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The effective management of marine fisheries is an ongoing chal-
lenge at the intersection of biology, economics, and policy. One way
in which fish stocks—and their habitats—can be protected is through
the establishment of marine reserves, areas that are closed to fishing.
Although the potential economic benefits of such reserves have been
shown for single-owner fisheries, their implementation quickly
becomes complicated whenmore than one noncooperating harvester
is involved in fishery management, which is the case on the high seas.
How domultiple self-interested actors distribute their fishing effort to
maximize their individual economic gains in the presence of others?
Here, we use a game theoretic model to compare the effort distribu-
tions of multiple noncooperating harvesters with the effort distribu-
tions in the benchmark sole owner and open access cases. In addition
to comparing aggregate rent, stock size, and fishing effort, we focus
on the occurrence, size, and location of marine reserves. We show
that marine reserves are a component of many noncooperative Cour-
not–Nash equilibria. Furthermore, as the number of harvesters in-
creases, (i) both total unfished area and the size of binding reserves
(those that actually constrain behavior) may increase, although the
latter eventually asymptotically decreases; (ii) total rents and stock
size both decline; and (iii) aggregate effort used (i.e., employment)
can either increase or decrease, perhaps nonmonotonically.
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Many harvested biological resources, including fish, are mobile.
Organisms in different locations experience different ecolog-

ical conditions (e.g., food availability or predation rates), and har-
vesters experience different economic conditions (e.g., costs, price,
or efficacy of the harvest technology). The dynamic value of a unit of
biomass (its in situ, or “shadow,” value) is, therefore, location-
dependent. Because it is only economically efficient to remove units
of biomass for which instantaneous net benefits exceed in situ value,
it matters where harvest is done in addition to harvest intensity (1).
Fishery analysts and managers have, thus, become increasingly aware
of the spatial dynamics of exploited resources, the associated re-
sponse by harvesters, and the portfolio of regulatory instruments that
can be used to mitigate market failure along this dimension (2).
Of particular interest is the role that closed areas (also known as

marine protected areas or marine reserves) should play in the
regulation of fishing (3, 4). There are compelling reasons to impose
no-take zones—for example, as a safeguard against environmental
volatility or for the preservation of existence values and non-
extractive ecosystem services—but we focus here on the potential
economic impacts of marine reserves on the harvesting sector.
Bioeconomic models have shown that reserves can, depending on
context, leave yield unchanged (5), increase sustainable yield (6), or
increase economic rents (7–10). However, arbitrarily or randomly
placed marine reserves can impose opportunity costs exceeding
their benefits (7, 11), and reserves located solely on the basis of
biological criteria can engender fierce political opposition because
of their short-run welfare costs (12).
Most bioeconomic models of exploited renewable resources as-

sume that exploitation rights fall at one of two opposite ends of a
spectrum. At one end is the sole owner case, in which a single
harvester fully internalizes all dynamic benefits and costs of harvest
activity and thus maximizes economic net benefits in what is often

referred to as an efficient or “first-best” outcome (13). At the other
end of the property rights spectrum is open access, in which a large
number of harvesters have the nonexclusive right to extract the
resource. The lack of property rights leads harvesters to withdraw
units of the resource without regard to the dynamic impacts on the
stock: they ignore the “stock externality” or the reduction in mar-
ginal productivity of effort (or increase in marginal harvest costs)
that they impose on each other by depleting the stock. In the ex-
treme, unregulated open access leads to a complete dissipation of
economic rents or the so-called “tragedy of the commons” (14), in
which society is no better off for the existence of the resource.
In reality, a range of scenarios falls between sole ownership

and open access. For example, on the high seas, multiple states
interact in a bioeconomic fishing game. These states or “players”
can either cooperate in the regulation of their fishing sectors—in
which case the result is something much like the sole owner
outcome (15, 16)—or interact noncooperatively. In the latter
case, each of the states optimizes effort as a function of harvest
by the other states. Simultaneous solution of the resulting re-
sponse functions defines a mutual best response [i.e., a Cournot–
Nash equilibrium (17)]. The classic analysis by Levhari and
Mirman (18) of a two-player “fishing war” (i.e., a duopoly) shows
that the equilibrium outcome falls between the sole owner and
open access extremes. Subsequent studies have extended their
results in a variety of ways [e.g., to more than two players (19,
20), a system in which the players harvest interacting species
(21), and a case where the players are myopic (22; reviews of the
subject are in refs. 23 and 24)] but have generally avoided an
explicit treatment of spatial dynamics.
To our knowledge, most spatial game theoretic models of

