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Cheng-Jian Xu,11,12,13,58 Leanne K. Küpers,14,58 Sam S. Oh,15,58 Cathrine Hoyo,16,58
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Epigenetic modifications, including DNAmethylation, represent a potential mechanism for environmental impacts on human disease.

Maternal smoking in pregnancy remains an important public health problem that impacts child health in a myriad of ways and has

potential lifelong consequences. The mechanisms are largely unknown, but epigenetics most likely plays a role. We formed the Preg-

nancy And Childhood Epigenetics (PACE) consortium and meta-analyzed, across 13 cohorts (n ¼ 6,685), the association between

maternal smoking in pregnancy and newborn blood DNA methylation at over 450,000 CpG sites (CpGs) by using the Illumina 450K

BeadChip. Over 6,000 CpGs were differentially methylated in relation tomaternal smoking at genome-wide statistical significance (false

discovery rate, 5%), including 2,965 CpGs corresponding to 2,017 genes not previously related to smoking and methylation in either

newborns or adults. Several genes are relevant to diseases that can be caused by maternal smoking (e.g., orofacial clefts and asthma)

or adult smoking (e.g., certain cancers). A number of differentially methylated CpGs were associated with gene expression. We observed

enrichment in pathways and processes critical to development. In older children (5 cohorts, n¼ 3,187), 100% of CpGs gave at least nom-

inal levels of significance, far more than expected by chance (p value < 2.2 3 10�16). Results were robust to different normalization

methods used across studies and cell type adjustment. In this large scale meta-analysis of methylation data, we identified numerous

loci involved in response tomaternal smoking in pregnancy with persistence into later childhood and provide insights intomechanisms

underlying effects of this important exposure.
Introduction

Despite years of advisories regarding health risks to the

developing fetus from maternal smoking, many pregnant

women still smoke, including 12.3% in the US.1 Maternal
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smoking during pregnancy is regarded as a cause of low

birth weight, reduced pulmonary function (PLF [MIM:

608852]), orofacial clefts (OFC1 [MIM: 119530]), and sud-

den infant death syndrome (SIDS [MIM: 272120]) in

exposed newborns.2 Other adverse birth outcomes3 have
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been associated with maternal smoking in pregnancy,

along with common health problems in children,

including asthma (ASRT [MIM: 600807]), otitis media

(OMS [MIM: 166760]), and neurobehavioral disorders.2

The mechanisms for the adverse health effects of

maternal smoking during pregnancy on offspring remain

poorly understood.2 Recently, studies have examined the

potential role of epigenetic modifications such as DNA

methylation at specific CpG sites (CpGs). These include

studies examining genome-wide DNA methylation in

newborns in relation to maternal smoking in pregnancy

with the Illumina Infinium HumanMethylation27 (27K)

BeadChip4–6 or the newer platform with wider coverage,

the HumanMethylation450 (450K) BeadChip.7–10 A num-

ber of differentially methylated loci have been identified

in offspring in relation to maternal smoking in pregnancy

in individual studies (references in the Supplemental
Medical School, F75012 Paris, France; 23Division of Epidemiology, Biostatistic

phis, Memphis, TN 38152, USA; 24Team of Environmental Epidemiology appli
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The Am
Note). One study examined the top CpGs with respect to

timing of exposure and found that the signals reflect sus-

tained, rather than short-term, exposure tomaternal smok-

ing during pregnancy,11 but this has not been evaluated

genome-wide. A few studies suggest that some of these

methylation signals persist into later childhood and

adolescence, but data are limited.9,12 The combination of

genome-wide data across studies via meta-analysis to

generate large sample sizes for the discovery of loci that

would not have been identified from individual studies

has been very successful in genetics, but this approach

has rarely been used with methylation data.

To address the impact of maternal smoking during preg-

nancy on newborns withmuch greater power, we recruited

13 birth cohort studies with data on maternal smoking

during pregnancy and DNA methylation in offspring

from the 450K BeadChip into the Pregnancy and
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Childhood Epigenetics consortium (PACE). We meta-

analyzed harmonized cohort-specific associations be-

tween maternal smoking during pregnancy and DNA

methylation in the offspring. We examined both sus-

tained maternal smoking and any smoking during preg-

nancy. We also examined persistence of DNA methylation

patterns related to maternal smoking in newborns among

older children, including adjustment for postnatal

secondhand tobacco smoke exposure. For functional

follow-up of findings, we evaluated the associations be-

tween methylation status in the newly identified CpGs

and expression levels of nearby genes and performed

pathway and functional network analyses. This study rep-

resents a large and comprehensive evaluation of the

impact of maternal smoking during pregnancy on DNA

methylation in offspring.
Material and Methods

Participating Cohorts
A total of 13 PACE cohorts participated in the meta-analysis of

maternal smoking during pregnancy and 450K DNA methylation

in newborns. These studies, listed in alphabetical order, are the

Avon Longitudinal Study of Parents and Children (ALSPAC), the

Center for Health Assessment of Mothers and Children of Salinas

(CHAMACOS), the Children’s Health Study (CHS), the GECKO

Drenthe cohort, the Generation R Study, Isle of Wight (IOW),

Mechanisms of the Development of Allergy (MeDALL), three inde-

pendent datasets from the Norwegian Mother and Child Cohort

Study (MoBa1, MoBa2, and MoBa3), the Norway Facial Clefts

Study (NFCS), the Newborn Epigenetics Study (NEST), and Project

Viva. MeDALL represents a pooled analysis of four cohorts with

coordinated methylation measurements: Infancia y Medio Ambi-

ente (INMA), Etudes des Déterminants pré et postnatals précoces

du développement et de la santé de l’Enfant (EDEN), Children’s

Allergy Environment Stockholm Epidemiology study (BAMSE),

and Prevention and Incidence of Asthma and Mite Allergy

(PIAMA). Two of theMeDALL cohorts contributed to the newborn

meta-analysis (INMA and EDEN). There were five studies with data

on older children: ALSPAC, Genes-environments and Admixture

in Latino Americans (GALA II), the Study to Explore Early Devel-

opment (SEED), MeDALL (INMA, EDEN, BAMSE, and PIAMA),

and an independent methylation dataset from BAMSE subjects.

Ethical approval for study protocols was obtained for all partici-

pating cohorts. Further information on this as well as the study

methods for each cohort are described in detail in the Supple-

mental Note.

For this paper, participating cohorts shared only results files

from in-house analyses. No individual data were shared for this

paper. Therefore, access to the individual cohort-level data for

the purpose of reproducing results would require individual data

transfer agreements to be negotiated with and approved by each

of the contributing cohorts.
Harmonization of Maternal Smoking Variables
Cohorts assessed maternal smoking during pregnancy via ques-

tionnaires completed by the mothers. The MoBa study (MoBa1

and MoBa2) also used cotinine measurements from maternal

blood samples taken during pregnancy as part of the definition
682 The American Journal of Human Genetics 98, 680–696, April 7, 2
of maternal smoking during pregnancy. More details on the

cohort-specific smoking variables are in the Supplemental Note.

In a previous publication from the MoBa1 study, significant asso-

ciations between maternal smoking during pregnancy and DNA

methylation in newborns were driven not by transient smoking

that ended early in pregnancy but rather by sustained smoking

during pregnancy.11 Thus, each cohort ran separate models to

evaluate both sustained smoking and any smoking during preg-

nancy. The variable (yes/no) for sustained smoking during preg-

nancy was designed to capture women who smoked at least one

cigarette per day through most of pregnancy. To cleanly contrast

the effect of sustained smoking through pregnancy with that of

never smoking during pregnancy, we excluded women who re-

ported quitting smoking during pregnancy from the sustained

smoking models. The variable (yes/no) for any maternal smoking

during pregnancywas designed to capture any amount of smoking

during pregnancy, at any time, even if a woman reported quitting.

