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Abstract

Background and objective—Integrative approaches for the study of biological systems have 

gained popularity in the realm of statistical genomics. For example, The Cancer Genome Atlas 

(TCGA) has applied integrative clustering methodologies to various cancer types to determine 

molecular subtypes within a given cancer histology. In order to adequately compare integrative or 

“systems-biology”-type methods, realistic and related datasets are needed to assess the methods. 

This involves simulating multiple types of ‘omic data’ with realistic correlation between features 

of the same type (e.g., gene expression for genes in a pathway) and across data types (e.g., “gene 

silencing” involving DNA methylation and gene expression).

Methods—We present the software application tool InterSIM for simulating multiple interrelated 

data types with realistic intra- and inter-relationships based on the DNA methylation, mRNA gene 

expression, and protein expression from the TCGA ovarian cancer study.

Results—The resulting simulated datasets can be used to assess and compare the operating 

characteristics of newly developed integrative bioinformatics methods to existing methods. 

Application of InterSIM is presented with an example of heatmaps of the simulated datasets.

Conclusions—InterSIM allows researchers to evaluate and test new integrative methods with 

realistically simulated interrelated genomic datasets. The software tool InterSIM is implemented in 

R and is freely available from CRAN.
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1. Introduction

Identification of molecular subtypes of cancer using high throughput molecular data has 

been frequently accomplished through the use of clustering [1,2]. Clustering involves the 

grouping of objects across a disjoint set of classes such that objects within the same class are 

more similar to one another as compared to the objects in different classes. A large number 
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of clustering methods are available that use a single data type; such as, hierarchical, k-means 

[3], and non-negative matrix factorization (NMF) [4]. In addition to these methods, a few 

integrative clustering methods have been proposed that utilizes information from multiple 

data types collected on the same set of samples including: iCluster [5], integrative NMF [6], 

and mixture model based integrative clustering [7]. A summary of the above mentioned 

methods can be found in Chalise et al. [8]. However, in order to adequately assess such 

integrative methods, realistic and interrelated datasets are needed. InterSIM bridges this gap 

by simulating complex interrelated realistic genomic datasets.

Although clustering methods can be used to classify either genes or subjects, the proposed 

simulation tool focuses on clustering of subjects with the goal of identifying molecular 

subtypes of disease. In developing the simulation tool, we focused on generating three data 

types, DNA methylation, mRNA gene expression, and protein expression, on a set of 

samples with realistic correlation between and within data types. Here are a few examples of 

the types of relationships we included in the simulation of the data: CpG sites within the 

same CpG-island would have strong positive correlation, high methylation for a CpG-island 

upstream of a gene would result in lower mRNA expression or “gene silencing”, and higher 

mRNA gene expression is likely to result in higher downstream protein expression [9]. Such 

intra- and inter-feature relationships among the data types were based on real data collected 

on ovarian cancer tumors from The Cancer Genome Atlas (TCGA).

2. Methods

The simulation tool is based on three real datasets from the ovarian cancer study from 

TCGA – DNA methylation, mRNA gene expression, and protein expression data. In 

estimation of the relationship in this study, we restricted the tumors to 384 that were 

common across the three datasets. The level 3 methylation data consists of 27,578 CpG 

probes from 555 subjects measured using the Illumina 27K, level 3 mRNA gene expression 

data consists of 17,814 genes from 544 subjects measured with the Agilent G4502A 

platform, and level 3 RPPA protein expression data contains 187 probes from 412 subjects. 

Both the methylation and mRNA data were downloaded from https://tcga-data.nci.nih.gov/

tcga/tcgaHome2.jsp, and the protein data were downloaded from http://

app1.bioinformatics.mdanderson.org/tcpa/design/basic/download.html. Using the CpG to 

gene annotation and protein to gene annotation information, 367 CpGs and 160 protein 

probes were found to map to 131 common genes. Based on these three data types measured 

on 384 subjects with the common mapped features, we estimated the intra- and inter-

relationship between the features for use in the simulation of the realistic datasets, Fig. 1.