fisheries (25–29) are implicitly spatial (30, 31). That is, they either
allude to space in the context of interactions between neighboring
countries or assume that a given percentage of habitat is equiva-
lent to the same percentage of the stock. This latter assumption,
however, is rarely, if ever, correct. Fish habitat is highly
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heterogeneous: the rates of reproduction, survival, and move-
ment vary tremendously from place to place. In addition, be-
cause fish move, fishing not only reduces the stock size but also
changes its spatial distribution. We hypothesize that the endo-
genous location of the stock, combined with rational (profit-
maximizing) reallocations of harvest inputs in space, can have
important implications for the outcomes of such systems. Fur-
thermore, the action space of players in a spatially explicit game
takes on another dimension, physical space, which adds richness
and realism to the problem while increasing its complexity.
In this analysis, we consider a fishery with explicit spatial dy-

namics governed by a reaction–diffusion process (6, 8). This re-
source is harvested by a number, h, of identical states, each of
which regulates the spatial distribution of its own fishing fleet’s
effort. We consider a range of participating states in this fishing
game from a single sole owner state (h= 1) to open access
(h large). Our main objective is to better understand the impact
of the number of states on the spatial distribution of effort. In
particular, we wish to see whether marine reserves are part of the
noncooperative effort distribution and, if so, how much habitat is
set aside from harvest compared with the sole owner and open
access extremes. We also show how important metrics of system
performance (equilibrium economic rents, stock levels, and aggre-
gate effort) are affected by the number of participants.

Model
We begin by considering a stock that lives within a one-di-
mensional habitat. A simple model for the dynamics of such a
stock is the so-called Fisher–KPP equation (32, 33):

∂N
∂t

= rN
�
1−

N
K

�
+D

∂2N
∂x2

. [1]

In this equation, the variable Nðx, tÞ represents the stock density
(i.e., the number of individuals per unit length) at location x and
time t. The stock density changes as a result of three processes:
birth, death, and dispersal. The parameter r is the maximum per
capita population growth rate. The realized growth rate at a
given location decreases linearly with population density. If the
population density is equal to the carrying capacity K, the pop-
ulation growth rate is zero. The second term on the right side of
Eq. 1 describes the population-level effect of the movement of
individuals as diffusion, where D is the diffusion coefficient.
In general, the environment in which fish live is heterogeneous

(i.e., r and K are both functions of x). The ability to account for
such heterogeneity is one of the primary reasons to use a spatial
model. We assume the simplest form of biological spatial hetero-
geneity: that fish cannot survive outside of a finite stretch of suit-
able habitat of length L. Dirichlet boundary conditions of the form

Nð0, tÞ=NðL, tÞ= 0 [2]

capture this heterogeneity.
Together, model (Eq. 1) and boundary conditions (Eq. 2) have

played a central role in theoretical population ecology, and much
is known about the dynamics of this model (34, 35). In particular,
if the habitat size L is less than a critical size Lc = π

ffiffiffiffiffiffiffiffi
D=r

p
, the

population will not persist (36, 37). For a small habitat (but
larger than Lc), the equilibrium population density reaches its
maximum at the center of the habitat (at x=L=2). For very large
habitat sizes, the equilibrium population density at locations
away from the boundaries is approximately equal to the carrying
capacity. For the remainder of this paper, we choose L>Lc.
Let us assume that fish living in this habitat are at risk for being

caught by the fishing fleets of h identical states. If Eiðx, tÞ is the
spatial distribution of the ith state’s fishing effort, we can include
the effects of harvesting on the stock by amending Eq. 1 as

∂N
∂t

= rN
�
1−

N
K

�
+D

∂2N
∂x2

− qN
Xh
i=1

Eiðx, tÞ. [3]

