ [0,L]. Here we can think of these as a “left” and “right” filament, though they are 

intertwined and continually reverse order as s increases. In the referential configuration of 

standard B-form double-helical DNA, the backbone is given by

(32)
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where L/n is the helical repeat length (i.e., the helix makes n revolutions over a length L) and 

R3(θ) is the rotation matrix describing counterclockwise rotation around the e3-axis. The 

referential shapes of the two elastic filaments in the bi-rod are helical and are defined by

for

(33)

where w is the distance between the centerlines of each filament in the bi-rod (here δ0 ∈ G = 

SE(3) is a small rigid-body motion, and is unrelated to the Kronecker and Dirac delta 

functions used earlier).

Small deviations from this baseline shape can be described as

where . The left and right filaments can then be written as

Figure 8 illustrates the relationship between the left and right frames.

We now focus on the derivation of f(r, l; s) or alternatively f(g, δ; s), with the ultimate goal 

of determining D(s) or K(s). The probability density f(r, l; s) is one on the space G × G, 

which as a group is the direct product of G with itself. As a result, the adjoint matrices in eq 

3 extend to G × G as direct sums. For example, Ad(r, l) = Ad(r) ⊕ Ad(l). Similar expressions 

hold for ad(·), exp(·), and log(·).

The bi-rod version of eq 10 (again with s taking the place of time) can be derived by starting 

with the Rayleigh dissipation function

and the potential energy

Here Wr and Wl are symmetric weighting matrices for the right and left rods. As mentioned 

before in the context of worm-like chains, in some analogies, these matrices are stiffness 

matrices and in other analogies they are viewed as inertia matrices. At present, they are 
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viewed as damping matrices. For the potential energy, W is a symmetric matrix that defines 

the spring force between the two rods. The resulting coordinate-free version of Lagrange’s 

equations of motion with damping and external forcing, but without inertial terms, will be of 

the form

(34)

where the total noise vector is related to a vector of uncorrelated unit-strength Wiener 

processes as

If, in analogy with eq 10 the diffusion and damping satisfy detailed balance conditions, then 

the coupling matrix Z′ is

The governing equations (eq 34) can be written explicitly for the case when  and  (and 

their derivatives with respect to s,  and ) have small magnitudes. In this case, 

neglecting all but the linear terms in  and  and their derivatives, the following 

approximations can be made

If we define

the stochastic differential equations describing the bi-rod can be written in the form

(35)

where
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and

These equations define a degenerate Ornstein–Uhlenbeck process. It is degenerate because 

the 12 × 12 matrix Q has rank ten with six eigenvalues with a zero real part. In other words, 

six degrees of freedom have elastic constraints on them from contact between the bi-rods, 

and six of the degrees of freedom feel only Brownian forcing.

Our goal is to obtain the corresponding probability density f(g, δ; s) and marginalize over δ. 

This will allow for the reconciliation of the bi-rod model with the elastic-filament model 

given in section 3. Using the fact that eq 35 is an Ornstein–Uhlenbeck process allows us to 

say that f(g, δ; s) is Gaussian. Details of the techniques used to demonstrate this can be 

found in the Supporting Information.

When Q has distinct eigenvalues, it can be expanded using the spectral decomposition as

Here U = [u1,…, un] and V = [v1,…, vn] are matrices such that the columns satisfy the 

following equations:

If Q is independent of s then, as detailed in the Supporting Information, the derivative of the 

covariance Σ with respect to s is given by

(36)

Since we know that f(g, δ; s) is Gaussian, we can write

(37)

for an appropriate normalizing function α(Σ(s)) and
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Marginalizing over  yields a probability density in  that is also Gaussian with zero 

mean and covariance . We can relate this to the equivalent stiffness matrix defined in 

the context of the single elastic filament. Once  has been computed, the effective or 

equivalent diffusion matrix for the worm-like chain can be extracted by inverting eq 12 as

where . The effective stiffness can then be computed using eq 8. 