In simulating the data, we first consider the case where there are no clusters (i.e., only one 

cluster, k = 1, with effect = 0); and then the case where the number of clusters could vary 

from k = 2 to K, where K is the user specified number of clusters. The number of clusters 

was determined by a handful of features in the various data types. That is, a set of features 

was selected to have a mean shift in their values so that they would be able to be 

distinguished among various subgroups or clusters. We start by simulating DNA methylation 

data, followed by mRNA gene expression, and finally protein expression. Details on the 
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simulation of the data types and the correlation structures are outlined in the following 

sections.

2.1. Methylation data

The methylation β-values at a CpG site, j is the proportion of methylation ranging from 0.0 

to 1.0 which are assumed to follow a beta distribution. The logit transformation of such β-

values, denoted as M-values, then range from −∞ to ∞ and can be assumed to follow a 

Gaussian distribution. The methylation data is then generated from the multivariate normal 

distribution which uses the covariance structure from the real data,

where pd and Σpd×pd are the number of CpGs and the covariance matrix of the real 

methylation data, respectively. Here, μi×pd is the effect size with the cluster mean shift as 

given by

where μd is the vector of mean of the M-values at each CpG site, DMP is the indicator 

variable representing differentially methylated CpGs, and δDMP is effect size the of the 

cluster mean shift. The M-values are then inverse logit transformed to β-values.

2.2. Gene expression data

Using the ovarian cancer study, gene-level summaries of the methylation β-values were 

computed for each sample. For each tumor sample, the CpG probes that map to gene were 

grouped together and the median values of each group of CpGs were computed. Then M-

values were computed using logit transformation. The Pearson correlation coefficients 

between the M-value and mRNA gene expression for each gene were then computed for 

using in the simulation.

The gene expression data is generated using the multivariate normal distribution and 

corresponding covariance structure from the real mRNA gene expression data,

where pgene and Σpg×pg are the number of genes and the covariance matrix of the real gene 

expression data, respectively. The effect size μi×pg is computed as follows: 

, where ρ is the Pearson correlation 

coefficient between the M-values and the corresponding mRNA gene expression for each 

gene, μM is a vector of mean M-values (gene level), and μg is a vector of mean mRNA gene 

expression values. Furthermore, in computing the effect size to use in the simulation of the 

data, DEG is an indicator variable representing the differentially expressed genes that are 
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related to the differentially expressed CpGs generated as mentioned above, and δDEG is the 

cluster mean shift. Though, it should be noted that if there is no correlation for a particular 

gene, then the effect size involves only the mean of the gene expression values.

2.3. Protein expression data

Elevated gene expression is likely to result in increased downstream protein expression. 

Such relationships present in the real datasets are utilized in simulating the protein 

expression data by computing Pearson correlation coefficients between the expression of 

each protein and the corresponding gene. The protein expression data are generated using a 

multivariate normal distribution,

where pp and Σpp×pp are the number of proteins and the covariance matrix estimated from 

the real data, respectively. The effect size μi×pp is computed as follows

where ρ is the Pearson correlation coefficient between the protein expression and 

corresponding gene expression, μp and μg are the mean of protein expression and the 

corresponding mapped gene expression respectively from the real data. The vector DEP, 

representing differentially expressed proteins that are related to the differentially expressed 

genes, is a generated indicator variable as mentioned above, and δDEP is the cluster mean 

shift. Similarly to the gene expression data simulation, the effect size only involves the mean 

of the protein expression when there is no correlation between a particular protein–gene pair.

3. Implementation and results

The function has flexibility in specifying the number of samples, effect sizes for each of the 

three data types, proportion of differentially expressed features that results in samples to 

form clusters, and proportion of samples in each cluster. The function determines the 

number of clusters based on how many sample proportions are assigned. The generated data 

can be visualized using any standard heatmap function. Users can specify whether they want 

to generate an image plot at the end of the simulation, and what type of image plot – having 

a clustered pattern or raw data image only (an example with description has been provided 

with InterSIM package documentation). By default, the function utilizes the covariance 

structures (intra-), correlation (inter-) and the other mapping information from the TCGA 

data on ovarian cancer. However, users can specify their own covariance matrix for each data 

type and correlation between the data types. In addition, users can utilize all the mapping 

information and relevant data from other cancer (or any other disease) types in the function. 