The costs and benefits that accrue to each state depend on the
state’s own effort distribution as well as the effort distributions of
all of the other states. We assume that states catch fish at a rate
that is proportional to their effort and the stock density. The
proportionality constant q is called the “catchability coefficient”
(13). Given a fixed price p, the revenue generated by the fleet of
state i in the interval dx is, thus,

RiðEiðx, tÞ,Nðx, tÞÞ dx= p qEiðx, tÞNðx, tÞ dx. [4]

Using the notation Eðx, tÞ= ½E1ðx, tÞ,E2ðx, tÞ, . . . ,Ehðx, tÞ�′, we can
write the cost of fishing to state i as

CiðEðx, tÞÞ dx=
�
w0 +w1kEðx, tÞk1

�
Eiðx, tÞ dx, [5]

where w0 is the cost of effort, and w1 is the additional cost per
unit effort associated with interference between harvesters when
they try to fish in the same location. We define the difference
between Ri and Ci as the rent density for state i:

ρiðEðx, tÞ,Nðx, tÞÞ=RiðEiðx, tÞ,Nðx, tÞÞ−CiðEðx, tÞÞ. [6]

The rent density and its derivatives play an important role in our
understanding of marine reserves.
If every state has complete information about the status of the

stock as well as the costs and effort levels of the other states, then
each state can regulate the spatial and temporal distribution of
its own fleet’s effort to maximize the present value of its private
rent given the effort distributions of its competitors’ fleets. In
particular, state i maximizes

ΠiðE,NÞ=
Z∞
0

ZL
0

ρiðEðx, tÞ,Nðx, tÞÞe−atdx  dt [7]

by choosing the effort distribution Eiðx, tÞ subject to the con-
straint Eiðx, tÞ≥ 0. The positive constant a is the discount rate.
The outcome of these simultaneous maximizations is a

Cournot–Nash equilibrium, at which no state can do better by
unilaterally changing its distribution in space or time. After a
sufficient period, we expect this noncooperative equilibrium to
be characterized by a steady state, at which neither the spatial
distribution of the stock nor the effort distributions of the
various states change in time. We derive this steady state nu-
merically (Materials and Methods), and report on its properties.

Results
The steady-state behavior of our model depends on the values of
10 parameters (r, K, D, q, h, L, p, c0, c1, and a). This number is
significantly reduced and our analysis is correspondingly simpli-
fied by rescaling the variables by

u=
N
K
,   τ= rt,   ξ= x

ffiffiffiffi
r
D

r
,   fi =

�q
r

�
Ei,   and  π=

Π�
pK

ffiffiffiffiffiffi
rD

p � [8]

and introducing the four (dimensionless) parameters ℓ=L
ffiffiffiffiffiffiffiffi
r=D

p
,

c0 =w0=ðpqKÞ, c1 = rw1=ðpq2KÞ, and δ= a=r (Materials and Meth-
ods). These four parameters summarize the bioeconomic setting.
Small values of ℓ correspond to a species living in a relatively
small habitat with a large diffusion coefficient or small popula-
tion growth rate; c0 is the cost per unit effort when effort is small
relative to the revenue per unit effort when the stock is at its
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carrying capacity. All else equal, large values of c0 represent a
less profitable resource. For the results that follow, c1, which
measures the negative effects of interference between harvesters,
is held constant at 0.01, and the discount rate is held at δ= 0.03.
Our results are qualitatively insensitive to modest changes of
these parameters (SI Text).
Because each of the h states is identical, the effort distribu-

tions of their fleets are also identical. To illustrate how outcomes
vary with cost, habitat size, and number of participating states,
we found the steady state of the Cournot–Nash equilibrium for a
set of representative parameter choices (Materials and Methods).
For each of two habitat sizes (one small and one large), we
considered both low- and high-cost cases. We analyzed outcomes
for 1 (sole owner) to 100 states as well as the infinite player
(open access) case. As the number of players increases, the
spatial distributions of fish and fishing effort change qualitatively
(Fig. 1). The aggregate (integrated across space) effort, stock,
rent, and reserve area also change, sometimes nonmonotoni-
cally, from sole owner to open access values (Fig. 2).
Marine reserves (areas that are unfished at steady state) arise