This effective stiffness was determined as a function of s for B-form DNA with a width w of 

2 nm and a pitch L/n of 3.4 nm. The damping and spring contact matrices used were

Figures 9 and 10 demonstrate how these effective stiffnesses converge to stable values as s 

increases. Figure 9 illustrates how individual elements of the effective stiffness matrix 

converge to steady-state values. In Figure 10, the Frobenius norm of the difference between 

the equivalent stiffness matrix at s and the steady-state equivalent stiffness matrix is plotted 

as a function of s. These plots also demonstrate that, although the damping and spring 

contact matrices for the bi-rod model are constant with respect to s, the effective or 

equivalent stiffness varies as a function of s. However, since the effective stiffness converges 

to a steady-state value as s increases, the effective stiffness can be taken as a constant for 

sufficiently long rods. While the speed of convergence is a function of the parameter values, 

these examples provide numerical validation that the bi-rod and elastic-filament models 

indeed do converge as s (and thus length) increases.

5. RIGID-BASE-PAIR MODELS

The rigid-base-pair model uses a rigid body to represent each base pair in a strand of DNA 

or RNA. These rigid bodies are attached to adjacent base pairs through elastic constraints. 

As such, the rigid-base-pair model can be viewed as a discretized version of the single-

elastic-filament model by assigning reference frames to each DNA or RNA base pair.

A number of approaches for attaching representative reference frames to base pairs have 

been used in the literature and in programs used to describe three-dimensional arrangements 

of DNA and RNA structures. A quantitative description of some of the discrepancies 

between the different approaches was presented by Lu et al.84
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We will use the method in which the reference frames are positioned so that complementary 

bases form an ideal, planar Watson–Crick base-pair in the undistorted reference state with 

values of hydrogen bond donor–acceptor distances, C1′⋯C1′ virtual lengths, and purine 

N9–C1′⋯C1′ and pyrimidine N1–C1′⋯C1′ virtual angles consistent with those found in the 

crystal structures of small molecules.

Given this base frame assignment, we can say that, relative to the previous base pair, the kth 

base pair has a distribution fk(g) with mean gk that satisfies

(38)

and covariance Σk defined by

(39)

Then, for two base pairs with distributions f1(g) and f2(g), means g1 and g2, and covariances 

Σ1 and Σ2, the resulting distribution of stacking the two base pairs on top of each other can 

be represented as the convolution of the two distributions with

(40)

This new distribution will have mean g1*2 and covariance Σ1*2. An exact analytical solution 

for g1*2 and Σ1*2 is not known in general for Lie groups; however, so-called “first-order” 

and “second-order” approximations do exist for these quantities in SE(3). Such 

approximations were first introduced by Wang and Chirikjian in the context of serial robotic 

manipulators.85–88 A similar concept was later applied to DNA by Becker and Everaers.89,90

A first-order approximation will be presented here for the convolution of two distributions. 

Using this recursively allows one to determine the mean and covariance of N base pairs. As 

will be shown in section 5.2, if N or the individual covariances are sufficiently large, the 

resulting distribution, f1*2*⋯*N, is described well with a Gaussian of the form

(41)

for

(42)

where α(Σ1*2*⋯*N) is a normalizing factor as described in eq 13.

In the first-order theory of covariance propagation, we make the approximation 

 or equivalently , where gi = exp(Xi) are 

elements of SE(3). This converts the convolution integral over the group into one over the 

Lie algebra se(3), which can be associated with ℝ6 via the ⋁ operator. The results are 

propagation formulas that produce the mean and covariance of the convolution of two 
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functions in SE(3) from the means and covariances of the two original distributions and the 

relative motion of the mean of the second distribution relative to the first.86,87,89 The mean 

and covariance of this approximation are

(43)

and

(44)

These formulas can be used to “piece together” serially connected distributions (each 

describing small motions) into a distribution that describes the overall distribution of the 

distal end of a semiflexible chain relative to its base. Using the fact that the adjoint is a 

homomorphism (i.e., Ad(g1◦g2) = Ad(g1)Ad(g2) and Ad(g−1) = Ad−1(g)), the covariance 

propagation formula generalizes to the concatenation of N reference frames with 

concentrated distributions as

(45)