Because we did not exclude women who quit smoking during

pregnancy from the models representing any smoking during

pregnancy, the total sample sizes are slightly larger than those of

the models representing sustained smoking during pregnancy.

Genome-wide analyses use large sample statistics. We limited

meta-analyses to cohorts with at least 15 subjects in both the

exposed and unexposed groups. This excluded four cohorts

(CHAMACOS, CHS, IOW, and Project Viva) from the sustained

smoking models. However these cohorts did participate in the

meta-analysis of any smoking during pregnancy.
Methylation Measurements and Quality Control
Each cohort independently conducted laboratory measurements

and quality control. The samples for each cohort underwent bisul-

fite conversion via the EZ-96 DNA Methylation kit (Zymo

Research). Samples were processed with the Illumina Infinium

HumanMethylation450 (450K) BeadChip (Illumina) at Illumina

or in cohort-specific laboratories.

Quality control of samples was performed by each cohort and

failed samples were excluded on the basis of Illumina’s detection

p value, low sample DNA concentration, sample call rate, CpG-

specific percentage of missing values, bisulfite conversion effi-

ciency, gender verification with multidimensional scaling plots,

and other quality control metrics specific to cohorts. Cohorts

could also use validated, published statistical methods for normal-

izing their methylation data on the untransformed methylation

beta values (ranging from 0 to 1). Some cohorts also made inde-

pendent probe exclusions. More details are provided in the

Supplemental Note. For the meta-analysis, additional probe exclu-

sions were made across all cohorts. Specifically, we excluded con-

trol probes (n¼ 65), probes that mapped to the X (n¼ 11,232) or Y

(n ¼ 416) chromosomes, probes with an underlying SNP mapping

to the last five nucleotides of the probe sequence (N ¼ 9,168) as

previously described,7 and CpGs with an implausible (zero) value

for the SE (n ¼ 67). This left a total of 464,628 CpGs included in

the meta-analysis.
Cohort-Specific Statistical Analyses
Each cohort ran independent statistical analyses according to a

common pre-specified analysis plan. Robust linear regression

was used in R13 to evaluate the association between maternal

smoking during pregnancy and cord blood DNA methylation

for each probe while accounting for potential heteroskedas-

ticity and/or influential outliers. Each cohort ran the following
016



covariate-adjusted statistical models: (1) the primarymodel, which

used sustained maternal smoking during pregnancy as the expo-

sure and the normalized betas as the outcome, (2) sustained

maternal smoking during pregnancy as the exposure and raw betas

(not normalized) as the outcome, (3) anymaternal smoking during

pregnancy as the exposure and normalized betas as the outcome,

(4) any maternal smoking during pregnancy as the exposure and

raw betas as the outcome, and (5) sustainedmaternal smoking dur-

ing pregnancy as the exposure and normalized betas as the

outcome, with additional adjustment for cell type proportion. All

models were adjusted for maternal age, maternal education (or a

surrogate socioeconomic metric), parity, and technical covariates

such as batch or plate. Some cohorts used ComBat14 to account

for batch effects and therefore did not include batch or plate as co-

variates in the models with normalized betas (see Supplemental

Note). Additional correction for study design or sampling factors

was done as needed in some cohorts. Because maternal smoking

during pregnancy is not related to the child’s sex, it cannot be a

confounder and thus was not included in models. We did not

adjust for principal components (PCs) because not all cohorts

had genome-wide genotype data and cohorts with genotype data

had it only for a subset of subjects with methylation data. Further-

more, in one large cohort with PC data, models adjusted for PCs

showed little variation in the results (correlation of betas ¼ 0.991;

correlation of log(p values) ¼ 0.996) when compared to models

without this adjustment, despite a reduction in sample size. The

statistical models for cohorts with DNA methylation measured in

older children were the same, with the additional adjustment for

second-hand tobacco smoke exposure.

All cohorts independently estimated cell type proportion by us-

ing the reference-based Houseman method15 in the minfi pack-

age16 with the Reinius et al. dataset for reference.17 Cell type

correction was applied by inclusion of the six estimated cell type

proportions (CD8T, CD4T, NK cells, B cells, monocytes, granulo-

cytes) as covariates in cohort-specific statistical models.
Meta-analysis
We performed inverse variance-weighted fixed-effects meta-anal-

ysis with METAL.18 We accounted for multiple testing by control-

ling the false discovery rate (FDR) at 5%, implementing the

method by Benjamini and Hochberg.19 This method was applied

to all instances of FDR correction described in this paper unless

otherwise specified. CpGs with an FDR-corrected p value less

than 0.05 were considered statistically significant. CpGs that

were statistically significant based on the more stringent Bonfer-

roni correction (uncorrected p value < 1.08 3 10�7 to account

for 464,628 tests) were also noted.

To determine the robustness of our models and findings, we per-

formed an additional analysis in which we removed the cohorts of

non-European ancestry (Table S1). We compared the effect esti-

mates, SEs, and the distribution of the p values for the model to

the estimates for our primary model to evaluate the consistency

of our findings.
Examination in Older Children of CpGs Associated

with Smoking in Cord Blood
The FDR-significant CpGs identified in the primary model from

the newborn meta-analyses were followed up with a lookup repli-

cation approach in the results from five older children cohorts,

and FDR correction was applied to account for the number of

CpGs tested.
The Am
Literature Review to Identify Genes Previously

Associated with Smoking and Methylation
We performed a systematic literature review to determine which

CpGs represented findings not previously related to smoking

exposure and methylation in the literature. A query of NCBI’s

PubMed database was performed with the search terms ((‘‘DNA

Methylation’’[Mesh] OR methylation) AND (‘‘Smoking’’[Mesh]

OR smoking)) in order to be broad enough to capture all past

studies reporting such results. CpGs with previously reported as-

sociations with smoking, both from prenatal exposure or in

adults, were considered. This search yielded 789 results when per-

formed on March 1, 2015. All results were then reviewed by title

and abstract to determine whether they met inclusion criteria.

First, results were limited to those performed in healthy human

populations. That is, participants could not exclusively have

been drawn from disease cases and studies could not have been

performed only in cell lines or animals. Case-control analyses

that included healthy controls were accepted as meeting this

criterion, and no limitation was applied concerning the tissue

used for DNA extraction. Second, studies were required to have

performed DNA methylation analysis agnostically on a large scale

as opposed to targeted interrogation of candidate CpGs. This was

operationalized by including only analyses that examined >1,000

sites simultaneously. The Illumina 450K, 27K, and GoldenGate

arrays all met this criterion. Third, the exposure was restricted to

tobacco cigarette smoking. Related exposures, such as to other

forms of tobacco use or smoke exposure, were not included.

Lastly, studies had to have reported their significant results pub-

licly. Studies that failed to report p values or gene annotations

were excluded.