in our analysis for two reasons. First, they may occupy areas that
are unprofitable to fish [where uðxÞ− c0 < 0]. States do not need
to regulate the effort of their fleets in these areas. Alternatively,
reserves may arise when a local closure has the benefit of in-
creasing equilibrium harvest elsewhere. We term these latter
closures “binding reserves”; because of local positive marginal
profit density at steady state, they require regulatory oversight by
the states of their own fleets. These binding reserves can further
be divided into central reserves that protect especially valuable
units of stock and peripheral “flux inhibiting” reserves that have
the effect of slowing the net diffusion of stock from profitable

areas into unprofitable ones by reducing the stock density
gradient. The size of reserves depends on the interference cost
c1. Specifically, the lower this interference cost, the smaller the
penalty for concentrating effort in a single location; thus, for
smaller interference costs, distributions of effort are more con-
centrated in space, and as a consequence, reserves are larger
(compare Fig. 1 with Fig. S1). Binding closures persist even when
more than one noncooperating state fishes the same habitat
(Fig. 1).
Equilibrium outcomes differ substantially between the two

property rights extremes (8) (compare Fig. 1 A, E, F, J, K, O, P,
and T with Fig. 2, left and right plot edges). Whereas a sole
owner maintains binding reserves as part of a rent-maximizing
strategy, these reserves disappear in the open access case.
Under open access conditions, harvesters tend to pile up their
effort toward the center of the habitat, and the size of un-
profitable, nonbinding reserves at the habitat edges increases.
Furthermore, under open access conditions, total effort and
stock size are lower than in the sole owner case, and profits are
completely dissipated.
One might expect a smooth transition in effort and stock

distribution, as well as in aggregate metrics, as the number of
harvesting states increases from sole owner to open access ex-
tremes. Indeed, for some parameter choices, smooth transitions
occur (e.g., Fig. 1 F–J). In this case, as the number of participants
increases, stock and rent decline (Fig. 2 D and E). Total effort
increases (Fig. 2D) and becomes increasingly centralized (Fig. 1
F–J), and although declines in profitability accompany an in-
crease in the total unfished area, the size of binding reserves
decreases (Fig. 2F).
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Fig. 1. Distribution of stock uðξÞ and fishing effort
P

i fiðξÞ over space (ξ). In A–J, ℓ= 3.5; in K–T, ℓ= 6. For A–E and K–O, c0 = 0.01; for F–J and P–T, c0 = 0.1. The
numbers of states are (A, F, K, and P) 1, (B, G, L, and Q) 2, (C, H,M, and R) 10, (D, I, N, and S) 100, and (E, J, O, and T) infinite (open access). Locations of binding
reserves are highlighted in red, and nonbinding reserves are in blue. For all panels, c1 = 0.01, and δ= 0.03.
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A similarly smooth transition in effort and stock density dis-
tributions from sole owner to open access is shown in Fig. 1 A–E
and P–T. For large habitats in which fishing is costly (Fig. 1 P–T),
binding reserve size is relatively larger for an intermediate
number of states but ultimately declines as the number of states
increases (Fig. 2L). In the smaller habitat, the centralization of
effort during this transition results in the disappearance of the
central marine reserve (Fig. 1 A–E) and a sharp change in the
relationship between binding reserve size and the number of
fishing states (Fig. 2C).
Interestingly, in some cases where a sole owner does not

maintain a binding central reserve, two or more noncooperating
states may maintain one—for example, in the large-habitat, low-
cost case (Fig. 1 K–O). Binding reserves in this case persist even
as dozens of independent states enter the system, although if the
number of states is large enough (and certainly in the open ac-
cess equilibrium), these reserves ultimately disappear (Fig. 2 C,
F, I, and L). An increase in the discount rate has a similar effect
as an increase in the number of states on the distribution of
effort (Fig. S2).
The intuition behind this result rests on density-dependent

dynamics. In the large-habitat, low-cost case, the sole owner does
not use a central closure; if this area was closed, the central stock
density would equilibrate close to the carrying capacity, and too
much productivity would be lost to density-dependent effects. A
reserve only appears as part of the steady-state Cournot–Nash
equilibrium as the number of harvesting states increases, the
stock density is correspondingly depleted, and the density de-
pendence is reduced. This central reserve ultimately disappears
when h is sufficiently large, resulting in a sharp change in the
relationship between binding reserve size and the number of
states (green lines in Fig. 2 C and I).