To simplify the notation in the subsequent sections, the covariance propagation is simply 

denoted as

(46)

It should be noted that the first-order covariance propagation detailed in eq 46 works 

relatively well for convolving distributions that are relatively concentrated (i.e., small values 

of ‖Σk‖). This is typically the case for DNA and RNA, as they are relatively stiff. However, 

in cases where this assumption breaks down, a second-order approximation can be used. The 

details of this second-order propagation can be found in the literature.88

5.1. Inverse Propagation of Covariance

The recursive propagation scheme presented in eqs 44 and 46 assumes that values for Σk’s 

are known. This may not always be the case. However, if Σ1,N = Σdata is known or can be 

obtained through dynamics simulations, then estimates of Σk can be obtained. These 

estimates assume that Σk is not dependent on k.

Since covariance matrices have a defined form, they can be represented as

(47)

where Si is the ith basis element for the set of all possible symmetric 6 × 6 matrices and P is 

the number of basis elements. Since a symmetric n × n matrix is defined by n(n + 1)/2 
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independent entries, there are 21 independent entries in an SE(3) covariance matrix. Since 

the choice of the basis {Si} is not unique, a natural choice for Si is a matrix of the form 

for the diagonal elements and  for the off-diagonal elements, where ej are the 

natural basis vectors for ℝ6.

Expanding Σdata and Σk from eq 46 in this way so that  and 

, we have

(48)

(49)

The symmetric matrix  can be expressed as

(50)

and

Thus, it is clear that

(51)

and

for i = 1, 2, …, P. Since Si is a basis element, the resulting relation simplifies to the matrix 

expression
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(52)

where

Then, if ΨT is invertible, we can solve for σk and then compute the helix stiffness parameters 

from . This problem is similar to the estimation of model parameters for 

steerable needles described by Park et al.91

5.2. Statistics of Molecular Dynamics Simulations

Molecular dynamics simulations have been used to explore both rigid-base and rigid-base-

pair models of DNA.92,93 In this work, to determine whether the model proposed in eq 41 is 

valid, molecular dynamics simulations were performed on standard A-RNA helices which 

are stiffer than B-DNA. These models were built using Insight II (Accelrys, San Diego, CA, 

USA). Each helix consists of 14 base pairs with different compositions. The simulations 

were done for 16 ns using Amber 8.0.94 The simulations used the ff99 Cornell force field for 

RNA,95 which has proven to be a reliable force field for nucleic acids and the Amber 

molecular dynamics software. For the discussions below, we will say that simulations were 

simulated for nt time steps and that the rigid-body transformation between the distal base 

pairs (g1 and gN) at time step i is  for i = 1, 2,…, nt. The mean of all gi’s will be 

noted as gμ.

Time Series Analysis and Stationarity of Molecular Dynamics Simulation—To 

analyze the stationarity of the helix during the molecular dynamics simulation, the 

transformation matrix gμ is used to compute the cross-covariance matrices. For the Lie group 

of rigid-body motions, the cross-covariance matrices at lag l are computed as

Frequently, autocorrelation plots are used to check randomness in a data set. Randomness 

can be ascertained by computing autocorrelations for data values at varying time lags. 

Random data sets have autocorrelations near zero for the time-lag separations. Conversely, if 

the data set is not random, then one or more of the autocorrelations will be significantly 

nonzero. To generate an autocorrelation plot of the cross-covariance elements, we first 

calculated the singular values of the cross-covariance matrix. We then plotted the singular 

values against several different values for the lag, with the maximum lag equal to nt/4. 