Review of the existing literature on the effect of smoking

on DNA methylation identified 25 publications meeting inclu-

sion criteria. Of these, 16 studies reported results for adult

smoking exposure,20–35 and nine provided results of association

between maternal smoking during pregnancy on child DNA

methylation.4,7–9,12,36–39 CpG level results (p values and gene

annotations) for sites showing significant association between

smoking exposure and DNA methylation were extracted and

compiled for comparison with the results from the meta-

analysis. Results were considered significant if they met the mul-

tiple testing criteria implemented within the publication. For

studies failing to implement any multiple testing correction,

a naive Bonferroni threshold for the number of tests per-

formed in the individual study was used. Genes previously

associated with either adult smoking or maternal smoking in

pregnancy (Table S6) were excluded from our list of meta-anal-

ysis results.
CpG Annotation
The official gene name was noted for each CpG via Illumina’s

genome coordinate.40 We enhanced the annotation provided by

Illumina by using the UCSC Genome Browser (including data

the RefSeq and Ensembl databases), as well as annotation data in

Bioconductor. All of the annotations use the human February

2009 (GRCh37/hg19) assembly.We also used the program Snipper

to annotate the nearest genes within 10 Mb of each CpG. We

include this expanded Snipper gene annotation in our tables

and the Discussion.

For selected genes, we used coMet41 to graphically display addi-

tional information about CpGs, including physical location, corre-

lation, statistical significance, and functional annotation.
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Enrichment Analysis
We evaluated whether the CpGs significantly associated with

smoking (based on the FDR p value< 0.05) were enriched, relative

to all CpGs analyzed, for several biologic annotations provided in

the Illumina annotation file. We assessed enrichment by using the

two-sided doubling mid p value of the hypergeometric test.24 We

also evaluated enrichment in a subset of CpGs mapping to im-

printed differentially methylated regions (DMRs) described by

Court et al.42

Pathway Analyses
We linked the CpGs significantly associated with smoking (based

on an FDR p value < 0.05) to genes on the basis of only the 450K

BeadChip annotation file.43 Probes lacking an annotated Entrez

Gene ID were filtered (n ¼ 1,971), as were duplicate gene entries

(n ¼ 1,473). A total of 2,629 unique gene identifiers were used

in gene ontology enrichment analysis with three different proce-

dures as described below.

This resulted in 2,235 genes that mapped to gene ontologies of

biological processes, and using topGO in R,44 we tested for gene

enrichment over the background array (16,119 unique annotated

Entrez Gene IDs) by using Fisher’s exact tests with a minimum of

five genes per node. In addition, we used the DAVID bioinformat-

ics resource45 to test for enrichment in gene ontology biological

processes with a threshold of five, and we used the Benjamini-

Hochberg procedure to control for false discoveries. Finally, we

used QIAGEN’s Ingenuity Pathway Analysis (IPA) to identify rele-

vant signaling and functional pathways.

Functional Network Analysis
To construct a functional association network, it was desirable to

reduce the list of tested CpGs, so we prioritized the FDR-significant

CpGs from the primary model in a stepwise manner. First, we only

included those CpGs that were FDR significant in both the pri-

mary and cell-type-adjusted models (FDR p values < 0.05). Next,

we sorted these CpGs according to their effect size (beta coeffi-

cient), and selected the top quartile (n ¼ 980). The genes mapping

to these prioritized CpGs were then used as input for the construc-

tion of a functional interaction network.We used the GeneMANIA

algorithm, as well as its functional association data, including ge-

netic interaction, physical interactions, co-expression, shared pro-

tein domains, and co-localization networks.46 We selected the ‘‘all

available networks’’ option with a 500-gene output (accessed

March 11, 2015). Functional enrichment analysis was then per-

formed on all genes from the constructed interaction network

against Gene Ontology (GO) terms to detect significantly enriched

GO terms.47 FDR correction was applied to this analysis based on

the q value; a threshold of q < 0.01 was used.

Methylation Transcription Analysis
To further explore the associations between methylation and gene

expression, we performedmethylation-expression analyses, evalu-

ating the association between the methylation status of CpGs and

differences in quantitative levels of gene expression. All identified

CpGs that reached FDR-corrected significance and that we identi-

fied as not previously reported in the literature were tested for as-

sociation with expression levels of genes within a region of 250 kb

upstream or downstream of the CpG48 (total region 500 kb) to

evaluate whether the CpG-methylation status influenced tran-

script levels of genes. We had two datasets available for this anal-

ysis. One dataset included mRNA gene expression (Illumina
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HumanHT-12 v.4) and 450K methylation data, both from whole-

blood samples from 730 adults over 45 years of age in the

Rotterdam Study, a population-based prospective cohort study in

Rotterdam, the Netherlands.49 This gene expression dataset is

available at the GEO public repository under the accession num-

ber GEO: GSE33828. The second dataset included mRNA gene

expression (Affymetrix Human Transcriptome Array 2.0) and

450K methylation data on whole-blood samples from 107 chil-

dren at 4 years of age from the INMA study in Spain. Study popu-

lation details for the Rotterdam Study and INMA are in the

Supplemental Note. In the Rotterdam dataset, 2,636 of the 2,965

CpGs examinedmapped to a transcript within the 500 kb window.

We created residuals for mRNA expression after regressing out the

Houseman-estimated white-blood-cell proportions, the erythro-

cyte and platelet cell counts, fasting state, RNA quality score, plate

number, age, and sex on the mRNA expression levels by using a

linear mixed model. We then created residuals for DNA methyl-

ation, regressing out the Houseman-estimated white-blood-cell

proportions, age, sex, batch effects on the dasen-normalized50

beta-values of the CpGs by using a linear mixed model. We used

a linear regression model to evaluate the association between the

residuals of the mRNA expression levels and the residuals of the

dasen-normalized beta-values of the CpGs.

The INMA gene expression data were normalized with Expres-

sion Console Software from Affymetrix, and probes were clustered

to the transcript level. Only transcripts within the 500 kb window

of selected CpGs were considered in the analysis (n ¼ 45,076 tran-

scripts). To control for technical variation in the DNAmethylation

dataset, a PC analysis of 600 negative control probes was per-

formed with 10,000 permutations, and the residuals of a linear

regression model including the first five PCs were estimated. The

effect of sex and Houseman cell-type-proportion estimates were

adjusted for in a second-stage linear regressionmodel. Twomodels

were applied to control for technical and unwanted biological

variation when estimating gene expression residuals. In the first

one, sex and Houseman estimates were regressed out. In the sec-

ond one, 14 surrogate variables estimated with the sva R pack-

age14 were adjusted for in a second model including sex and

Houseman estimates. A linear regression model of residuals of

gene expression versus residuals of methylation was performed.

Multiple testing for both Rotterdam and INMA gene expression

analyses was controlled with Benjamini-Hochberg FDR correction.
Examination of Polymorphic and Cross-Reactive

Probes
The list of FDR-significant CpGs was matched to the list of poly-

morphic and cross-reactive CpGs provided by Chen et al.51 to

identify potential problematic probes. We additionally performed

the dip test52 for unimodality for each CpG to test for non-unim-

odal distributions in the MoBa1 cohort (n ¼ 1,068). Also using the

MoBa1 cohort, we visually inspected density plots for each of the

probes that matched to the list of polymorphic probes from Chen

et al. to assess departures from unimodality, including from small

numbers of outlier values.
Results

Study Characteristics

A total of 13 cohorts participated in the meta-analysis of

maternal smoking during pregnancy and 450K DNA
016



Table 1. Smoking Variable Frequencies for the Cohorts Participating in Meta-analyses: Newborns and Older Children

Studya Study Population Particpantsb

No. of Participants Exposed to
Sustained Maternal Smoking
during Pregnancy (%)

No. of. Participants Exposed to
Any Maternal Smoking during
Pregnancy (%)

ALSPAC newborns 860 87 (10.1) 120 (14.0)

CHAMACOS newborns 378 7 (1.9)c 24 (6.3)

CHS newborns 85 NAc 22 (25.9)

GECKO newborns 255 70 (27.5) 129 (50.6)

Generation R newborns 883 129 (14.6) 220 (24.9)

IOW newborns 90 9 (10.0)c 23 (25.6)