In order to do that relevant data should be pre-computed as mentioned in the supplementary 

materials.
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The performance of the simulation method was tested using hierarchical and k-means 

clustering methods designed for a single dataset; as well as, model based integrative 

clustering method [5] followed by calculating the adjusted rand index (results not shown 

here). The simulation works well resulting in a higher value of the rand index (measure of 

agreement between the true clusters and the predicted clusters using any clustering method) 

when the larger cluster effect size is used and vice versa. The function takes only around 0.5 

s to complete a single simulation run on a desktop computer with an Intel i7-2600 CPU 3.40 

GHz processor. The heatmaps given in Figs. 2 and 3 were generated using a heatmap 

function in R package NMF [10]. Fig. 2 shows the comparison between the original and 

simulated data without having any clusters. Both the density plots and heatmaps by data type 

show that the distributional properties of the features and the inherent patterns in the data are 

closely mimicked in the simulated data. Spearman correlation coefficient for each feature 

(pairwise) and canonical correlation (multivariate correlation) analysis were performed 

between the original and simulated data in order to assess how closely the simulated data 

matches with original data. The spearman correlation ranged from 0.8282 to 0.9421 in 

methylation data, 0.7569 to 0.8914 in mRNA data and 0.7828 to 0.9131 in the protein data. 

The canonical correlations for the methylation, mRNA and protein data were 1.0, 0.97 and 

0.98 respectively. Fig. 3 represents an example of comparison of two sets of simulated data 

with and without having clusters. Both of the principal components plot and heatmaps by 

data type show that the function generates data set having desired cluster patterns provided 

appropriate effect size.

4. Conclusion

In order to adequately compare integrative or “systems-biology”-type methods, realistic and 

related data sets are essential to assess the methods. The goal of this paper is to present, 

describe and illustrate the software tool we developed to generate multiple types of ‘omics 

data’ with realistic intraand inter-relationships based on real data. The performance of 

several available clustering methods on these data suggests that the datasets will be well 

suited for assessing new clustering methods, and evaluating the relative performances of the 

existing clustering methods. We hope the availability of such functions will help researchers 

in developing new integrative methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Diagram showing the intra- and inter-correlation structure among the features used in the 

simulation within and between (a) methylation, (b) gene expression and (c) protein 

expression data from the TCGA studies on ovarian cancer; (d) represents the correlation 

between the gene level summary of methylation profile and corresponding gene expression 

(102 pairs were negatively correlated with minimum value of −0.91 and 29 pairs were 

positively correlated with maximum value of 0.25); (e) represents correlation between the 

protein expression and corresponding mapped gene expression (14 pairs were negatively 

correlated with minimum value of −0.22 and 146 pairs were positively correlated with 

maximum value of 0.83).
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Fig. 2. 
Comparison of original and simulated data (without cluster-shift effect). (a) and (g) represent 

the density plots of CpGs in the original data and simulated data respectively; similarly (b)–

(h) and (c)–(i) represent the density plots of mRNAs and proteins in the original and 

simulated data; (d), (e) and (f) represent the heatmaps of the original data and (j), (k) and (l) 

represent the heatmaps of the simulated data by data type.
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Fig. 3. 
Example of two sets of simulated data with and without cluster shift effect; (a) and (g) 

represent the plot between first and second principal components of the methylation data. 

The numbers in parentheses represent the percentage of variation explained by the first and 

second principal components; similarly (b)–(h) and (c)–(i) represent the principal 

components plot of mRNA and protein data respectively; (d), (e) and (f) represent the 

heatmaps of the first set of simulated data and (j), (k) and (l) represent the heatmaps of the 

second set of simulated data by data type. The proportion of subjects in the clusters was 

assigned as 0.20, 0.30, 0.27 and 0.23. The percentages in the parenthesis of the plots (a)–(c) 

and (g)–(i) represent the percentage of variation explained by the first and second principal 

components.
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