Discussion
By incorporating diffusive spatial dynamics into a logistic growth
model, we extend the noncooperative fishing game by Levhari
and Mirman (18) into a spatially explicit context (38). This ex-
tension allows us to show that marine reserves are maintained,
even when multiple self-interested harvesters compete for use of
the same fishing grounds. This characterization of strategic be-
havior in space constitutes a significant theoretical advance,
linking together the theory of commons games with that of
spatial bioeconomics. The results improve our understanding of
the circumstances under which protected areas can be justified
on grounds of efficiency and incorporate space as another di-
mension (i.e., in addition to the quantity of effort) of the stra-
tegic interaction between participants.
In our spatial version of the “fish war,” changes in the habitat

size, the cost of effort, and the number of participants affect the
equilibrium levels of total harvest, stock abundance, and rents,
which one observes in a nonspatial model (18). However, these
parameters also affect the spatial distribution of fishing effort
and stock. Each state’s response function implicitly accounts for
the impact of its competitor’s effort allocation on the spatial
dynamics of the resource.
Marine reserves are part of the noncooperative equilibrium

over a wide range of scenarios. Their size, location, and need for
enforcement (i.e., binding vs. nonbinding) vary with the number
of states. We identified three distinct kinds of “closed areas”:
central reserves that protect “sources” of biomass to be har-
vested later in adjacent fished “sinks,” flux inhibiting reserves
that mitigate costly dispersal out of profitable fishing habitat, and
economic reserves that are unfished because of lack of interest
on the part of the harvesters because the marginal rent per unit
effort is negative in these locations. The first two types of closure
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would require regulatory oversight by each state of their own
fleet, whereas the third would not. Regardless, all three forms of
marine reserves are noteworthy because of the many benefits of
reserves for which we do not explicitly account here. For ex-
ample, reserves serve as a guard against environmental volatility,
a means of augmenting the stock dynamics of other species that
might be disturbed by fishing activity, and a means of supporting
other economically valuable activities, such as recreational fish-
ing and other forms of tourism (39, 40).
The absence of property rights appears not only in high-seas

fisheries but also at smaller scales, such as in limited entry coastal
fisheries within a nation’s territorial waters. If the governing
body in such a case were to limit the number of harvesters (i.e.,
to fix h) but not directly regulate the amount or location of
fishing effort, the harvesters might find it in their interests to
leave an area unfished—even when a sole owner might fish
there. Similarly, marine reserves may emerge locally within ter-
ritorial use rights fisheries (TURFs) (reviewed in ref. 41) when
the costs of cooperation among TURF owners are low (30); in
such cases, finite allocation of spatial property rights effectively
restricts entry to the fishery. However, because stock movement
across TURF boundaries erodes property rights, generally top-
down imposition of reserves is necessary to improve stock health
and profits (30, 31). Our results are distinct from such analyses
in that reserves emerge even in the complete absence of
property rights.
Finally, our theoretical results also corroborate recent em-

pirical analyses (31, 42) that suggest that the imposition of a
closure of the high seas to fishing could be beneficial or at least
not that costly to a collection of self-interested states exploiting a
shared mobile stock. We show here that, for a large habitat, a
closure might even emerge in the absence of any coordinated
regulatory action (such as a treaty). Although our model assumes
that all states are equal (e.g., have identical production functions,
which is likely not the case in real world systems), it nevertheless
suggests that convincing a collection of states to agree to such a
closure might be easier than otherwise expected. The fact that
marine reserves can prove economically beneficial even under
noncooperative circumstances should strengthen motivation for
accords on high-seas closures (31).

Materials and Methods
Rescaling. Applying the substitutions in Eq. 8 transforms Eq. 3 to

∂u
∂τ

=u
	
1−u− kfðξ, τÞk1



+
∂2u
∂ξ2

, [9]

with the boundary conditions

uð0, τÞ=uðℓ, τÞ= 0. [10]

The rent density (Eq. 6) becomes

ϱðfðξ, τÞ,uðξ, τÞÞ= 	uðξ, τÞ− c0 − c1kfðξ, τÞk1


fiðξ, τÞ, [11]

and the discounted present value of the stream of profits earned by state
i becomes

πi ½fðξ, τÞ,uðξ, τÞ�=
Z∞
0

Z ℓ

0

ϱðf,uÞe−δτdξdτ. [12]

Given the other states’ effort distributions, state i attempts to maximize πi by
choosing fiðξ, τÞ for 0< ξ< ℓ and τ> 0.