MeDALL newborns 362 43 (11.9) 63 (17.5)

MoBa1 newborns 1,063 156 (14.7) 312 (29.4)

MoBa2 newborns 671 70 (10.4) 173 (25.8)

MoBa3 newborns 252 28 (11.1) 73 (29.0)

NEST newborns 413 69 (16.7) 136 (32.9)

NFCS newborns 889 245 (27.6) 325 (36.6)

Project Viva newborns 485 14 (2.9)c 26 (5.4)

ALSPAC older children 840 89 (10.6) 115 (13.7)

BAMSE older children 347 26 (7.5) 43 (12.4)

GALA II older children 569 40 (7.0) 76 (13.4)

MeDALL older children 851 86 (10.2) 121 (14.3)

SEED older children 584 25 (4.3) 49 (8.4)

NA, not available.
aStudy names and additional information: The Avon Longitudinal Study of Parents and Children (ALSPAC), the Center for Health Assessment of Mothers and Chil-
dren of Salinas (CHAMACOS), the Children’s Health Study (CHS), the GECKO Drenthe cohort, the Generation R Study, Isle of Wight (IOW), Mechanisms of the
Development of Allergy (MeDALL), three independent datasets from the Norwegian Mother and Child Cohort Study (MoBa1, MoBa2, and MoBa3), the Norway
Facial Clefts Study (NFCS), the Newborn Epigenetics Study (NEST), and Project Viva. MeDALL represents a pooled analysis of four cohorts with coordinated
methylation measurements: Infancia y Medio Ambiente (INMA), Etudes des Déterminants pré et postnatals précoces du développement et de la santé de l’Enfant
(EDEN), Children’s Allergy Environment Stockholm Epidemiology study (BAMSE), and Prevention and Incidence of Asthma and Mite Allergy (PIAMA). Two of the
MeDALL cohorts contributed to the newborn meta-analysis (INMA and EDEN). Studies with data on older children: ALSPAC, Genes-environments and Admixture
in Latino Americans (GALA II), the Study to Explore Early Development (SEED), MeDALL (INMA, EDEN, BAMSE, and PIAMA), and an independent methylation
dataset from BAMSE subjects.
bNumber of participants with smoking data, 450K methylation, and covariates. Participants who quit smoking during pregnancy were not included in the sus-
tained smoking models.
cCohorts in which the sustained smoking category had n < 15 or insufficient information to create the requested category, resulting in exclusion from the sus-
tained smoking analysis models. All cohorts were included in the models evaluating the exposure of any smoking during pregnancy.
methylation in newborns. Among these 6,685 newborns,

897 (13%) were exposed to sustained maternal smoking

during pregnancy and 1,646 (25%) were exposed to any

maternal smoking during pregnancy. We also included

five cohorts of older children (n ¼ 3,187, average age ¼
6.8 years); 266 children (8%) were exposed to sustained

smoking during pregnancy and 404 (13%) were exposed

to any maternal smoking during pregnancy. The cohort-

specific summary statistics for maternal smoking are pre-

sented in Table 1 and covariates in Table S1. The majority

of participants were of European ancestry (Table S1).

Meta-analysis

Our primary model evaluated the association between sus-

tained maternal smoking during pregnancy and differen-

tial DNA methylation in newborns by using normalized

methylation betas as the outcome, adjusting for covariates
The Am
(Figure 1). The cohort-specific lambdas and number of

CpGs included in eachmodel are listed in Table S2. Among

the 6,073 CpGs with FDR significance (Table S3), 568 also

met the strict Bonferroni threshold for statistical signifi-

cance (p value < 1.08 3 10�7, correcting for 464,628 inde-

pendent tests). Results were quite robust to cell type

adjustment (Table S3): all 568 Bonferroni-significant

CpGs from the primary model remained FDR significant

in the cell-type-adjusted model, and 78% were Bonferroni

significant in both models. The log10(p values) for the pri-

mary model and cell-type-adjusted models were highly

correlated (correlation coefficient ¼ 0.92 across all CpGs,

0.98 for the FDR-significant CpGs in the primary model,

Figure S1). Given the general similarity of the results before

and after cell type adjustment and the fact that the available

reference panel is from a small number (n ¼ 6) of adult

men,17 we regard the covariate-adjusted model as the
erican Journal of Human Genetics 98, 680–696, April 7, 2016 685



Figure 1. Meta-analysis of the Associa-
tion between Sustained Maternal Smok-
ing during Pregnancy and DNA Methyl-
ation in Newborn Cord Blood
A total of 6,073 CpGs were considered sta-
tistically significant when using FDR
correction (solid horizontal line); 568
were Bonferroni significant (dashed hori-
zontal line).
primary model. The results for other models (the cell-type-

adjusted model, the model representing any smoking dur-

ing pregnancy, and the methylation model representing

sustained smoking during pregnancy associated with older

children) and the mean methylation values in newborns

and older children are shown for all 6,073CpGs in Table S3.

Among the 6,073 FDR-significant CpGs, smoking during

pregnancy was associated approximately equally with

increased methylation (52%) and decreased methylation

(48%) (Figure 2). Out of the 3,932 CpGs that were also

FDR-significant after cell type adjustment, there were 967

CpGs in or within 10 Mb of the 1,185 genes we identified

in our systematic literature review (see Supplemental Note

and Table S4) as previously reported to be differentially

methylated in relation to smoking. This left 2,965 CpGs

(corresponding to 2,017 annotated mapped or nearest

genes) that had not previously been reported (Table S5;

genes highlighted in discussion shown in Table 2). For

comprehensive comparison with the previous literature,

we also present our results for all CpGs that were either

not FDR significant after cell type adjustment and/or that

annotated to genes already described in the literature as

related to smoking and methylation (n ¼ 3,108 CpGs,

Table S6). Our top finding among the 6,073 FDR-significant

CpGs was for AHRR (MIM: 606517) cg05575921 (p value ¼
1.64 3 10�193), which is the top most statistically signifi-

cant CpG in many other studies evaluating either personal

smoking or maternal smoking during pregnancy.

We found our results to be robust to different analytic

approaches. We present results frommodels using normal-

ized betas as the outcome. When using raw betas as the

outcome, we observed little difference in the results

(Spearman’s correlation coefficient ¼ 0.96 for regression

coefficients; 0.98 for log10[p values] for our significant find-

ings). Furthermore, exclusion of the one cohort with

newborns of non-European ancestry (NEST) from the

model representing sustained maternal smoking provided

similar results (Spearman’s correlation coefficient ¼ 0.99

for regression coefficients; 0.89 for log10[p values]).
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Examination of Potentially

Polymorphic and Cross-Reactive

Probes

A total of 742 of the 6,073 FDR-signif-

icant CpGs overlapped with the list

of 70,889 potentially polymorphic

probes provided by a table of Chen

et al.51 Only 137 of the 6,073 FDR-sig-
nificant CpGs overlapped with the list of 29,233 cross-reac-

tive probes annotated by Chen et al. Many of the probes

flagged by Chen et al. are associated with very low-fre-

quency SNPs and thus are likely to have minimal impact

on results in most datasets. In visual inspection of the den-

sity plots of all 742 such probes, we flagged 19 CpGs as

having a possible deviation from unimodality (listed

in Table S7). However, results from the dip test52 applied

to all 6,073 FDR significant CpGs identified only four

CpGs as statistically significantly deviated from unimodal-

ity (FDR adjusted p < 0.05; cg11459648, cg17847044,

cg15028160, and cg25849281).