Autocorrelation plots are shown in Figures 11 and 12. For each sequence, gi and gμ represent 

the relative transformation from base-pair 3 to 12. The first and last two base-pairs were 

excluded from the calculations to prevent the inclusion of artifacts that might be due to end-

effects during simulation.
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As can be seen in Figure 11, the autocorrelation for a GCGC sequence has singular values 

quickly approaching zero and remaining near zero for different values of lag. This indicates 

that we can assume stationarity in our molecular dynamics simulations. Similar 

autocorrelation plots were obtained for sequences GCAU, AUAU, and AUUA. The only 

exception to this is the first singular value for the GCCG helix, as shown in Figure 12. This 

helix cannot be assumed to have stationarity and should definitely be examined further, as 

the equilibrium assumption may not hold.

Normality of Molecular Dynamics Simulation—To test for normality, first a few 

univariate tests are performed on the six components of . The pdf and the 

corresponding normal fit curves for two of the components of gμi are plotted in Figures 13 

and 14 for the GCGC helix. Similar normal probability plots are seen for the remaining four 

components of the GCGC helix as well as the other sequences. As in the time series 

calculations, gμi represents the relative transformation from base-pair 3 to 12. The first and 

last two base-pairs were again excluded.

To further test for normality, we use the multivariate normality test using the chi-squared 

plot shown in Figure 15 for the six rigid-body parameters of gμi. The straight dashed line 

indicates a multivariate normal fit, and our data closely resembles this fit. Furthermore, the 

p-value obtained for the Chi-squared test agrees with a hypothesis of multivariate normality. 

Comparable results for both the univariate and multivariate fitness tests are seen for the other 

helix sequences.

6. RIGID-BASE MODELS

Consider a double-helical DNA structure composed of N rigid bases, each of which can be 

connected to the others locally. Let the bases be numbered by the scheme shown below, 

where the horizontal direction indicates base pairs and vertical is the sequential direction.

Let  denote the position and orientation of the ith such body in a static minimal energy 

conformation, an unperturbed state. The relative transformation between body i and body j is 

then .

Let the ith rigid body move by the small amount , where 

for . Then, the relative motion between bodies i and j after the 

small motion is
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Retaining terms to first order, the result can be written as

and the change in relative pose between body i and j is

The corresponding 6D vector of small motions is  which can be written as

Given a 6 × 6 stiffness Kij connecting these two bodies, the corresponding potential energy 

is

(53)

and the total potential energy will be

(54)

where x ∈ ℝ6N−6 is a composite vector of all small rigid-body motions of the structure 

(relative to the base 0) and  is a composite (6N − 6) × (6N − 6) stiffness matrix.

Equation 54 shows that the potential energy of the system run at equilibrium is in quadratic 

form which leads to the probability density function that will be used, the Boltzmann 

distribution. This corresponding conformational Boltzmann distribution is

(55)

Here  is the conformational partition function that normalizes f(x) as a 

probability density. This is a Gaussian distribution, the covariances of which can be related 

to the stiffness matrix as
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This model can be viewed as a discrete version of the bi-rod. If Δs is the step-length between 

stacked bases in the continuum model and Wl, Wr, and W in sectoin 4 are viewed as being 

functions of the curve parameter, s, then

(56)

for p ∈ {0, 1, 2, …}.

The reference frame in the middle of g0 and g1 defines the proximal end of the chain, and 

the frame in the middle of gN−2 and gN−1 is the distal end. Let gd represent the frame at the 

“midpoint” of the distal end of the chain. The reconciliation between this model and other 

models results from marginalizing over all degrees of freedom except those that are present 

in

(57)

If we let , then we can look at the covariance matrix Σd associated with xd by 

determining the relationship between xd and x1, xN−2, and xN−1. We can start by letting 

 and use the referential configuration given by eqs 32 and 33. As shown 

in the Supporting Information, section S2, this leads to

(58)

and

(59)

Using the definition of the covariance, , allows us to compute Σd 

using blocks of . Let

then

(60)
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for  and . This can then be used to 

compare the rigid-base model to other models.

One way this can be used is to compare the rigid-base model to the rigid-base-pair model. 