Analysis. To solve the ith state’s profit maximization problem, we first dis-
cretize the spatial coordinate, so that ξj = ðj− 1ÞΔξ, and we approximate the
partial differential equation (Eq. 9) with the system of ordinary differential
equations:

duj

dτ
=uj

"
1−uj −

Xh
i=1

fij

#
+Q

	
uj



[13]

for 1≤ j≤m and m= ℓ=ðΔξÞ. Here, ujðτÞ=uðξj , τÞ, fijðτÞ= fiðξj , τÞ, and Q½uj �=
ðuj−1 − 2uj +uj+1Þ=ðΔξÞ2. Under this approximation, Eq. 12 is

πi =
Z∞
0

Xm
j=1

"
uj − c0 − c1

Xh
k=1

fkj

#
fije

−δτΔξdτ. [14]

The maximization problem for state i now consists of choosing fijðτÞ at every j
subject to the state equations (Eq. 13). This problem is a standard problem in
optimal control theory, to which we may apply Pontryagin’s maximum
principle (43). Because Δξ is a constant, we maximize πi=Δξ, which is com-
putationally convenient.

The Hamiltonian for system equations (Eqs. 13 and 14) is

Hi ½fi1, . . . , fim,u1, . . . ,um�=
Xm
j=1

("
uj − c0 − c1

Xh
k=1

fkj

#
fije

−δτ

+ λij

"
uj

 
1−uj −

Xh
k=1

fkj

!
+Q

	
uj

#)

. [15]

Differentiating Hi with respect to the state variables, we find that the ad-
joint equations are given by dλij=dτ=−∂Hi=∂uj or

dλij
dτ

=−

 
fije

−δτ + λij

"
1− 2uj −

Xh
k=1

fkj

#
+Q

	
λij

!

. [16]

The boundary conditions (Eq. 10) imply

u1ðτÞ=um+1ðτÞ= λi1ðτÞ= λi,m+1ðτÞ= 0. [17]

The substitution of λij = e−δτμij into Eq. 16 produces the equivalent autono-
mous system

dμij
dτ

= δμij −

 
fij + μij

"
1− 2uj −

Xh
k=1

fkj

#
+Q

	
μij

!

[18]

with

μi1ðτÞ= μi,m+1ðτÞ= 0. [19]

Finding nonnegative functions fijðτÞ that together maximize πi amounts to
finding solutions to the state equations (Eq. 13) and the adjoint equations
(Eq. 18) that satisfy the boundary conditions (Eqs. 10 and 19) and simulta-
neously maximize the Hamiltonian (Eq. 15). To maximize Hi, the solutions
must satisfy the necessary conditions:

∂Hi

∂fij
=uj

�
1− μij

�
− c0 − c1

 
fij +

Xh
k=1

fkj

!
= 0. [20]

Conditions (Eq. 20) hold for each of the h states (that is, for i= 1,2, . . . ,h and
for j= 1,2, . . . ,m).

We would seem to have a system of 2hm equations to solve. Note,
however, that, because the states are identical, the shadow price μij de-
pends on the location ξj but not on the identity of the state. That is,
μijðτÞ= μkj for all i and k values. It then follows from Eq. 20 that ∂Hi=∂fij −
∂Hs=∂fsj = c1ðfkj − fijÞ= 0. Thus, fij = fkj for all i and k values. All states use the
same effort distribution at the Cournot–Nash equilibrium. Using this fact
simplifies Eq. 20, and we find that

fijðτÞ=max

8<
:uj

�
1− μij

�
− c0

ð1+hÞc1 , 0

9=
;. [21]

We are interested in steady-state solutions (i.e., solutions with dμij=dτ,
duj=dτ, and dfij=dτ all zero). To find these solutions, we substitute Eq. 21 into
Eqs. 13 and 18 and solve them numerically.
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