Persistence in Older Children of DNA Methylation

Related to Maternal Smoking during Pregnancy

Because of the smaller sample size and smaller proportionof

children exposed tomaternal smoking in the older children

models, we had less statistical power than we did for the

newborn models. When we compared the coefficients for

newborns and older children for all 6,073 CpGs that were

significantly associated with maternal smoking in new-

borns, 4,403 (73%) had a consistent direction of effect and

all 6,073 (100%) gave nominal p values<0.05 for the older

children models, which is higher than the 5% expected by

chance alone (Kolmogorov p value < 2.23 10�16). Among

these, 3,722 CpGs (61%) had a weaker effect size (attenua-

tion) in the older children than in the newborns, but the

attenuation overall was very small in magnitude and not

significant (mean attenuation ¼ �0.00039, SD ¼ 0.0059).

Compared to CpGs in newborns, of the 148 CpGs that

met FDR significance at lookup replication level in the

older children (Table S8), 100% were consistent in the

direction of effect, and there was attenuation for 32%,

again small inmagnitude andnot significant (mean attenu-

ation ¼ �0.00008, SD ¼ 0.018).

Enrichment Analysis

For our 6,073 FDR-significant CpGs, we observed enrich-

ment for localization to CpG island shores (35% versus



Figure 2. Volcano Plot Indicating the Direction of Effects for theMeta-analysis of the Association between SustainedMaternal Smok-
ing during Pregnancy and DNA Methylation in Newborn Cord Blood
23% overall as compared to all CpGs on the array,

p value ¼ 2.8 3 10�100), enhancers (29% versus 22% over-

all, p value ¼ 5.7 3 10�45), and DNase hypersensitivity

sites (14% versus 12% overall, p value ¼ 2.8 3 10�7).

Conversely, we found relative depletion in CpG islands

(18% versus 31% overall, p value ¼ 9.1 3 10�116),

FANTOM promoters (2.5% versus 6.7% overall, p value ¼
2.13 10�49), and promoter-associated regions (13% versus

19% overall, p value ¼ 2.3 3 10�33). There was no

statistically significant enrichment or depletion of sites

mapping to imprinted DMRs (0.082% versus 0.16% over-

all, p value ¼ 0.107).

Pathway Analysis

Our pathway analyses indicated that the FDR-significant

CpG sites corresponded to genes enriched for several cate-

gories of biological processes, including anatomical devel-

opment, phosphate-containing compound metabolism,

nervous system development, and cell communication
The Am
processes (Figure S2). Based onDAVID, eight biological pro-

cesses were enriched, including GTPase signal transduc-

tion, neuronal differentiation, and protein kinase activity

(Figure S3). The top statistically significantly enriched dis-

eases and biofunctions identified through Ingenuity soft-

ware included tumor adhesion, neuron development, and

connective tissue differentiation (Figure S4).

Functional Network Analysis

Functional network analysis revealed 447 significantly

enriched GO terms after FDR correction was applied

(q value < 0.01 for this analysis, Table S9). The majority

of the enriched terms, and particularly the most statisti-

cally significant ones, pointed toward biological processes

related to cell, tissue, or organ development, proliferation,

morphogenesis, differentiation, growth, and other biolog-

ically relevant processes. There were also several en-

riched processes related to embryonic morphogenesis or

development.
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Table 2. Meta-analysis Results from Newborns for Selected Loci Not Previously Reported with Genome-wide Statistically Significant
Differential Methylation in Newborn DNA in Relation to Sustained Maternal Smoking in Pregnancy

Chr. Position CpG
Mapped
Genea

Nearest Gene
(10 Mb)b Gene Groupc

Regression
Coefficient SE p Value

Direction of Effect
across Cohortsd

Mean
Betae

1 24648203 cg06376426 GRHL3 GRHL3 TSS1500; body �0.004 0.001 1.84E-04 �þ������� 0.262

2 43685377 cg20629315 THADA THADA body 0.003 0.001 4.62E-04 ��þþþþþþþ 0.896

2 206628553 cg22308949 NRP2 NRP2 body �0.016 0.002 7.83E-12 ��������� 0.413

2 206628625 cg05348875 NRP2 NRP2 body �0.026 0.004 1.13E-10 ��������� 0.613

2 206628692 cg14157435 NRP2 NRP2 body �0.028 0.004 1.61E-10 ��������� 0.413

2 206692685 cg14400541 – NRP2 – �0.008 0.002 5.19E-05 þ�������� 0.501

3 189348936 cg05129081 TP63 TP63 TSS1500 0.012 0.002 1.21E-07 þþþþþþ�þþ 0.539

3 189349021 cg06720722 TP63 TP63 TSS200 0.009 0.002 8.49E-06 þþþþþþ�þþ 0.798

4 10117479 cg22821355 WDR1 WDR1 body �0.007 0.002 1.50E-04 ��������� 0.382

4 81109888 cg01789499 PRDM8 PRDM8 50 UTR �0.009 0.002 1.86E-04 ������þ�� 0.852

4 81110205 cg09595050 PRDM8 PRDM8 50 UTR �0.018 0.004 1.71E-06 ��������� 0.739

4 81110459 cg14197071 PRDM8 PRDM8 50 UTR �0.021 0.005 5.33E-06 ������þ�� 0.723

4 81111177 cg27111250 PRDM8 PRDM8 50 UTR �0.020 0.005 1.61E-05 ������þ�� 0.708

4 81111393 cg27639662 PRDM8 PRDM8 50 UTR �0.016 0.004 3.33E-05 ������þ�� 0.702

4 81117647 cg05452645 PRDM8 PRDM8 TSS1500; 50 UTR �0.022 0.004 8.95E-09 ������þ�� 0.520

4 81117665 cg00138041 PRDM8 PRDM8 TSS1500; 50 UTR �0.021 0.004 1.39E-06 ������þ�� 0.556

4 81117853 cg06373870 PRDM8 PRDM8 TSS1500; 50 UTR �0.017 0.003 1.24E-08 ������þ�� 0.422

4 81118188 cg03463411 PRDM8 PRDM8 TSS1500; 50 UTR �0.014 0.003 1.09E-06 ������þ�� 0.372

4 81118343 cg04235768 PRDM8 PRDM8 TSS1500; 50 UTR �0.014 0.002 1.35E-09 ������þ�� 0.159

4 81118588 cg26299084 PRDM8 PRDM8 50 UTR; TSS200 �0.012 0.003 1.98E-06 ������þ�� 0.247

4 81118794 cg06307913 PRDM8 PRDM8 50 UTR; 1st exon �0.020 0.003 3.72E-09 ������þ�� 0.424