Given stiffness values for the rigid-base model, we can determine the covariance associated 

with xd. If we assume that Σd equals Σdata as discussed in section 5, the inverse propagation 

techniques in section 5.1 can be employed to determine the equivalent covariance between 

two adjacent base pairs for the rigid-base-pair model. This allows us to determine the 

stiffness between rigid-base pairs that would lead to equivalent end-to-end distributions for 

the rigid-base-pair model and rigid-base model.

For example, consider a rigid-base model where the “left” and “right” chain have the same 

stiffness such that

and the stiffness between chains is of the form

Then, for 10 bases of B-form DNA with a width w of 2 nm, a pitch L/n of 3.4 nm, and steps 

δs of 0.34 nm, we obtain

for c1 = 20, c2 = 10, c3 = 5, and c4 = 5. Using the inverse propagation technique in section 

5.1 for a chain of five rigid base pairs, we calculate the covariance between base pairs to be

This leads to an equivalent stiffness for the rigid-base-pair model of
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Here we have illustrated a method for reconciling the rigid-base and rigid-base-pair models 

through the use of a frame located between the two distal bases in the rigid-base model. By 

comparing the statistics of this new frame with the frame attached to the distal end of a 

rigid-base-pair model of equal length, we can relate the stiffnesses between neighboring 

rigid bases to an equivalent 6D stiffness between rigid-base pairs. In this example, the 

equivalent stiffness was assumed to be homogeneous along the length of the equivalent 

rigid-base-pair model.

7. CONCLUSIONS

We have presented models of DNA and RNA at a number of scales. These models, both 

continuous and discrete, range from anisotropic elastic filaments (the coarsest) to rigid-base 

models (the finest). This spectrum of models has been unified through the use of 

standardized Lie group notation. Moreover, new analytical verification has been presented to 

reconcile and compare the different models. For example, we showed that, as expected, the 

bi-rod model does indeed converge to the single filament model as the filament length 

increases.

Additionally, molecular dynamics simulations and AFM measurements have been 

introduced to validate the use of some of these models. The molecular dynamics simulations 

and time series analysis were performed to validate the use of Gaussian models over 

exponential coordinates. The AFM measurements of naked and cisplatinated DNA have 

been shown to correspond well with the single elastic filament model in the plane. This 

example, which involved determining the bend angle, also highlights how these models can 

be used to determine physical characteristics of DNA or RNA.

Future investigations can be performed to further determine the lengths and stiffnesses for 

which each of these models is best suited. This may include determining how to 

appropriately transition from one model to another.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An overview of the models explored and some of the connections made between them.
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Figure 2. 
Two examples of how helical RNA can be used to create nanostructures.
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Figure 3. 
A parametrized set of reference frames defining an elastic filament.
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Figure 4. 
Five examples of DNA bending. Images generated from PDB data.48–54
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Figure 5. 
Two ensembles of DNA conformations as measured using an AFM: (left) cisplatinated 

DNA; (right) naked DNA.
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Figure 6. 
Two simulated ensembles of stochastic trajectories: (left) with a 36° bend; (right) without a 

bend.
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Figure 7. 
Distribution of the distal end position of the model relative to the proximal end: (left) with a 

36° bend; (right) without a bend.
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Figure 8. 
The relationship between reference frames in the bi-rod model.
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Figure 9. 
Examples of how the effective stiffness matrix, K(s), varies for the values associated with 

rotation. Results are shown for two different sets of parameters: (left) c1 = 10, c2 = 2, c3 = 2, 

c4 = 1; (right) c1 = 10, c2 = 4, c3 = 5, c3 = 1/2.
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Figure 10. 
Examples of how the effective stiffness of the bi-rod model, K(s), differs from its steady-

state value, Kss, for various values of Wl/r and W. Here the Frobenius norm is used.
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Figure 11. 
GCGC autocorrelation plot for the singular values of the cross-covariance matrix.
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Figure 12. 
GCCG autocorrelation plot for the singular values of the cross-covariance matrix.
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Figure 13. 
Probability density function with fit for the GCGC sequence for x1.
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Figure 14. 
Probability density function with fit for the GCGC sequence for x4.
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Figure 15. 
Chi-squared plot for the GCGC sequence parameters.
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