4 81119178 cg27242132 PRDM8 PRDM8 50 UTR �0.022 0.004 2.98E-09 ������þ�� 0.240

4 81119198 cg18073471 PRDM8 PRDM8 50 UTR �0.018 0.003 1.21E-08 ������þ�� 0.178

4 81119249 cg02458885 PRDM8 PRDM8 50 UTR �0.010 0.002 5.94E-06 ������þ�� 0.189

4 81119299 cg11388320 PRDM8 PRDM8 50 UTR �0.023 0.004 1.12E-08 ��������� 0.324

4 81119473 cg22902505 PRDM8 PRDM8 50 UTR �0.027 0.004 1.21E-10 ������þ�� 0.433

4 81122726 cg05522011 PRDM8 PRDM8 body �0.015 0.004 2.00E-04 ������þ�� 0.799

5 78365647 cg01856645 DMGDH;
BHMT2

BHMT2 TSS200; body 0.008 0.002 3.35E-06 þþþþþþ�þþ 0.177

5 78365687 cg06501366 BHMT2;
DMGDH

BHMT2 body; TSS1500 0.018 0.003 1.11E-10 þþþþþþþþþ 0.408

5 78365691 cg08328513 BHMT2;
DMGDH

BHMT2 body; TSS1500 0.017 0.003 3.94E-09 þþþþþþ�þþ 0.265

5 78365710 cg23911707 BHMT2;
DMGDH

BHMT2 body; TSS1500 0.006 0.001 5.69E-06 þþþþþþþþþ 0.260

5 78365801 cg03400060 BHMT2;
DMGDH

BHMT2 body; TSS1500 0.012 0.002 2.96E-10 þþþþþþþþþ 0.392

5 78366076 cg01902605 BHMT2;
DMGDH

BHMT2 body; TSS1500 0.013 0.002 1.50E-09 þþþþþþþþþ 0.707

6 7673306 cg25370658 – BMP6 – 0.004 0.001 2.63E-04 þþþ�þ��þþ 0.806

6 7698374 cg17951878 – BMP6 – 0.013 0.003 1.15E-06 þþþþþþþþþ 0.286

6 7731280 cg23623251 BMP6 BMP6 body 0.006 0.002 3.25E-04 þþþþþþþþþ 0.783

6 10405499 cg16199280 TFAP2A TFAP2A body 0.006 0.002 3.26E-04 þ�þþþþþþþ 0.342

(Continued on next page)

688 The American Journal of Human Genetics 98, 680–696, April 7, 2016



Table 2. Continued

Chr. Position CpG
Mapped
Genea

Nearest Gene
(10 Mb)b Gene Groupc

Regression
Coefficient SE p Value

Direction of Effect
across Cohortsd

Mean
Betae

6 55767865 cg16728651 – BMP5 – �0.010 0.002 1.05E-06 ��������� 0.729

6 152011415 cg08161546 ESR1 ESR1 TSS1500 0.008 0.002 3.50E-04 þ�þþþþþþþ 0.709

6 152124815 cg08415493 ESR1 ESR1 50 UTR �0.003 0.001 1.74E-04 �þ������� 0.706

6 152126736 cg20893956 ESR1 ESR1 50 UTR; TSS200 �0.009 0.002 4.13E-05 ��þ���þ�� 0.620

6 152126785 cg07746998 ESR1 ESR1 50 UTR; TSS200 �0.006 0.002 1.18E-04 �þ������� 0.594

6 152126895 cg21157690 ESR1 ESR1 50 UTR; 1st exon �0.008 0.002 5.70E-05 �þþ������ 0.747

6 152126938 cg17264271 ESR1 ESR1 50 UTR; 1st exon �0.009 0.002 1.26E-06 �þþ������ 0.627

6 152130058 cg04063345 ESR1 ESR1 body �0.013 0.004 1.22E-04 �þþ���þ�� 0.507

6 152130207 cg15626350 ESR1 ESR1 body �0.018 0.004 1.42E-06 �þ����þ�� 0.444

6 152130332 cg00601836 ESR1 ESR1 body �0.014 0.003 1.19E-06 �þþ������ 0.676

8 1403050 cg16442298 – DLGAP2 – �0.004 0.001 3.28E-04 ��������� 0.716

8 1404023 cg03551508 – DLGAP2 – �0.007 0.002 2.74E-05 ��������� 0.746

8 1427491 cg00827210 – DLGAP2 – �0.007 0.001 4.83E-07 ������þ�� 0.882

8 1442292 cg13063207 – DLGAP2 – �0.006 0.001 1.85E-05 ��������� 0.847

8 1458508 cg24526596 DLGAP2 DLGAP2 50 UTR �0.005 0.001 2.52E-04 ������þ�� 0.590

8 1462903 cg25955692 DLGAP2 DLGAP2 50 UTR �0.005 0.001 1.67E-05 þþ������� 0.874

8 1468625 cg00598912 DLGAP2 DLGAP2 50 UTR �0.003 0.001 1.39E-04 ��������� 0.831

8 1494546 cg23424125 DLGAP2 DLGAP2 50 UTR �0.010 0.003 3.23E-04 ������þ�� 0.850

8 1501226 cg03185622 DLGAP2 DLGAP2 body �0.005 0.001 5.33E-07 þ����þ��� 0.825

8 1526540 cg15833940 DLGAP2 DLGAP2 body �0.013 0.003 6.70E-06 ��������� 0.659

8 1534376 cg02840179 DLGAP2 DLGAP2 body �0.004 0.001 1.05E-04 ��������� 0.816

8 1615080 cg02709139 DLGAP2 DLGAP2 body �0.007 0.002 1.32E-05 ������þ�� 0.870

8 1616381 cg04687241 DLGAP2 DLGAP2 body �0.008 0.002 6.92E-06 �þ������� 0.666

8 1618448 cg06040034 DLGAP2 DLGAP2 body �0.013 0.003 2.42E-06 ��������� 0.619

8 1649758 cg02083412 DLGAP2 DLGAP2 30 UTR �0.004 0.001 3.15E-05 ��������þ 0.129

8 1649868 cg22763586 DLGAP2 DLGAP2 30 UTR �0.013 0.003 5.83E-07 ������þ�� 0.450

8 1650172 cg27351978 DLGAP2 DLGAP2 30 UTR �0.015 0.004 8.69E-05 ������þ�� 0.566

8 1650309 cg02690013 DLGAP2 DLGAP2 30 UTR �0.013 0.003 9.92E-06 ������þ�� 0.599

14 54412780 cg23104439 – BMP4 – 0.005 0.001 2.08E-04 þþþþþþþþ� 0.741

14 54418728 cg05928290 BMP4 BMP4 body 0.024 0.003 1.48E-19 þþþþþþþþþ 0.759

14 54418804 cg05923197 BMP4 BMP4 body 0.029 0.003 1.08E-18 þþþþþþþþþ 0.699

14 54418851 cg09367901 BMP4 BMP4 body 0.019 0.002 3.98E-17 þþþþþþþþþ 0.827

14 54419614 cg08046044 BMP4 BMP4 50 UTR 0.005 0.001 2.70E-09 þþþ�þþþþþ 0.077

14 54424149 cg24526899 BMP4 BMP4 TSS1500 0.007 0.002 5.14E-04 þþþþþþþþ� 0.441

17 76930245 cg04999637 – TIMP2 – 0.005 0.001 6.91E-05 þþþþþþþþþ 0.583

Meta-analysis results of the association between sustained maternal smoking during pregnancy and DNA methylation in newborns, adjusted for covariates, using
normalized methylation betas as the outcome. Selected not previously reported loci genome-wide significant after FDR correction. Results sorted by the chromo-
some (chr.) and position of the CpG sites listed. Selection limited to genes prioritized for discussion.
aUCSC Genome Browser annotated gene.
bNearest gene (within 10 Mb) symbol, determined with the Snipper program.
cUCSC gene region feature category. Regions for the gene and related isoforms are listed.
dDirection of effect across cohorts included in the statistical model: maternal smoking during pregnancy associated with increased (þ) or decreased (�) methyl-
ation in alphabetical order of cohorts.
eAverage of the mean methylation beta values across the newborn cohorts. For complete listing of CpGs differentially methylated in relation to sustained maternal
smoking during pregnancy and for results from meta-analysis models unadjusted for covariates and adjusted for covariates and cell type, see Table S3.
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Methylation Transcription Analysis

To assess transcriptional effects related to methylation dif-

ferences, we investigated whether methylation status

correlated with gene expression levels for our 2,965 CpGs

associated with sustained maternal smoking in newborns

that we identified through literature review as not having

been previously reported. In the Rotterdam Study dataset

of adults, out of the 2,636 (of the 2,965) CpGs that we

were able to match to a gene transcript (þ/� 250 kb),

254 unique CpGs (343 total CpG-gene transcript associa-

tions) were significantly associated with expression of a

nearby gene in whole blood from adults (FDR p value <

0.05, Table S10). We observed strong associations for

several CpGs annotated to the same gene and correspond-

ing gene expression levels, most strikingly for IL32 (MIM:

606001), which had four CpGs associated with its expres-

sion, and HOXB2 (MIM: 142967), which had several

CpGs related to its expression (lowest p value 2.38 3

10�72, Table S10). In the much smaller study of children

at age four from INMA (n ¼ 107), 35 CpGs were associated

with gene expression (FDR p value < 0.05). The following

six genes had CpGs with methylation that was statistically

significantly related to gene expression in both the Rotter-

dam Study adults and INMA children: ENOSF1 (MIM:

607427), HOXB2 (MIM: 142967, IL32 (MIM: 606001),

NLRP2 (MIM: 609364), PASK (MIM: 607505), and

TDRD9. In both the adult and child datasets, for themajor-

ity of CpGs statistically significantly associated with

expression, the direction was inverse (higher methylation,

lower expression). This inverse relationship represented

68% (Clopper-Pearson 95% confidence interval ¼ 62%–

73%) of the adult associations and 79% (Clopper-Pearson

95% confidence interval ¼ 62%–91%) of the associations

for children.
Newborn DNA Methylation Related to Any Maternal

Smoking during Pregnancy

In addition to the sustained smoking model, we meta-

analyzed the effect of any maternal smoking during preg-

nancy on newborn methylation. As expected, based on

previous literature,12 we found that despite the much

larger number of women with any smoking during preg-

nancy, there were fewer statistically significant findings

for this less specific exposure (4,653 FDR-significant

CpGs, Table S3).
Discussion

We combined data across studies in a large-scale epige-

nome-wide meta-analysis to evaluate the association be-

tween maternal smoking during pregnancy and DNA

methylation in offspring. We established the PACE con-

sortium to study this association and used 13 birth cohort

studies from the US and Europe that, with the same repro-

ducible platform, measured CpG-specific DNA methyl-

ation across the epigenome in newborns. Combining these
690 The American Journal of Human Genetics 98, 680–696, April 7, 2
studies resulted in the discovery of 6,073 statistically sig-

nificant CpGs; 3,932 remained statistically significant after

adjustment for cell type proportion. Our results are remark-

ably robust to different modeling techniques. Our findings

were very similar when using either the raw methylation

betas or the normalized betas as the outcome. This is

despite the variety of data processing methods used

across the cohorts for normalization and corrections for

technical variables such as batch (described in the Supple-

mental Note). This consistency is reassuring given the

range of published methods available for researchers to

apply to 450K DNA methylation data for quality control,

normalization, and adjustment for technical variation.

Furthermore, our main findings persisted after cell type

adjustment (Table S3, Figure S1).

As predicted based on earlier evaluation of top findings

for maternal smoking in the MoBa cohort,12 we had fewer

statistically significant findings for any smoking during

pregnancy than for sustained smoking during pregnancy

(Figure S5). Nonetheless, with the large sample size of

this meta-analysis, we still observed many statistically sig-

nificant CpGs after FDR correction in the any smoking

models, and the directions of effect and p values were

similar to those from the sustained smoking models

(Table S3, Figure S6). However, the stronger signal for sus-

tained smoking suggests that this might be the more

powerful variable for studying epigenetic effects and

possible health outcomes from this exposure in offspring.

Our observation of a large number of genome-wide sig-

nificant CpGs related to maternal smoking is not surpris-

ing given reports of multiple genome-wide significant

loci identified in single studies, all with smaller sample

sizes.7,8,10,22,37,38 Reassuringly, among our myriad find-

ings, the top hit in all newborn models was AHRR

cg05575921 (p value < 1.64 3 10�193), which has been

observed as differentially methylated in relation to smok-

ing in many studies of adults and children.7,8,10,28,35,53

Our enrichment testing of the genome-wide results is in

line with previous findings showing that island shores, en-

hancers, and DNase I hypersensitive sites are more dy-

namic (susceptible tomethylation changes) than promoter

regions54 and imprinted loci.55 These regions might be

more resistant to changes in DNAmethylation in response

to in utero exposure.55 Thus, it is not surprising that asso-

ciations between maternal smoking and newborn methyl-

ation might be more likely to be found in island shore and

enhancer regions as opposed to promoters or CpG islands.

To assess the underlying biology involved in the associ-

ated genomic regions, we applied pathway and functional

analyses, as well as tests of enrichment. These results

implicated numerous neurological pathways, pathways

involved in embryogenesis, and various developmental

pathways. These observations could provide insight into

the etiology of childhood health outcomes related to

maternal smoking during pregnancy.

We focus discussion on some specific genes among the

associations that, according to our literature review, had
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not been previously reported (2,965 CpGs annotating to

2,017 mapped or nearest genes). For 27 of these genes, mu-

tations or SNPs have been implicated in susceptibility to

orofacial clefts (as identified with the Snipper program

described in the Supplemental Note). This includes the

following genes (each representing one FDR-significant

CpG unless otherwise specified): BHMT2 ([MIM: 605932]

six CpGs), GRHL3 (MIM: 608317), THADA (MIM:

611800), GAD67 (MIM: 605363), TP63 ([MIM: 603273]

two CpGs), MSX1 (MIM: 142983), WDR1 (MIM: 604734),

SPP1 (MIM: 166490), BMP6 (MIM: 112266), TFAP2A

(MIM: 107580), COL11A2 ([MIM: 120290] three CpGs),

PDGFRA (MIM: 173490), MN1 (MIM: 156100), MSX2

([MIM: 123101] four CpGs), PVT1 (MIM: 165140), ZIC2

(MIM: 603073), HOXA2 ([MIM: 604685] ten CpGs),

WNT3 (MIM: 165330), RUNX2 ([MIM: 600211] two

CpGs), TERT (MIM: 187270), SPATA13 ([MIM: 613324]

two CpGs), VAX1 (MIM: 604294), TIMP2 (MIM: 188825),

NOG (MIM: 602991), BEST3 (MIM: 607337), MYH9

(MIM: 160775), and BMP4 ([MIM: 112262] six CpGs) (re-

sults in Table S5). Although this does not imply that the

smoking-related CpGs are on the causal pathway, we

note that the Surgeon General’s Report summarizes the

evidence as sufficient to infer a causal relationship between

maternal smoking during pregnancy and these birth

defects.2 Many of these genes also have varied biological

effects relevant to other aspects of development.

Among this group of genes previously related to orofa-

cial clefts, bone morphogenetic protein 4 (BMP4) is espe-

cially interesting. Maternal smoking might interact with

SNPs in this gene in relation to oral clefts.56 We identified

six CpGs in BMP4 at genome-wide significance in new-

borns; two remained statistically significant in the older

children. In addition to orofacial clefts, SNPs in BMP4 are

related to tooth development and eruption, as well as to

colorectal cancer in genome-wide association studies

(GWASs).57 BMPs, including BMP4,58 also play an impor-

tant role in lung development: reduced lung function

among infants is an established consequence of maternal

smoking during pregnancy.2 A plot showing greater detail

on the CpGs in or near BMP4 is provided in Figure S7.

We observed six CpGs significantly related to maternal

smoking in betaine-homocysteine methyltransferase

(BHMT2; Figure S8). Genetic variants in this gene have

been associated with orofacial clefts in candidate-gene

studies59 and with selenium levels in GWASs.60,61 Of

note, in experimental studies, selenium has been shown

to protect against orofacial clefts induced by exposure to

teratogens.62 In the Cancer Genome Atlas, methylation

of BHMT2 in lung adenocarcinoma (lung cancer [MIM:

211980]) was strongly correlated (3rd rank genome wide)

with smoking history.63

The gene PRDM8 (PR domain containing 8 [MIM:

616639]) has the largest number of CpGs (18 of 61, based

on Illumina annotation) significantly associated with

maternal smoking during pregnancy. Maternal smoking

during pregnancy was associated with decreased methyl-
The Am
ation throughout the gene. PRDM8 is one of several PRDMs

belonging to the SET domain family of histone methyl-

transferases.64 PRDM genes either act as direct histone

methyltransferases or recruit a suite of histone-modifying

enzymes to target promoters.65 PRDM8 specifically meth-

ylates H3K9 of histones to repress transcriptional activ-

ity.66 PRDM8 expression is tightly regulated in a

spatiotemporal manner during neural development;67 it

regulates morphological transition in neocortical develop-

ment68 and forms part of a repressor complex that directs,

through regulation of cadherin-11, neural circuit assem-

bly.69 Thus PRDM8 appears to play an important role in

neurologic development.

DLGAP2 (discs large homolog-associated protein 2

[MIM: 605438]) is another gene with a large number of sig-

nificant CpGs (14 of 192 tested) associated with maternal

smoking in our study. DLGAP2, also known as SAPAP2, be-

longs to a gene family that encodes SAP90/PSD95-associ-

ated proteins (SAPAPs), and is known to be involved in

the molecular organization of synapses and in neuronal

cell signaling.70 DLGAP2 was first identified in studies

of progressive epilepsy with mental retardation (EPMR

[MIM: 610003])71 and has been associated with other

CNS disorders such as schizophrenia (SCZD [MIM:

181500])72 and autism spectrum disorders (ASD [MIM:

209850]).73,74 Differential methylation at this locus in a

rat model appears to play a role in the development of

post-traumatic stress disorder.75

The neuropilin-2 (NRP2 [MIM: 602070]) gene had three

CpGs located in close proximity (among 48 tested) that

were statistically significantly associated with maternal

smoking during pregnancy. NRP2 is one of two transmem-

brane receptors for axonal guidance cues of the class 3 sem-

aphorin (SEMA) family and is expressed in sympathetic

neural crest cells and their progeny.76 It might also be

required in vivo for sorting migrating cortical and striatal

interneurons to their correct destination.77 NRP2 also

functions as a receptor for some forms of vascular endothe-

lial growth factor, thereby playing a crucial role in angio-

genesis and lymphangiogenesis.78 Polymorphisms in

NRP2 have been associated with several diseases, including

autism77 and multiple cancers.79–83

Hypermethylation of ESR1 (estrogen receptor 1 [MIM:

133430], a key nuclear transcription factor) on chromo-

some 6q25.1 is well-studied in relation to presence and

prognosis of various malignancies such as breast cancer

and hepatocellular carcinoma,84,85 as well as asthma.86,87

We found an inverse association between maternal smok-

ing and methylation levels for seven out of the eight

FDR-significant ESR1 CpGs. ESR1 hypomethylation has

been reported in relation to induced microRNA expression

(synthetic miR-29b oligonucleotides) in acute myeloid leu-

kemia cells.88

To evaluate possible functional gene expression effects

of methylation at the CpGs that we found to be signifi-

cantly related to maternal smoking, we analyzed data

from two studies—one of adults and another of children
erican Journal of Human Genetics 98, 680–696, April 7, 2016 691



at age four years. Although on first pass, one might expect

a higher proportion of the CpGs related to maternal smok-

ing to also be related to gene expression, there are several

factors that decrease the likelihood of seeing significant as-

sociations. Most importantly, the sample size for discovery

of the methylation association with smoking was much

larger than that of the datasets available to correlate gene

expression and methylation (about 10-fold smaller for

the adult gene expression dataset and about 60-fold

smaller for the childhood dataset). In addition, gene

expression in blood might be more transient than methyl-

ation, decreasing the ability to find significant associations

with a single gene-expression measurement. Furthermore,

constitutive gene expression is measured in this setting,

whereas many genes are inducible and methylation might

contribute to this process. Lastly, some in-utero-induced

changes to methylation could have affected transcription

during fetal development but not in postnatal life, and

might have transcription-independent functional mecha-

nisms. Nonetheless, we observed significant associations

between methylation and gene expression at six genes in

both the adults and the children. The majority of CpGs

significantly associated with expression were in the

commonly expected direction of methylation related to

gene silencing. Notably, CpGs in IL32 (Figure S9), a proin-

flammatory cytokine involved in several diseases such as

asthma89 and cancer,90 HOXB2, a transcription factor

involved in development91 and several cancer forms,92

and PASK (PAS domain containing serine/threonine ki-

nase), involved in glucose homeostasis,93 were signifi-

cantly associated with expression in both datasets.

We analyzed the associations of CpGs with expression

levels of genes within a region of 250 kb up- or down-

stream of the CpG. Consensus on the optimal physical dis-

tance for these analyses is lacking. However, in a recent

study, associations between CpGs and SNPs were the stron-

gest when within close proximity (500 kb) of the CpG.48

Despite the limitations with the expression datasets

included in our study, we believe that the transcriptomics

data provide functional support for our maternal smoking

findings.

In older children, all of the CpGs significantly associated

with maternal smoking in newborns gave at least nominal

levels of significance (p value < 0.05). This skew of the dis-

tribution of p values toward small values was much more

than expected by chance (Kolmogorov p value < 2.2 3

10�16), demonstrating a very high level of replication

and persistence of findings at birth into later childhood.

This is consistent with and substantially extends a few pre-

vious reports.9,12 We had only very limited data with

repeat measures in the same individuals so we could not

meta-analyze change in methylation over time.

This inaugural paper from the PACE consortium repre-

sents a major effort to combine data from many studies

in a large-scale meta-analysis of epigenome-wide associa-

tion studies of maternal smoking in relation to methyl-

ation in newborns. We report at least an order of
692 The American Journal of Human Genetics 98, 680–696, April 7, 2
magnitude more genes differentially methylated in

response to maternal smoking than have been identified

in any previous study. This suggests that meta-analysis in

epigenome-wide association studies produces similar suc-

cess to that of genome-wide association SNP studies in

the identification of biologically meaningful loci. The sim-

ilarity in the results obtained when using the raw betas

compared to those obtained when using normalized betas

generated with various methods indicates that cohort-spe-

cific processing methods do not interfere with the ability

to perform meta-analysis.

We identified nearly 3,000 CpGs corresponding to genes

differentially methylated in offspring in relation to

whether their mothers smoked during pregnancy. Some

of these genes have been implicated in genetic studies of

orofacial clefts or asthma, both conditions related to

maternal smoking in pregnancy, and others in the patho-

genesis of cancers that are associated with adult smoking,

including lung, colorectal (CRC [MIM: 114500]), and liver

(HCC [MIM: 114550]).2 We also find substantial persis-

tence of effects of maternal smoking identified in new-

borns into later childhood. Our findings might implicate

epigenetic mechanisms in the etiology of these exposure-

disease relationships. This large-scale study also provides

confirmation of previously reported loci, many of which

have not been previously replicated. Pathway analysis

highlights the involvement of identified genes in various

developmental pathways, and functional effects at the

transcriptomics level were observed for many of the iden-

tified CpGs. These findings could provide new insights

into the mechanisms involved in the detrimental health

outcomes that arise from this important in utero exposure.
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